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Chapter 8

Stellar and Galactic Dynamics
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The dynamics of star clusters, galaxies or galaxy clusters is significantly more
complicated than hydrodynamics. This has two basic reasons:

Gases and plasmas (in laboratories, in stars) are dominated by electromagnetic
forces which are mostly negligible on scales larger than a few times the typical
separation of the particles.
Galaxies are dominated by gravitation, a force that cannot be shielded. Therefore,
stars/galaxies experience accelerations from all other members in the system.

The mean free path of particles in most gases is generally small compared to the
size of the system.
In stellar and galaxy systems the mean free path is large compared to the size of the
system (→ few interactions, large relaxation times)

The physics of gases and plasmas is LOCAL
The physics of stellar systems is GLOBAL

For a comprehensive overview of stellar dynamics see:
Binney, Tremaine: Galactic Dynamics, Princeton Univ. Press
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8.1 Relaxation of Stellar Systems

Classical relaxation is based on the redistribution of the orbital energies of stars via two-
body encounters. After many encounters an equilibrium distribution is established compa-
rable (but not equal!) to the Boltzmann distribution of statistical mechanics.

1. Deflection of a star when passing another star:
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Consider passages at large distances first: δv┴ « v
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Setting the zero-point in t such that x = v · t gives:

2. Number of interactions experienced by a star when passing through a homogeneous 
    stellar system once:

R = Radius of the stellar system
N = Number of stars in the system
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Probability P1 that the crossing star will pass one star of the system (e.g. galaxy) in a
distance-interval [b, b+db] :

If the galaxy contains N stars, the total number of interactions for a single crossing is:

With every interaction v changes by the amount of v┴.
The sum of all interactions will lead to an average change of velocity of <δv┴> ≈ 0
(positive and negative deflections are equally probable).
However the mean square deflection is not equal to 0:

2 2

2

2

2 2 2
                          (8.6)

b

Gm Gm Nb
v n db

bv bv R
! !"

# $ # $
< >= % = %& ' & '

( ) ( )

max

min

2 2

2 max

2

min

2 2
8 ln                              (8.7)

b

b

bGm Nb Gm
v db N

bv R vR b
! "

# $ # $
< >= =% & % &

' ( ' ()

3. Integration over all impact parameters b gives:
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    Plausible values for bmin, bmax:

Using the virial theorem |2T| = |V| gives (v = mean velocity of the stars) :

and thus:                         As a matter of fact, interactions with b < bmin are very rare:

The fractional area of a galaxy that corresponds to close passages is given by:

i.e. for typical stellar systems with N > 1000 close interactions are negligible, i.e.:

           → Relaxation is dominated by large distance interactions
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4. Using the virial theorem once more leads to

    for a single passage through the stellar system.
    For relaxation (<δ v┴2> ≈ v2) to occur, a star will have to cross the galaxy Nrelax times:

    The relaxation-time τrelax is (τcross = crossing-time):

    Examples:

10−12 · 1010 yrs109 yrs1000 km/s1 Mpc1000galaxy cluster

10−41014 yrs2 · 107 yrs50 km/s1 kpc109dwarf galaxy

10−71017 yrs2 · 107 yrs600 km/s10 kpc1012ellipt. galaxy

 ≥ 104 · 108 yrs4 · 105 yrs10 km/s4 pc105globular cluster

 ≥ 1107 yrs4 · 106 yrs0.5 km/s2 pc100open cluster

age/τrelaxτrelaxτcrossvRN
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i.e. at every location 

can be true. This corresponds to an ‘anisotropic temperature’.

!

!

 Two-body-relaxation is insignificant in galaxies 

and of modest significance in clusters of galaxies!

 The velocity distribution in galaxies and galaxy clusters can be ANISOTROPIC!

!
:x
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     Thus, the following applies to all galaxies:

  Stars do not experience significant encounters. Their orbital energy is largely preserved.

  The orbit of a star is determined by the smoothed gravitational potential of all other stars
            (and the dark matter!) of a galaxy.

  The density and velocity distribution of a stellar system can be approximated by a

  The time evolution of                 is determined by Newtonian dynamics.

