МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ им. А.Н.Тихонова

Национальный исследовательский университет Высшая школа экономики

Зотов Леонид Валентинович

ВРАЩЕНИЕ ЗЕМЛИ И КЛИМАТИЧЕСКИЕ ПРОЦЕССЫ

монография

УДК 521-93 ББК 22.61 PACS 91.10.Nj

© Зотов Леонид Валентинович

Вращение Земли и климатические процессы. – M: НИУ ВШЭ, 2022. – 306 с.

Работа посвящена рассмотрению геофизических процессов, вызывающих движение полюса и изменение длительности суток. Особое внимание уделено чандлеровскому движению полюса. Разработана методика его выделения и восстановления геодезического возбуждения. Исследуются атмосферные и океанические возбуждающие функции в чандлеровском диапазоне. С использованием данных по гравитационному полю Земли со спутников GRACE анализируются первые коэффициенты разложения гравитационного потенциала в аспекте влияния соответствующего перераспределения масс на вращение Земли. Дана классическая теория вращения Земли с жидким внешним и твердым внутренним ядром, на её основе уравнения Эйлера-Лиувилля обобщены на случай трехосной Земли с океанами. В работе также проводится статистический анализ прогнозов параметров вращения Земли, обсуждаются взаимосвязи вращения Земли и климатических процессов.

ISBN: 978-5-600-03155-5

Научные консультанты: Астроном Парижской обсерватории Кристиан Бизуар, д.ф.-м.н. Н.С. Сидоренков

Содержание

Предисловие			6		
Введение					
1	Параметры вращения Земли				
	1.1	Методы наблюдений за вращением Земли	13		
	1.2	Центр параметров вращения Земли МСВЗ	17		
	1.3	Параметры ориентации Земли	20		
2	Acı	іекты теории вращения Земли	26		
	2.1	Кинематические соотношения в подвижной и неподвижной			
		системах координат	26		
		2.1.1 Координаты и скорости	26		
		2.1.2 Ускорения	28		
		2.1.3 Центробежное и кориолисово ускорения	29		
	2.2	Уравнение Лагранжа вращения твердого тела	30		
	2.3	Динамические уравнения Эйлера	31		
	2.4	Уравнения Эйлера-Лиувилля	33		
	2.5	Чандлеровское колебание полюса	37		
	2.6	Уравнения Эйлера-Лиувилля в матричном виде	40		
	2.7	Учет влияния ядра, комментарии об обозначениях	41		
	2.8	Вывод уравнения для момента импульса жидкого ядра	43		
	2.9	Вывод уравнений вращения трехслойной Земли	47		
		2.9.1 Вывод уравнений для твердого ядра	48		
		2.9.2 Вывод уравнений для жидкого ядра	50		
		2.9.3 Вывод уравнений для всей Земли с мантией	52		
		2.9.4 Система уравнений для колебания осей мантии,			
		внешнего и внутреннего ядер	54		
3	Обо	общенное уравнение Эйлера-Лиувилля	59		
	3.1	Экскурс в проблему	59		

	3.2	Трехосная асимметрия	. 62
	3.3	Асимметрия полюсного прилива	. 66
		3.3.1 Эффект вращательной деформации	. 66
		3.3.2 Обобщенные экваториальные уравнения Лиувилля	
		в линеаризованном виде	. 67
	3.4	Решение обобщенных линеаризованных уравнений Лиувилл	ия 69
		3.4.1 Решение в частотной области и собственные частот	ы 69
		3.4.2 Решение во временной области	. 72
		$3.4.3$ Влияние на вынужденную нутацию на частоте σ_0	. 72
	3.5	Наблюдательные следствия	. 73
		3.5.1 Симметрический и асимметрический отклик на	
		круговое возбуждение на заданной частоте	. 73
		3.5.2 Собственная эллиптичность	. 75
		3.5.3 Численные оценки величин асимметрического вкла-	
		да во временной области	. 76
		3.5.4 Следствия для геодезического возбуждения	. 77
	3.6	Выводы и замечания	. 78
4	Me	тодика решения обратной задачи восстановлени	RI
-		дного чандлеровского возбуждения	81
	4.1	Решение обратной задачи восстановления чандлеровского	
		возбуждения	. 81
	4.2	О погрешности выделения чандлеровской компоненты .	
	4.3	Изменения ЧДП без фильтрации	. 89
	4.4	Использованные данные по эффективному угловому мо-	
		менту	. 91
	4.5	Сравнение геодезического и геофизического возбуждений	
		в чандлеровском диапазоне	. 95
	4.6	Итоги	. 99
5	Mo,	делирование огибающей чандлеровского колебания	И
	его	возбуждения	100
	5.1	О целях главы	. 100
	5.2	Модель огибающей ЧДП	. 102
	5.3	Корректирующий фильтр Пантелеева как регуляризирую-	
		щий алгоритм	. 106
	5.4	Вывод уравнения для огибающей чандлеровского колеба-	
		ния и его возбуждения	. 109
	5.5	О 20-летней модуляции возбуждения	
	5.6	О скачке фазы ЧДП и модуляции	

