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Chapter 3

Theory of Stellar Structure
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3.1 The basic equations of stellar structure: |

The goal is understand the inner structure of stars, their equilibrium configurations, nuclear
burning, energy transport and evolution. In the standard model, we assume that a star

can be treated as a spherically symmetric gas sphere (no non-radial motions, no
magnetic fields). This is a reasonably good approximation for most stars. The task is
solved within the approximation when we have determined:

M(r), p(r), P(r), T(r), L(r)
Which equations constrain these parameters?

% (1) Hydrostatic equilibrium:

AP(T) _ oy M)

2
dr a

< (2) Mass-density relation:
dM (r)=4nr’p(r)dr

IMPRS Astrophysics Introductory Course Fall 2007




% (3) Radial luminosity profile, i.e. the luminosity produced by nuclear burning in a shell
of radius r and thickness dr

dL(r)=4nr’e (p,T)dr
=4nr’e(p,T)p(r)dr

£,(p, T) denotes the energy production rate per volume, whereas ¢(p,T) is the energy

production rate per mass. They can be determined by considering all nuclear reaction
rates at a given temperature and density.

(4) Equation of energy transport (important! e.g.: inhibiting the energy transport would
imply zero luminosity and the explosion of the star).

We have 5 unknown parameters and 4 differential equations. However, one further constraint
is the equation of state, which links p, P and T. For normal stars we have:

s Equation of state (normal stars):

kB

wm

P(p,T)= pT

p
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So, we finally have 5 equations for 5 unknowns and we should be able to solve the problem
in a unique way. The uniqueness of the solution is claimed in the:

Russel-Vogt-Theorem: For a star of given chemical composition and mass there exists
only one equilibrium configuration which solves the boundary problem of stellar structure.

In this generality, the theorem is not proven. Local uniqueness can be shown, however.

Also, the theorem is based on the wrong assumption that the chemical composition of a

star is homogenous.

The two equations which require further elaboration are equations (3) and (4).
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3.2 Nuclear energy production

3.2.1 Gravitational and chemical energy production
@ Age of the Sun (from Age of the Earth and Meteorites):
9
T, ~4.6X10" yr

@ Luminosity must have been largely constant over this time; today 1g solar material
produce 2 x 10~’W; over 5 x 10%rs this implies 3 x 10"°Ws per g.

@ Chemical processes can at most produce 104Ws per g and would limit the sun’s age to
10%yrs.

@ Gravitational Energy (Helmholtz 1854, Kelvin 1861) does not suffice either:
Starting from E = 0 at infinity we obtain via contraction and virialisation to a radius r:

1 GM
E :Epot +Etherm :_El‘herm :_E|Ep0t |~ 2R .

©)
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yielding the Kelvin-Helmholtz time-scale:

pot

T, = =10 yr

grav
LO

3.2.2 Basics of nuclear reactions

Already in 1920, Eddington realizes that nuclear fusion may be the solution to the energy
production of stars* (the processes are later elaborated in detail by Bethe, von Weizsacker
and others):

4p > ‘He

The mass difference between 4 protons and the He-nucleus is:

Am=4m, —m,,
corresponding to an energy of:

AE = Amc* =26.72MeV = 4.288x10 erg

* Eddington writes in 1920: If, indeed, the sub-atomic energy in the stars is being freely used to maintain their great
furnaces, it seems to bring a little nearer to fulfillment our dream of controlling this latent power for the well-being of the human
race---or for its suicide.
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2
Consequently, the Sun’s resource of nuclear energy is: _Ame

4
3

The number of protons in the Sun is: N,, = ZMO /mp and yields the nuclear time scale:

Enuc
L

©

~10" yr

As the fusion temperature is reached only in the core and mixing is not happening, only

10% of the suns mass is available for fusion. This results in a lifetime for the sun of
10'%years.

