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The resonant Chandler wobble of the Earth’s pole with ∼ 0.2 arcsec amplitude, accompanied by the low-
frequency trend and annual motion, is provided by some process, hidden in the atmosphere and ocean variability.
The problem can be described by the Euler-Liouville equation
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where p = p1+ip2 ≈ xp−iyp is the complex pole trajectory (xp, yp – coordinates of the pole); σc = 2πfc(1+i/2Q)
is a complex Chandler frequency, depending on real frequency fc and quality factor Q (standard values are
fc = 0.843 cycles per year, Q = 100); χ = χ1 + iχ2 is an effective angular momentum function, or excitation.
If to denote the direct problem (1) as Ap = χ, with linear operator A, our goal is to extract Chandler wobble
and reconstruct its excitation χ from the noisy observations p, i.e. to solve the inverse problem. Unregularized
solution A−1p is improper way to do this.

To extract Chandler wobble we used Panteleev’s filter, with impulse response
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and frequency response
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centered at the Chandler frequency fc with half-width parameter ω0 = 2πf0. This filter with parameter
f0 = 0.04 years−1 allows to extract Chandler wobble (CW) of the Earths pole with less then 10% error from
the 50 milliseconds of arc (mas) noise, as shown by modelling.

It is well known, that for the inverse problem solution it is required to build an algorithm, converging to
the exact pseudo-solution when the errors in operator and observations tend to zero [1]. If to use the filter (3)
together with inverse operator, the Chandler excitation can be obtained

χ̂(f) = A−1Lhp̂(f) = Wcorrp̂(f), (4)

where we use ·̂ to denote Fourier transform (spectrum) and spectral form of inverse operator A−1. By operator
Wcorr = A−1Lh we mean such an algorithm, called Panteleev’s corrective filtering, which allows to obtain
the inverse problem solution not corrupted by noises in the frequency band, where A−1 has large frequency
response and amplifies noises. This method was applied in [2] to the problem of Chandler wobble excitation
reconstruction.

To be sure, that such filtering is a regularizing algorithm, we should check, that filter parameters depend
on the data and operator noise and the obtained solution would converge to the exact pseudo-solution, when
errors tend to zero.

Firstly, it is easy to show, that if the errors in operator, i.e. in values fc and Q, would tend to zero, the
bias of the solution, obtained with corrective filter Wcorr, would tend to zero, due to the fact that the filter Lh

is centered at fc.
On the other side, the obtained one-parametric family of solutions depends on the half-width of the filter

T0 = 1/f0. To select this parameter in accordance with the minima of discrepancy principle, we performed
simple modelling, described below. The Chandler excitation χ model was generated to produce p(t) = Aχ
similar to the real Chandler wobble, filtered out from observations. Then we obtained p from χ using the
operator parameters model m2(Tc = 1/fc = 433 years, Q = 100) as unperturbed (the true one) and models
m1(Tc = 436 years, Q = 130), m3(Tc = 430 years, Q = 70) with reasonable errors-in-operator A introduced
through parameters fc = 1/Tc and Q. Treating model m2 as an exact one, we obtained mean error for m1,3 at
the level h||χ|| = 70 mas. After that, Gaussian noise was added to observations p over all the time period 1846-
2017. The mean amplitude of noise δ = 50 mas was selected a bit less than early astrometric noise expected
before 1900 yr, but much larger than the observational noise of cosmic geodesy epoch (0.1 mas), began in 1970s.

If to apply inverse operator A−1 directly to noisy data without additional filter Lh, the mean error in
reconstructed excitation would have enormous level σχ = 550 mas. Using corrective filtering with fixed fc
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Figure 1: Mean desacrepancy ||(χ̂ −Wcorrp̂)|| as a function of filter (2) half-width T0 = 1/f0 for the case of
observational noise (m2), and both observational and operator noises (m1, m3).

and Q as in m2, and parameter f0 changing from 1/40 to 1/5 years−1, we estimated the level of agreement
of reconstructed excitation with the initial one (modelled). The value of discrepancy ||(χ̂−Wcorrp̂)|| is shown
in Fig. 1 for the case of error-in-observations only (m2, blue line) and two cases of errors in observations and
operator (m1,3, red and green). If the filter (3) width f0 is too narrow, it damps useful component of the
solution. On the other side, if its band-pass is too wide, to much noises would pass, and the agreement would
be worse. In the absence of operator noise, the optimal filter parameter obtained from the minima of the curve
in Fig. 1 is f0 = 1/20 years−1. Standard error in excitation reconstruction is 0.2 mas. When the noise present
in both observations and operator parameters fc, Q, the optimal half-width is T0 = 25 years (f0 = 0.04 years−1)
and the modelled reconstruction error 0.7-0.9 mas, two to three times less than the pike amplitudes (2-3 mas)
of the excitation reconstructed from the real observations [2].

Thus, we believe, that excitation obtained for the real Chandler wobble [2] (not shown here) with quasi
20-year amplitude modulations is real, it maintains Chandler wobble and explains its amplitude changes [3].
We conclude that Panteleev’s filtering is a regularizing algorithm with filter (2) playing the role of a stabilizer,
helping to reject high and low frequency noises in the band, where direct operator amplitude response is small.
For the excitation we obtained the one-parametric family of solutions, with a filter width as a parameter. Using
the model of the Chandler excitation, we show, that the optimal filter parameter f0 1/25 years−1 [2] can be
selected in accordance with the generalized discrepancy principle [1].
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