Л.	В. За	отов. Вращение Земли и климатические процессы 3
	5.7	Эффект "эскарго"
	5.8	Еще раз о резонансе
	5.9	Выводы
6	Bos	буждения в рамках обобщенного уравнения Эйлера-
	Ли	увилля 120
	6.1	Реконструкция прямого и обратного чандлеровского воз-
		буждений в рамках обобщенного уравнения
	6.2	Анализ и сравнение с геофизическим возбуждением 124
	6.3	Заключительные замечания
7	Ана	ализ осевого углового момента атмосферы ААМ 130
	7.1	О влиянии зональной компоненты AAM на LOD 130
	7.2	Использованные данные NCEP/NCAR
	7.3	Совместный МССА компонент ААМ ветра и давления 138
	7.4	Сравнение с данными ECMWF
	7.5	Выводы и дискуссия
8	ОД	вух гармониках лунного прилива в ААМ 150
	8.1	Перевод углового момента в небесную систему координат . 150
	8.2	Выявленные особенности небесного углового момента с пе-
		риодами от 2 суток до 1 месяца
	8.3	Вычисление момента сил
	8.4	О приливной природе 13.6 - суточной гармоники 156
	8.5	Анализ 6-суточного пика в ААМ
9	0.57	еан как фактор климата и его угловой момент 161
9	9.1	
		1
	9.2	
	9.3	Динамика океана и атмосферы, определяющая многолет-
	0.4	ние циклы
	9.4	Течения в Мировом океане и климат
	9.5	О возможной связи геофизических и социальных явлений 175
	9.6	Угловой момент океана ОАМ
	9.7	MCCA-анализ экваториальной компоненты массы ОАМ 179
	9.8	Заключительные замечания
10		ализ данных о гравитационном поле со спутников
		ACE 188
		О миссии GRACE
	10.2	Обработка данных GRACE

	10.2.1 Подготовка исходных данных	191
	10.2.2 MCCA-фильтрация данных GRACE	
		195
	10.4 О роли GRACE при определении нестерической компонен-	
		203
	V 1 1	205
	10.6 Результаты МССА-обработки данных по массе океана	206
		207
11	Анализ первых гармоник гравитационного потенциала	
	Земли	211
	11.1 Введение	211
	11.2 Источники рядов координат геоцентра	212
	11.3 Анализ рядов геоцентра	214
	11.4 Динамический форм-фактор J_2 по данным SLR и GRACE	218
	11.5 Сингулярный спектральный анализ J_2	218
	11.6 О влиянии коэффициентов гравитационного потенциала	
	второй степени на вращение Земли	222
	11.7 Сопоставление трендов движения полюса и изменений C_{21} ,	
	21	223
	11.8 Вариации в скорости вращения Земли и C_{20}	
		232
		235
		237
	11.12 Итоги анализа первых коэффициентов геопотенциала	239
12		242
	12.1 О прогнозировании ПВЗ	
	12.2 Об использованных методах прогнозирования	
	12.2.1 Метод наименьших квадратов	
	12.2.2 Авторегрессия	
	12.2.3 Средняя квадратическая коллокация	
	12.2.4 Нейронные сети	
	12.2.5 Прогнозы Шанхайской обсерватории	
	12.2.6 Комбинированные прогнозы	
	12.3 Статистический анализ результатов	
	12.3.1 Погрешности МЕ и RMSE	
	12.3.2 Пример отдельного прогноза	
	12.3.3 Анализ отклонения прогнозов от наблюдений	
	12.4 Выводы по выполнявшимся прогнозам	257