Stars similar to Sun live for:
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Binding energy per nucleon: The energy release by nuclear fusion is highest for hydrogen
burning and decreases for heavier elements. Beyond iron, fusion cannot produce
energy anymore but needs energy input.
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3.2.3 Nuclear reaction probabilities

@ The sun is in hydrostatic equilibrium:

dp _
T p(r)——

which can be crudely approximated by:

LNpGMo
R R’

(O]

GM (r)

Inserting the Ideal Gas Law:

p :kT—p

results in:

m, GM
TCQJL L—9=2x10'K
| k R

©

The real value actually is 1.3 x 107. This implies a kinetic energy of the protons of :

E, ,= 3kT =~1.7keV
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This is much smaller than the Coulomb Barrier between the protons which corresponds
to about 1 MeV. The classical fusion probability therefore is:

Prob

which corresponds to the fraction of protons in the extreme Maxwell tail. As we have
only 1057 Nucleons in the Sun, classically no fusion will take place.

—1000 —434
~ e =10

class

@ The solution of this riddle was found by Gamow: quantum mechanical tunneling. The
tunneling probability for two nucleons is:

_ _—bINE
Prob,,, =e

1/2

Al (keV)'"?
A+ A

1 2

b=31.2872,

@ For the p-p reaction in the Sun we have: T=10", E=KT, Z,=2,=1,A; =A, =1
which gives:

Prob,,, ~107"

@ So, this works! The formula also shows that it is easier to merge light nucleons and that
heavier nucleons require higher T
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The Coulomb Barrier

o REPULSIVE
COULOMB BARRIER

¢)
/_._._Ammcme =
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v
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\/ \/r2 K

1 \/ F—
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Energy Window for Nuclear Reactions: Gamow Peak
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3.2.4 Hydrogen burning

Stars contain about 90% hydrogen, 10% helium and 1% heavy elements (by number and
at birth). 90% of all stars burn hydrogen.

The two ways to burn hydrogen are:
¢ pp—chain

'‘H(p,ev,)’D(p,y) He(’He,2p)*He+26.21MeV
¢ CNO-cycle

“C(p,Y) N(eV) "C(p,v) "N (p,¥)"O(e'v ) "N(p,0) “C+25.0MeV

The difference in the released energy is due to neutrinos which escape from the star’s core
without interaction.
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Rates of the proton-proton chain
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The average time required for a nucleus to undergo each step of this sequence in a typical
stellar interior is indicated in the figure shown above. Thus, for example, a hydrogen nucleus
waits on the average 1 billion years before it undergoes an interaction with another
hydrogen nucleus to initiate the sequence! Since all other steps require much less time

than this, it is this initial step that controls the rate of the reaction.

This incredibly small rate nevertheless accounts for the luminosities of normal stars because
there are so many hydrogen atoms in the core of a star that at any one instant many
are undergoing the reactions of the pp—chain.

The pp—chain is the slowest reaction (10° years for the sun), this means that the sun can
burn hydrogen for about 10° years before conditions change significantly.

There exist two further variants of the pp-chain going through Beryllium and Boron. All three
variants and the CNO cycle (see below) produce neutrinos of different energies which can
nowadays be used to test the accuracy of our model of the solar reactor. Because neutrinos
only participate in weak interactions (o, ~ 10743 cm?), the mean free path |, of the neutrinos

in the sunis: |, = (no,)™" = 10" cm (n = particle density in the solar centre ~ 1026 cm™3).

Therefore, neutrinos offer the possibility to observe the solar reactor directly.
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3.2.5 The p-p-chain and the neutrinos from the sun

P+p—=H + e +v

p+E+p—"H+y

99 70% ‘ 0.25%
=g + p—.-3He +Y
86% 14 %
| !

