[Назад] [Оглавление] [Вперед]

1.16.Типы контактов и пути поиска внеземных цивилизаций

Подведем итоги главы 1. Теоретически мыслимы следующие типы контактов:

1) непосредственные контакты или взаимные посещения;

2) контакты по каналам связи;

3) контакты смешанного типа, т. е. посылка автоматических устройств (зондов) в район обитания других цивилизаций, с которыми зонд устанавливает контакт по каналам связи;

4) поиски следов астроинженерной деятельности.

Эти мыслимые типы контактов, с их разветвлениями, показаны на рис.1.16.1.

Что касается контактов по каналам связи, то здесь прежде всего следует отметить связь с помощью электромагнитных волн — единственный доступный нам в настоящее время тип связи. Он включает поиск сигналов в инфракрасном, оптическом и рентгеновском диапазонах, а также поиск радиосигналов. Помимо электромагнитных волн, возможно использование иных физических носителей сигнала (и соответственно организация различных неэлектромагнитных каналов): гравитационные волны, нейтрино и другие, рассмотренные нами в § 1.11, включая каналы неизвестной природы.

Как мы видели, начиная с 1950-х годов на первый план выдвинулось направление, связанное с поисками радиосигналов. Это вызвано как развитием технических средств связи в радио диапазоне, появлением крупных радиотелескопов, развитием радиоастрономии, так и тем обстоятельством, что в радиодиапазоне реализуются оптимальные условия передачи (и приема) сигналов на межзвездные расстояния.

 Рис. 1.16.1. Пути поиска внеземных цивилизаций

Рис. 1.16.1. Пути поиска внеземных цивилизаций

С самого начала в поисках радиосигналов наметились два направления: 1) попытка поймать сигналы, предназначенные для внутренних ВЦ («подслушивание»), и 2) поиск сигналов, специально предназначенных для установления связи. Последняя задача, в свою очередь, делится на две: поиск позывных и прием информативной передачи (космическое вещание). В обоих случаях стратегия поиска зависит от наших предположений о характере и уровне развития ВЦ. Здесь наметились два подхода и, соответственно, две стратегии поиска. Первый подход ориентируется на уровень ВЦ, близкий к уровню нашей земной цивилизации (энергетическая мощность ~ 1012 Вт); второй — на поиск сверхцивилизаций, располагающих мощностями порядка 1026-1037 Вт, т. е. сравнимыми с энергетическим выходом звезд, галактик, квазаров. Принимая во внимание неопределенность наших знаний, было бы ошибочным канонизировать какое-то одно направление. Необходимо проводить самый широкий поиск, в рамках которого каждый разумно обоснованный проект заслуживает внимания и поддержки. В настоящее время в различных странах проведено больше 50 экспериментов по поиску сигналов ВЦ (см. § 1.9).

Возможности двусторонней радиосвязи между космическими цивилизациями ограничиваются гигантскими масштабами межзвездных расстояний. Мы редко задумываемся об истинных размерах окружающей нас Вселенной. «Если бы астрономы-профессионалы, — писал И. С. Шкловский, — постоянно и ощутимо представляли себе чудовищную величину космических расстояний ... вряд ли они могли бы успешно развивать науку, которой посвятили свою жизнь»94. Хотя радиоволны распространяются с максимально возможной для физического взаимодействия скоростью 300000 км/с (скорость света! ), им требуется порядка десяти лет, чтобы достичь ближайших звезд и миллиарды лет, чтобы достичь границ наблюдаемой Вселенной. Таким образом, при межзвездном радиодиалоге минимальная задержка между вопросом и ответом составляет десятки лет, для внутригалактической связи она может достигать сотен тысяч лет, а для межгалактической — миллиарды лет. Какую задержку можно считать приемлемой? Вероятно, она не должна превышать характерное время развития (или изменения) цивилизаций. Для нашей цивилизации вряд ли допустима задержка более 100 лет, следовательно, максимальный радиус двусторонней связи должен быть порядка 50 св. лет.