5
258
263
. 263
. 265
. 269
276
. 276
. 280
. 281
. 286
. 286
. 289
. 290
. 304

Предисловие

В сердце каждого человека хранится одно правдивое послание, но оно погребено под обрывками обветшалых книг. В сердце каждого человека звучит один правдивый напев, но его заглушают распутные песенки и буйные крики. Тот кто предан учению, должен отмести все внешнее и напрямую постичь изначальное. Только тогда он поймет, что есть подлинного в жизни. Хун Цзичен "Вкус корней", перевод В. Малявина

Представленная вниманию читателей монография посвящена вращению Земли – классическому разделу астрономии и геодезии. В настоящее время эта область стала тесно соприкасаться с другими направлениями наук о Земле: геодинамикой, климатологией, океанологией, метеорологией, поскольку вращение планеты чувствительно к процессам в ее оболочках. Это и послужило расширению темы. В книге представлены исследования, которые проводились автором с 2001 года. Исторический обзор по вращению Земли, постановка вопросов и их предварительное решение были даны еще в кандидатской диссертации [55]. Нынешняя работа, составившая основу докторской диссертации, содержит более глубокую их разработку, ставшую возможной благодаря появлению новых данных, достижениями в изучении изменений климата, развитием космических средств наблюдений, альтиметрии, гравиметрии и др. Важность выбранных тем для решения прикладных задач, стремление применить передовые методы обработки и обнаружить новое руководили автором.

Основная часть работы посвящена рассмотрению движения полюса, в особенности чандлеровского колебания, изменчивости длительности суток LOD, их геофизическим причинам, анализу перераспределений масс. Некоторые вопросы, как например, взаимосвязь сейсмической и вулканической активности с вращением Земли, высокочастотные вариации параметров вращения Земли (ПВЗ) остались за кадром. Лишь косвенно затронуты вопросы моделирования прецессии и нутации, движений в ядре Земли, связанных с внутренними напряжениями в недрах и электромагнитным взаимодействием на границе ядро-мантия. Сколь ни

была бы обширна работа, она не может включить всех вопросов, лежащих на стыке традиционно геодезического предмета — вращения Земли и современной геофизики. В качестве оправдания можно сказать, что в наше время наука становится все более специализированной и по каждой из областей имеется такое количество исследований и литературы, что любая работа, если она обзорная, не обозрит всего, а если исследовательская, — во многом повторит уже сделанное. Автор старался ссылаться на предшественников, и надеется, что коллег, работающих по теме вращения Земли и не обнаруживших себя в списке литературы, будет мало. Если такие найдутся, то это не по причине предвзятости, а из-за обилия издаваемых материалов по предмету.

В 2016 году скорость вращения Земли начала увеличиваться и на момент издания монографии достигла существенного максимума, если сравнивать с измерениями за последние полвека. Чандлеровское колебание полюса также затухло в 2020 г. и, по всей видимости, сменило фазу. Эти удивительные особенности делают эпоху написания этой книги ключевой для поиска ответов на еще нерешенные вопросы, для объяснения многолетних вариаций LOD и движений полюса.

Большое внимание в книге уделено чандлеровскому колебанию: причинам его амплитудных модуляций, согласию геодезических и геофизических возбуждений в чандлеровском диапазоне частот, точности самой модели, задаваемой классическими и обобщенными уравнениями Эйлера-Лиувилля. Удалось ли автору открыть новое — судить не ему. Представленный текст — это продукт своего времени, и автору хотелось бы, чтобы в нём оказалось то, что не сразу уйдет в анналы истории, но останется актуальным и для следующего поколения. Нередко, открыв исследование какой-нибудь двадцати-тридцатилетней давности, удивишься тому, как быстро движется вперед наука. Интересы научного сообщества постоянно меняются, вчера еще передовые методы устаревают. Хочется верить, что десятилетия жизни, вложенные в представленную работу — не просто утраченное время. Впрочем, любой процесс творчества оправдывает сам себя и в некотором смысле является самоцелью.

Автор благодарит тех читателей, которые найдут в себе силы ознакомиться с монографией, и надеется, что им покажутся интересными сведения, накопленные в ходе наблюдений за вращением Земли, океаном, атмосферой, результаты компьютерного моделирования и некоторые теоретические идеи. Ориентируясь на развитие науки на Востоке и Западе, автор старался сохранять и развивать методологию и идеи отечественной школы.