SHe + 2He — ‘He +2p

7 - 7, .
Be+e—Li+vVv

Li+p —2 *He

pp I

99.89%

*He+ *He— "Be + y
O. 1%

!

i

pp Il

1
7Be+p—>88+y
*

8 8 *
B— "Be+e'+v

ppllI
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Table 1 Neutrino fluxes predicted by the Bahcall/Pinsonneault (with and without He diffu-
sion) and Turck-Chieze/Lopez standard solar models

Flux (cm~% s~ 1)
Emax BP BP TCL:

Source (MeV) (with diffusion) (without)

p+p—>2H+et 4+ v 0.42 6.00E10 6.04E10 6.03E10

BN BC+et +v 1.20 4 92E8 4.35E8 3.83E8

50 > BN +et +v 1.73 4.26E8 3.72E8 3.18E8

e 5170 +et + v 1.74 5.39E6 4.67E6

8B >3Be +et + v ~15 5.69E6 5.06E6 4 43E6

SHe + p >*He + et + v 18.77 1.23E3 1.25E3

"Be+e~ —'Li+v 0.86(90%) 4.89E9 4.61E9 4.34E9

0.38(10%)

p+e” +p—>*H+v 1.44 1 .43E8 1.43E8 1.39E8
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Figure 2 The flux densities (solid lines) of the principal B decay sources of solar neutrinos of the
standard solar model. The total fluxes are those of the BP SSM. The "Be and pep electron capture
neutrino fluxes (dashed lines) are discrete and given in units of cm™2 s,
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Total Rates: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000
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The flux of electron neutrinos from the sun is less than half of what is expected from the
solar model. On the other hand, helioseismology has shown the validity of the solar
model. The only way out are neutrino oscillations (e.g., electron neutrinos change to muon
or tau neutrinos during trip to the earth because they have a small mass). The recent SNO
experiment is sensitive to all neutrino flavors and has indeed shown that the total neutrino
flux is very close to the theoretical prediction.
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3.2.6 CNO Cycle

The CNO Cycle

t”2 = 9. 97 m

T-=16x%10° K
M =1.1%50lar Masses

IMPRS Astrophysics Introductory Course Fall 2007




The net effect of the CNO cycle is to convert hydrogen to helium (the alpha particle emitted
in the last step). Carbon, nitrogen and oxygen act as catalysts, i.e. they are needed to
drive the reaction but are not burned or produced themselves.

The time scale for the CNO cycle at T = 107K and p = 102g/cm? is around 107 years.

In the case of the Sun, detailed modelling shows that it is producing about 98-99% of its
energy from the pp—chain and only about 1% from the CNO cycle. However, if the Sun
were only 10%-20% more massive, its energy production would be dominated by the CNO
cycle.
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Temperature dependence of pp—chain and CNO—-cycle
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3.2.7 Burning of elements heavier than Hydrogen

At the beginning of their life nearly all stars burn hydrogen to helium in their cores. This
ends when the hydrogen in the core is (almost) used up. Then the pressure decreases and
the core contracts. For stars with M > 0.5M, the temperature rises to ~ 108 K and helium

burning starts:
3*Hers "C+y triple-o. process

with an energy gain of 7.2 MeV. (For stars with M < 0.5Mg, degeneracy of the electrons

stops the contraction before higher burning can set in.) The triple-a process requires the
production of 8Be as an intermediate step:

‘He+ “He+95keV +— *Be+7Y

The production of 8Be is endothermic, that means that '2C is only produced if another “He
is available “immediately”:

*Be+ ‘Het— “C+y+7.28MeV
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Nuclear Binding Energy per Nucleon

Average binding energy per nucleon (MeV)
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Besides high temperature, helium burning requires a high enough 4He-density (> 100g/cm3,
therefore this process does not work in the big bang...). The temperature dependence of
the triple-a process is: o 30

830( = p T (')
In addition, the following reactions occur during helium burning:

2C(o,y) 0o, y)  Ne(an,y) * Mg (o, v) > Si

frequvently rarvely

This explains why the cosmic abundance of C and O is the highest after H and He, and
why all further burning phases rely on the fusion of C and O.