Представим себе, что мы хотим связаться по радио с ближайшей галактикой М31 (знаменитая Туманность Андромеды). Мы посылаем сигнал и... через 4 миллиона лет получаем ответ. Можно ли вести диалог в условиях такой временной задержки? Кого застанет ответ на посланный нами вопрос, будет ли он интересен нашим далеким потомкам, да и застанет ли он вообще кого-нибудь на Земле? Ясно, что если время распространения сигнала превышает время жизни цивилизаций (или длительность коммуникативной фазы), двусторонняя связь между ними невозможна. Поэтому, нравится ли нам это или нет, мы должны признать, что радиосвязь между цивилизациями, если исключить самых близких соседей, может быть только односторонней (космическое вещание). Мы уже касались этой проблемы в § 1.4. Отметим, что это справедливо и в отношении всех других каналов связи, основанных на иных физических носителях сигнала, для которых выполняются законы физики, в частности, ограничение на скорость распространения, которая не может превышать скорость света. Что касается каналов неизвестной природы, то для них могут действовать совершенно иные закономерности, для которых эти ограничения необязательны. Такая (чисто умозрительная) возможность, которую, однако, не следует сбрасывать со счета, открывает перспективу установления двусторонней связи (диалога) между космическими цивилизациями на любые расстояния во Вселенной. Однако — подчеркнем еще раз — к известным в настоящее время формам материи (физические поля и частицы), которые описываются четырьмя известными физическими взаимодействиями, указанная перспектива не относится.

При «подслушивании» сигналов вопрос о двусторонней связи не возникает. Речь идет только об обнаружении ВЦ по их радиоизлучению и, возможно, о приеме информации (если ее удастся расшифровать!). О каких сигналах можно говорить в этом случае? Часть сигналов, предназначенных для внутренних нужд данной цивилизации, может циркулировать по строго направленным каналам типа наших кабельных или радиорелейных линий. Такие сигналы недоступны для других цивилизаций, и ими можно не интересоваться. Но если какие-то из «внутренних» сигналов (подобно земному телевидению или радарам) излучаются в космическое пространство, они могут достигнуть зоны обитания другой цивилизации и, при определенных условиях, могут быть обнаружены. Это так называемый «сигнал утечки».