Хотелось бы выразить благодарность Н.С. Сидоренкову, В.Л. Панте-

лееву, В.С. Губанову, Я.С. Яцкиву, С.Л. Пасынку, В.Л. Горшкову, Н.А. Чуйковой, С.М. Копейкину, А.Г. Яголе, Н.Л. Фроловой, Ю.Н. Авсюку, К.В. Куимову, Т.С. Чесноковой за полезные дискуссии и наставления, а также зарубежным коллегам: К. Бизуару, С.К. Шаму, В. Шену, С. Сю, Ю. Джоу, Дж. Гуо, Ч. Хуангу, Х. Феррандишу, А. Бжезинскому, И. Настуле, Р. Гроссу, В. Дехант и многим другим за поддержку и дискуссии.

Автор благодарен своим дипломникам в МИЭМ ВШЭ: Е. Щепловой, Е. Балакиревой, А. Скоробогатову, И. Сгибневу, В. Власовой, Х. Езиеву и А. Устинову, проявившим интерес к совместным исследованиям. С рядом из них автор опубликовал совместные статьи, результаты которых вошли в главы данной монографии. Он благодарен Б.П. Середину, чьё обширное наследие книг по геофизике было передано автору внучкой Анной. При выполнении работы большую поддержку оказали близкие автору люди: мама Ольга Викторовна и жена Екатерина.

Первое знакомство с результатами работы спутников GRACE, вызвавшее интерес к проблемам изменения климата, состоялось в Школе наук о Земле Университета штата Огайо, США, где автор работал по гранту Фулбрайта в 2009-2010 гг. Появившаяся тогда идея применения многоканального сингулярного спектрального анализа (МССА) была разработана в 2010 г. По соответствующей теме был получен грант Президента России. Впоследствии большой интерес к этой теме проявили сотрудники географического и геологического факультетов МГУ. Работа по анализу угловых моментов атмосферы и океана на сетке велась в Шанхайской обсерватории по гранту Академии наук Китая для приглашенного ученого в 2011-2012 гг. Анализ чандлеровского колебания и возбуждающих функций был начат еще в кандидатской диссертации, далее проводился при поддержке Парижской обсерватории в ходе нескольких месячных стажировок. Исследование вариаций первых гармоник гравитационного поля было инициировано Ю.В. Баркиным, поддержано Н.А. Чуйковой и вылилось в исследование влияния внутренних структур Земли на вращение планеты. Эта работа продолжилась в Уханьском университете при поддержке программы "111" по инновациям инженерных дисциплин в современной геодезии и геодинамике (NSFC No. B17033). Автор также благодарен грантам РФФИ, РНФ (No. 21-47-00008) и Школе Космос МГУ им. М.В. Ломоносова при поддержке которых проходило сотрудничество с интереснейшими научными коллективами и был опубликован ряд совместных работ, а также программе кадрового резерва НИУ ВШЭ и НУГ "Группа оперативного мониторинга" (No. 20-04-033). 15 марта 2022 г. Л.В. Зотов

Введение

Всему времечко свое: Лить дождю, Земле вращаться, Знать, где первое прозренье, Где последняя черта. Булат Окуджава

Вращение Земли на протяжении веков было для человека мерилом времени. Восход и заход Солнца, его годовое движение легли в основу календаря, но не сразу человек осознал относительность движения, выявил законы механики, осознал фундаментальную истину того, что он и его планета – вовсе не центр Вселенной. Еще в древности Гиппарх (190-120 гг. до н.э.) открыл явление предварения равноденствий – прецессию. В Китае оно было открыто по смещению точки зимнего солнцестояния несколькими веками позже. Некоторые предания указывают на то, что об этом явлении могли догадываться еще в древнем Египте и Вавилоне [105, 191, 234]. В наше время смещение оси вращения Земли под действием моментов сил Луны и Солнца, вызывающих прецессию и нутацию, рассчитывается с высочайшей точностью. В XX веке, с изобретением атомных часов и развитием прецизионных методов астрометрии и космической геодезии, стало очевидно, что вращение Земли неравномерно, оно не может выступать основой точного счета времени. И хотя люди попрежнему считают время часами, сутками и годами, хранение точного времени перешло из астрономии в область атомной физики. Подстройка атомного времени под вращение Земли выполняется путем добавления дополнительной секунды, решение о которой принимает Международная служба вращения Земли и систем отсчёта (МСВЗ) в Париже [517]. Смещение полюсов исследуется уже более века и наблюдается сегодня с точностью в десятки микросекунд дуги. Чтобы теория соответствовала точности наблюдений, необходимо моделировать и отслеживать процессы в океане, атмосфере и в недрах Земли. Однако для широкого диапазона частот столь высокое соответствие пока еще не достигнуто. Это связано с недостатком сведений о процессах в недрах планеты, особенно на продолжительных интервалах времени, погрешностями определения некоторых параметров внутреннего строения планеты, со сложной нелинейной динамикой взаимодействующих земных оболочек. И хотя отклик Земли на внешние воздействия во многом известен, стоит задача его уточнения.