For temperatures slightly above 108K we have the following reactions:

“N(o,y) F(ev,) " 0,y) ™ Ne

*Ne(ow,n) > Mg

The last reaction is important, because it produces free neutrons for the synthesis of
elements with A > 60. These cannot be produced by the capture of charged particles
because their Coulomb wall is too high. The synthesis of heavy elements through slow
neutron capture is called s—process (s for “slow”, rapid neutron capture only occurs in
Supernova explosions).
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For temperatures above T >6 x 108K carbon burning starts (only in massive stars!):

(BNa+H *Na(p,0)* Ne
“*Ne+ *He
“Mg +n

Mg+

12C+ IZC J

€ oc pT32
This is followed by neon burning at temperatures of T >10°K:

“Ne+y < "O+a

(equilibrium between production and photo-desintegration). Note: At these temperatures
there already exists a background of e*e™ pairs. The 60 reacts like:

°O(oL,y)* Ne(oL,y) **Mg (o, y) **Si
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At T ~ 2 x 10°K oxygen burning sets in:

(325 +v
P+ H

S +n
*Si+ *He

| “Mg +2"He

The last burning stage is reached with Si-burning at T ~ 4 x 10° K which produces elements
up to iron:

28 c» 56 . 56 56
Si Ni Co Fe

Because the binding energy per nucleus is highest for Fe, the possibilty of massive stars
to generate energy ends here. The final consequence is the collapse of their cores into
neutron stars or black holes which leads to a supernova explosion (see below). In the
explosion but also at earlier stages, heavier elements than Fe can be built via neutron
capture and B-decay. If the capture of neutrons is rapid compared to B-decay one speaks

of r-process (only possible during explosive burning stages), otherwise of s-process. See
discussion in next chapter.
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Low mass stars do not reach the stage of Fe burning because their evolution stops after
C and O have been synthesized. They become white dwarfs stabilized through their
degenerate electron gas. See discussion in next chapter.

R e == ’ ’ Energy production in
: stellar interiors. A density
£ [erg g’1 secC | ' | of 104 g/cm=3 was
' assumed for hydrogen
)~ Photo- and helium burning,
CNO Neutrinos 105 g/cm™3 for all other
i cases. The dashed
lines are energy loss
Paar- rates through neutrinos
Vernnchturgsh produced in photoncollisions
Neutrinos and e*e~ annihilation.
(Scheffler/Elsasser:
s Physics of the sun and
the stars).

T (K]
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3.3 Energy Transport

In general:

low
high

} cooling.

stee
} energy transport leads to {

slow
a tp} temperature gradients and {
a

fast

For stars we have two principal possibilities for the energy transport (the usual heat
conduction, e.g. as in metals, is almost irrelevant in stars):

@ radiation (barbecue)
@ convection (earth’s atmosphere)

3.3.1 Radiative energy transport

Because of the opacity of the stellar matter the energy transport via radiation takes place
via photon dissipation. The mean free path of the photons I, corresponds to an optical

depth for absorption of T = kl = 1 with Kk = k(p, T) being the absorption coefficient.
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The main contributors to the opacity in the inner parts of a star are the free—free and
free—bound transitions (as most atoms are ionised) and scattering of photons at free

electrons. Under these conditions a reasonably good approximation for the mean opacity

is the Rosseland—opacity: 4
K=o, n,=10"cm

where the Thomson cross-section of free electrons (o) is:
_3n e’

O. =
r 2 4
3m.c

=6.6652X 0" cm?

For the typical conditions of solar type stars we have
[, =107"R,

(Note that this is the reason for local thermodynamical equilibrium). As |, « Rg we can

use the diffusion approximation; the universal diffusion equation for any particle is (Fick’s
law, follows from simple book-keeping argument):

1 dn
= —= [ ree—p
J 3 P gy

In our case:
L(r)

@ | : diffusion flux
At r’hv

= photon flux
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@ Vp:average particle velocity
@ liree : mean free path
@ n: photon density

It follows:
L) __1 10, dT* (r)

47 3 x ¢ dr

di’ 3 x L(r)

(radiation)

dr  16m c,I° r’