Для иллюстрации воспользуемся примером Ф. Дрейка, относящимся к 1971 г. В то время на обсерватории Аресибо в фокусе 300-метровой антенны был установлен передатчик для радиолокации планет Солнечной системы, мощность которого составляла 106Вт. Когда телескоп лоцирует планету, только небольшая часть его излучения перехватывается ее поверхностью, большая часть излучения проходит мимо, проникая далеко за пределы Солнечной системы. Если на пути радиолуча попадается какая-нибудь цивилизация и она случайно (или намеренно) направит свою антенну на Солнце, то импульсы, посылаемые с Земли, могут быть обнаружены. Если цивилизация располагает такой же 300-метровой антенной и такой же, как в Аресибо, приемной аппаратурой, то дальность обнаружения составит приблизительно 6000 св. лет. Это довольно большая величина, в сфере такого радиуса находятся сотни миллионов звезд. Если же увеличить мощность передатчика примерно на порядок, то дальность обнаружения будет уже сравнима с размерами Галактики.
Возможность обнаружения «сигналов утечки» от ближайших звезд была изучена А. В. Архиповым (Радиоастрономический институт Национальной АН Украины). Он рассмотрел сигналы типа земного телевидения, излучаемые в диапазоне 102/103 МГц и ограничился расстоянием 20 парсек (60 св. лет). Полагая, что полная мощность, которой располагает ВЦ, составляет ~1025 Вт (цивилизация II типа по Кардашеву) и на радиоизлучение в «телевизионном» диапазоне она тратит такую же долю мощности, как и наша цивилизация на Земле, Архипов рассчитал, что на расстоянии 20 пк это излучение создает спектральную плотность потока порядка 1 Ян, что вполне доступно для обнаружения с помощью современных радиотелескопов. Где искать подобный источник и каковы его признаки? Архипов предположил, что «промышленная зона» ВЦ из экологических соображений удалена на расстояние 1000 а. е. от своей звезды. Тогда с расстояния 20 пк она будет наблюдаться на угловом удалении от звезды порядка 1 угловой минуты. Следовательно, такая «промышленная зона» должна наблюдаться в виде радиоисточника, находящегося вблизи солнцеподобных звезд на угловом расстоянии порядка 1 угловой минуты и излучающего в диапазоне 102-103 МГц, с плотностью потока порядка 1 Ян. Существуют ли такие источники? Архипов проанализировал каталог близких звезд (предельное расстояние 20 пк) и каталог радиоисточников на частоте 408 МГц в надежде отыскать радиоисточники, попадающие в заданную (1 угл. минута) окрестность звезд. Ему удалось выделить около десятка таких источников, причем 4 из них попали в заданную окрестность солнцеподобных звезд спектрального класса F8-K0. По оценкам Архипова, вероятность случайного совпадения (случайной проекции) для этих звезд составляет весьма малую величину 2 ∙ 10-4. Подобные объекты представляют, конечно, интерес с точки зрения SETI.
А как выглядит «радиопортрет» Земли? Что могли бы наблюдать внеземные цивилизации, если бы они исследовали «сигнал утечки» нашей планеты? Чтобы ответить на этот вопрос, надо было бы «посмотреть» на Землю со стороны. Американские радиоастрономы У. Т. Салливан и С. X. Ноу-лес, используя оригинальный метод, добились этого, не покидая поверхности земного шара. Они воспользовались Луной как рефлектором и исследовали отраженные от Луны радиосигналы Земли. На рис. 1.16.2 показан полученный ими спектр радиоизлучения Земли в одном из участков диапазона ультракоротких волн (УКВ), отведенных для телевидения. Поскольку телевизионные станции распределены неравномерно по поверхности земного шара, то вследствие вращения земли вокруг оси интенсивность радиоизлучения меняется со временем. Подобное закономерное изменение интенсивности для внеземных радиоисточников, в сочетании с линейчатым спектром, могло бы служить критерием искусственности, а анализ такой переменности позволяет определить период вращения планеты вокруг собственной оси. Любопытно, что в процессе этих исследований Салливан и Ноулес неожиданно обнаружили очень сильный импульсный сигнал на частоте 217 МГц, который, как выяснилось, принадлежал мощнейшему радару службы Космического надзора американского флота. Так, с помощью Луны, которая играет роль зеркала нашей технической цивилизации, можно определить, что могли бы наблюдать ВЦ, если бы они прослушивали нашу планету с целью обнаружения «сигнала утечки».

К поиску сигналов ВЦ близко примыкает направление, связанное с поисками следов астроинженерной деятельности. Особенно близко оно смыкается с «подслушиванием», так как в обоих случаях речь идет о попытках обнаружить цивилизацию по ее проявлениям, независимо от того, желает ли она заявить о своем существовании. Анализ этих направлений привел к постановке вопроса о критериях искусственности и к формулировке астросоциологического парадокса (мы рассмотрим его в гл. 6).

Контакт смешанного типа (зонды) уже рассматривался в § 1.13. Находясь в зоне обитания космической цивилизации, зонд может вступить в двусторонний контакт с нею и обмениваться информацией по каналам связи. Поскольку зонд действует в пределах определенной программы, такой контакт лишь частично заменяет двусторонний контакт с пославшей его цивилизацией. Чем мощнее искусственный интеллект зонда, чем сложнее и пластичнее его программа, тем в меньшей мере сказываются эти ограничения. Но, конечно, такой контакт не может заменить взаимные посещения.