Связь земной и небесной систем координат для высокоточной навигации и позиционирования, проведения космических исследований и др. требует постоянного усовершенствования физических моделей вращения планеты и методов прогнозирования параметров вращения Земли (ПВЗ), к которым относят отличие всемирного времени UT1 от атомного TAI (либо длительность суток LOD), поправки к углам прецессии-нутации $d\psi, d\varepsilon$ (к координатам небесного полюса dX, dY), координаты полюса x, y в земной системе. Углы ориентации Земли входят в матрицы преобразований между системами координат, их выбор во многом продиктован требованием удобства выполнения таких преобразований.

Неравномерности во вращении Земли являются своего рода сводным откликом на процессы в ближнем Космосе, в оболочках Земли и её недрах. Приливы от внешних тел деформируют Землю, меняя её тензор инерции, создают внешний момент сил, источник которого – гравитационный потенциал. Течения в океане, изменения в циркуляции атмосферы, взаимодействия на границе ядра и мантии приводят к обмену моментом импульса и энергией и также влияют на вращение Земли. Подсчитать энергию в диссипативных системах весьма сложно, поэтому в расчетах обычно пользуются законом сохранения импульса. Величины изменений ПВЗ невелики – сантиметры, максимум метры для движения полюса и миллисекунды времени для продолжительности суток. Однако наблюдения этих малых отклонений дают ключ к пониманию физики планеты, её реологии и строения, позволяют определить упругие свойства, добротность, сжатие – параметры, определяющие динамический отклик Земли на астрономические и геофизические возбуждения. Изучение вращения Земли при повышении точности наблюдений позволяет улучшить модели ее внутреннего строения, модели глобальной циркуляции (GCM) океана и атмосферы и выявить еще не учтенные факторы.

В данной работе мы попытаемся дать некоторые представления о взаимном влиянии вращения Земли и геофизических процессов. С использованием накопленных за десятилетия наблюдений за океаном, атмосферой, гравитационным полем планеты, мы иллюстрируем их взаимосвязь с вращением Земли и намечаем дальнейшие перспективные направления исследований. Для этого мы используем математические методы фильтрации и анализа многомерных данных, динамические модели, законы механики для вращающейся многослойной вязко-упругой Земли, методы решения обратных задач и др. Как уже говорилось в предисловии, наша задача состоит не в полном охвате всех тем, а в тщательной проработке определенных вопросов. По прочим направлениям мы стараемся привести ссылки на дополнительную литературу.

Тем, кому интересна история исследований вращения Земли, мы рекомендуем обратиться к [55], прочитать интервью с В.А. Наумовым в популярной книге [108], заметку М.С. Зверева об А.А. Михайлове [208], труды О.А. Орлова [219, 220], биографию Е.П. Федорова [111]. Для читателей, которые сочтут недостаточными теоретические выкладки по вращению Земли в главе 2, мы рекомендуем обширный ряд монографий [123, 124, 177, 178, 182] наряду с недавно вышедшими книгами В. Дехант и П. Мэтьюса [166], а также К. Бизуара [163, 164]. Что касается взаимосвязи сейсмичности и вращения Земли, в последнее время в печати появляется немало противоречивых заявлений [501]. В научной литературе мнения на этот счет расходятся [238, 382]. О том, как меняются напряжения в земной коре при ускорении/замедлении вращения Земли, говорится в диссертации [61], работах [223, 374], любопытный исторический обзор дан в [194]. В кандидатской диссертации автора [55] также выполнено моделирование влияния Суматранского землетрясения 2004 г. на вращение Земли. С темой электромагнитных взаимодействий на границе ядро-мантии и движениями внутреннего ядра, вызывающими большой интерес у теоретиков, можно познакомиться в [75, 224, 324, 308].