  Since stars can neither be created nor destroyed, a continuity equation for  
            exists:

! !
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                          phase-space distribution function f(x, v, t)

f(x, v, t)d xd v = Fraction of the stars within the volume d x around the
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one obtains:

which is called the collisionless Boltzmann equation.
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Basic equation of stellar dynamics = continuity equation for the phase-space density

Important:

  So far, no assumption has been made as to whether or not the potential Φ is only due
     to the particles themeselves or has further contributions from other sources.
     If the potential is only due to the particles described by f, then self-consistency is ful-
     filled:

8.2 The Collisionless Boltzmann Equation

3
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4 4 ( , )                               (8.19)

i

i i i

df f f f
v

dt t x x v

G Gm f x v d v! " !

# # #$ #
= + % & =
# # # #

'$ = = (
! !

3( , )m f x v d v m n != " =#
! !

m  =  typical mass of a star
n   =  number density

! !
The full determination of f(x,v) is practically impossible. Therefore, the com-
parison of models and observations is done via moments of the collisionless 
Boltzmann equation: These moments are called .Jeans equations
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8.3  The Jeans Equations

In the following only very abbreviated derivations given, for a full derivation, see e.g. Bin-
ney/Tremaine: Galactic Dynamics. We first define the number density of particles (stars) n
via:

and the mean velocities  via:

8.3.1   0th Moment of the Boltzmann Equation in v
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and with f (vi = ±∞) = 0 we obtain Jeans equation 1 (continuity equation):

8.3.2 1st Moment of the Boltzmann Equation in v

With partial integration of the last term:
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and since: f (vi = ±∞) = 0 we obtain Jeans equation 2 (force equation):

Subtracting from this equation the continuity equation times      gives:
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We now introduce the velocity dispersion tensor σij
2 via:

which gives the dispersion of the velocities with respect to the mean velocities at each point
in space. Using:

we finally obtain the more frequently used variant of the 2nd Jeans equation, the
Jeans equation 3:
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The terms have the following meaning:

For comparison we consider the Euler equation of hydrodynamics:
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Note that the difference between the third Jeans equation and the Euler equation is only in
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Example: Anisotropic, spherically symmetric galaxy in polar coordinates (r, θ, Φ) and
(vr, vθ, vΦ) spherical symmetry implies (for the Jeans equations in spherical coordinates,
see Binney/Tremaine):

!

! ! ! !

2

ij
2

ij 11 22 33

 is a symmetric tensor, i.e. there exists a choice for the local coordinate system in which

 has diagonal form. In this system ,  and  are the semi-axes of the dispersion
ellipsoid. In ! ! !11 22 33the case of isotropic velocity dispersion  =  =  and the third Jeans
equation is identical to the Euler equation.

the pressure term. In the Jeans equation it is a tensor, whereas in the Euler equation it is
a scalarc.

In general, the Jeans equations cannot be solved without ambiguities, because for stellar
systemes there exists no analogue to the equation of state p = p(ρ) in case of gases.

→ In order to solve a problem of stellar dynamics using the Jeans equations, it is often nec-
essary to make assumptions concerning σij. Only more recently, improved observational
techniques allow to constrain on the σij for galaxies.
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In the stationary case one obtains:

Define the so-called anisotropy parameter β via:

we can re-write this equation as:
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(This is equivalent to:   dp/dr + anisotropy correction  = −ρg   in hydrostatics) The connection 
between the potential Φ, the circular velocity vc at radius r and the mass M(r)  within a 
sphere of radius r, is given by:

i.e.
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    : as in hydrodynamics
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r

r

v

d vd n

d r d r

The comparison with hydrodynamics shows:

8.4 The Virial Equations
For global considerations one generally considers the tensor-virial-theorem. It is obtained
from the first moment of the Jeans equation (2) in the spatial coordinates.
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with m·n = ρ  (m = mass of a single star, ρ = mass density), we get:

Evaluating and reformulating the integrals (see Binney/Tremaine for details) we obtain:
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                                                  tensor-virial-theorem:
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2For the equilibrium case   0,    the trace reduces to:d

ikdt
I

This is the well-known scalar virial theorem.
Comment: The tensor virial theorem describes a relation between global mean parameters
of a stellar system. It is only valid for the system as a whole and not for any subsystems.