Рис. 1.16.2. Радиопрослушивание Земли. Спектр радиоизлучения наземных станций, полученный по исследованию радиоизлучения Земли, отраженного от Луны (У. Т. Салливан, С. X. Ноулес, 1985). Приведены данные, относящиеся к различным моментам всемирного времени (UT)

Рис. 1.16.2. Радиопрослушивание Земли. Спектр радиоизлучения наземных станций, полученный по исследованию радиоизлучения Земли, отраженного от Луны (У. Т. Салливан, С. X. Ноулес, 1985). Приведены данные, относящиеся к различным моментам всемирного времени (UT)

Возможность межзвездных перелетов обсуждалась нами в § 1.15. Коль скоро речь заходит о таких путешествиях, это неизбежно приводит к вопросу о посещении Земли в прошлом и настоящем представителями высокоразвитых внеземных цивилизаций. Применительно к прошлому — это проблема палеовизита; применительно к настоящему она связывается обычно с неопознанными летающими объектами НЛО. Обе проблемы сталкиваются со значительными трудностями из-за двух крайних тенденций. Одна из них состоит в некритическом отношении к фактам, в склонности к слишком поспешным и неосновательным выводам; представители другой точки зрения отрицают саму постановку проблемы и крайне негативно относится к любым исследованиям в этих областях. На мой взгляд, обе тенденции одинаково вредны, им надо противопоставить подлинно научное изучение проблемы.

Мы перечислили (и частично рассмотрели в этой главе) основные типы контактов и пути поиска ВЦ, как они представляются в настоящее время. Вместе с тем, обращаясь к истории, мы видели, что представления о путях поиска внеземных цивилизаций существенно менялись со временем под влиянием таких факторов, как характер общественного сознания, парадигма, уровень развития науки и техники. Поэтому весьма вероятно, что наши современные взгляды также претерпят кардинальные изменения и, быть может, уже в недалеком будущем. Углубляясь в изучение проблемы, надо постоянно иметь в виду эту перспективу, такая позиция поможет нам избежать абсолютизации современных подходов и однобоких выводов.


94 Шкловский И.С. Вселенная, жизнь, разум. — М.: Наука, 1965. С. 15.

ЛИТЕРАТУРА

1. Х.Каплан С.А. Элементарная радиоастрономия. — М.: Наука, 1966.С. 276.

2.Салливан У. Мы не одни. — М.: Мир, 1967. С. 384.

3.Межзвездная связь. — М.: Мир, 1965. С. 324.

4.Шкловский И.С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза. 6-е изд., доп. — М.: Наука, 1987. С. 320.

5. Голдсмит Д.,Оуэн Т. Поиски жизни во Вселенной / Под ред. М. Я. Марова. — М.: Мир, 1965. С. 320.

6.Внеземные цивилизации. Труды совещания. — Бюракан 20-23 мая 1964 г. С. 152.

7.Внеземные цивилизации. Проблемы межзвездной связи / Под ред. С. А. Каплана. — М.: Наука, 1969. С. 438.

8.Проблема CETI (Связь с внеземными цивилизациями). — М.: Мир, 1975. С. 352.

9.Проблема поиска внеземных цивилизаций / Под ред. В. С. Троицкого и Н. С. Кардашева. — М.: Наука, 1981. С. 264.

10.Проблема поиска жизни во Вселенной / Труды Таллинского симпозиума: Под ред. В. А. Амбарцумяна, Н. С. Кардашева, В. С. Троицкого. — М.: Наука, 1986. С. 256.

11.Гиндилис Л.M. Космические цивилизации. — М.: Знание, 1973.

12.Петрович Н.Т. Кто вы? — М.: Молодая гвардия, 1974. С. 240.

13.Петрович Н.Т. Тайна внеземных цивилизаций. Спор оптимиста и пессимиста. — М.: Ягуар, 1999. С. 95.

14.Мизун Ю.В., Мизун Ю.Г. Разумная жизнь во Вселенной. — М.: Вече, 2000. С. 432.