Одним из основных сюжетов представленной работы выступает исследование чандлеровского движения полюса, для которого методом корректирующей фильтрации В.Л. Пантелеева удалось восстановить возбуждающие функции и обнаружить их квази-20-летние модуляции. При разработке этой темы мы воспользовались многолетними наблюдениями, хранящимися в центре данных ЕОР РС по вращению Земли в Париже. Подробнее о наблюдательных данных будет сказано в первой главе. Теоретические сведения о вращении Земли даны в главе 2 Во третьей главе работы представлена обобщенная модель уравнений Эйлера-Лиувилля, ее анализ проводятся в главе 6. На основе фильтра Пантелеева, представленного в приложении Б, в главах 4, 5 ведется исследование чандлеровского возбуждения.

Исследование угловых моментов атмосферы и океана на сетке в главах 7, 9, и анализ данных GRACE и GRACE-FO в главе 10 проводится с использованием многоканального сингулярного спектрального анализа (МССА), представленного в приложении В. На его одномерную версию – метод "гусеницы-ССА" автору в своем время указал С.Л. Пасынок. К теории фильтрации интерес автора привлек В.Л. Пантелеев, он же инициировал написание учебника [30]. На работы А.А. Любушина и его книгу [118], содержащую множество математических методов обработки

временных рядов, обратил внимание М.В. Баринов. Результаты их применения к данным GRACE, с которыми автора познакомил С.К. Шам, вызвали большой интерес гидрологов Московского университета под руководством Н.Л. Фроловой. Это способствовало проведению исследований распределения масс в бассейнах крупных рек России. Работы В.Д. Юшикна [24] с абсолютными гравиметрами послужили для сопоставлений космической и наземной гравиметрии.

Изучая влияние внешних сил на колебания ядра, Ю.В. Баркин [225, 264] инициировал предпринятый нами в главе 11 анализ коэффициентов гравитационного поля, отражающих смещение геоцентра. Интерес к анализу коэффициентов разложения второй степени возник благодаря работам Н.А. Чуйковой [240] с коллегами по исследованию движений земной коры и внутренних напряжений. Это вылилось в исследования дрейфа полюса под действием глобального перераспределения масс.

Исследование эффективных угловых моментов атмосферы и влияния на них лунных приливов в главе 8 вдохновлено Н.С. Сидоренковым [182]. Его предположение о важной роли лунных приливов в атмосферной изменчивости нашло, по крайней мере частично, своё подтверждение. Предположение о том, что 18.6-летняя прецессия орбиты Луны приводит к существенным изменениям в геофизических процессах и, возможно, связана с чандлеровским колебанием, неоднократно высказывал Ю.Н. Авсюк [261].

В XI веке аль-Бируни писал: "Следует постоянно следить за широтами, иначе города могут достичь губительных местностей, что погубит их" [90, 234]. Согласно гипотезе Миланковича, ответственность за ледниковые периоды лежит на изменениях параметров орбиты Земли и положении её оси [126]. Задавшись вопросом, возможна ли взаимосвязь между вращением Земли и изменениями климата на интервалах времени в несколько десятилетий, мы проанализировали ряды продолжительности суток и движения полюса, а также климатические индексы. Результаты, представленные в главах 9, 11, говорят о наличии таких взаимосвязей. Эти исследования в русле работ Н.Сидоренкова, А.С. Монина [126], И.В. Максимова [120], К. Ламбека [177] и др. на наших глазах получают новый виток развития [256, 297, 296]. На ассамблее Азиатско-Тихоокеанского геофизического союза AOGS-2016 работала междисциплинарная секция "Изменения климата и движение полюса". Президент комиссии по вращению Земли Международного астрономического союза (МАС), Р. Гросс, в своем интервью газете "Informacion Alicante" от 26.09.2017 высказался о взаимосвязи изменений климата и вращения Земли. Создана комиссия ICCC С.1 "Климатические сигналы в параметрах вращения Земли".