As expected, dT/dr increases if k or L/r2 increases. The exact solution of the last equation
requires the exact knowledge of kK which can be calculated for a given matter composition
as a functionof pand T.
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3.3.2 Convective energy transport:

Consider a mass element Am which moves
upwards: At the starting point it has the same
p and T as the surroundings. After an ascent
by Ar: p—p,, T—T,. This can be different
from the values of the surroundings p,, T,. If
P, > p, the mass element falls back (stable
stratification), if p, < p, buoyency sets in and

the element continues to rise (— convection).
Therefore, the gradient in pi needs to be larger
than the gradient in pafor convection to start:

dp

Convection i1f — >

ap
dr

a
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How does the density of the mass element change? As we can assume that the element
starts to rise slowly, i.e. (v « v,,,q), W€ Will have pressure equilibrium, i.e. P, = P,.

Assuming futhermore that the mass element is optically thick (as in case of large scale
convection), no significant heat transport between the mass element and the surrounding
takes place. Consequently, the process is adiabatic (may not be true at the surface of the

star anymore). Thus:

% or=T5 o1 pT=pT

pm, S m,

P=P

l a

. T T
Convection i1f d < d

dr|. |dr

1 a

We obtain a dimensionless form via multiplying with ;5—; . This is the so-called

Schwarzschild—criterion:

dinT
dn P

a

dIinT
dln P

< ‘

Convection if ‘

i

IMPRS Astrophysics Introductory Course Fall 2007




For an adiabatic process we have:
P p?, Toep'
— dPeyp’dp, dT < (y-1)p'~dp
dinT _ p'p"* y-1 1

dl gt =1y
np  pptt oy Y

Using this we obtain:

with y = cp/c,, = the ratio of the specific heats at constant pressure or volume. For a

one-atomic gas y = 5/3.
dInT

dnp

0.4

If radiative energy transport results in %md > 0.4, then convection sets in and adjusts

diopl,,, =0-4. Vice versa, if |5 < 0.4, convection stops (0.4 valid only for

oneatomic gas).

As cp —c, = kg/um,we also have 1- 1/y = k/ym cp, that means a higher specific heat leads
to smaller adiabatic temperature gradients and makes convection more probable.
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In regions of recombination or ionisation c; is higher (more particles at ~ same
temperature) and therefore recombination zones are mostly convective.

In a recombination zone the temperature of a rising mass element changes only slightly as
the recombination releases photons which reduce the cooling through adiabatic expansion.

Thus |gis| s small, which induces convection.

The depth of convection zones can only be calculated in costly numerical hydrodynamic
simulations or parameterized with a simple ansatz in analogy to the mixing-length theory
of Prandtl&Biermann(1925):

[

mixing length

=0 XR,
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3.4 The basic equations of stellar structure: summary

T o (e 3.1)
2 4

dM (r)
¥

dL(r)

=4nr’p(r) (3.2)

=4nr’p(P)e(p,T) (3.3)

dT(r) _ 3 ¥ L(r)

dr 16m GBT3 2 radiation (3.4a)
dr(ry __wm,( 1 ) M®
dr K | v(p.7) 2

r

convection (3.4b)

where (3.4b) follows from ¢if=1-2 and (3.1). This is a non-linear set of equations,

which can be solved numerically.
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In addition to (3.1) to (3.4) we have the equation of state and the formula of energy
production:

p=—"2 pT ideal gas

pm,
e=¢,X,pf(T) energy production

where X,(r) is the hydrogen fraction in mass, u(p, T, r) is the mean atomic weigth and f(T)
is given via, e.g.:

f,, T for T<1810°K

fono =T for T>1.8-10"K
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3.4.1 The solution of the structure equations for the sun

Standard Solar Model [Bahcall & Pinsonneault, Phys. Lett. B, 433 (1998) 1-8]

Columns in the Standard Model table (below) represent:

1) Mass fraction in units of the solar mass

2) Radius of the zone in units of one solar radius

3) Temperature in units of deg (K)

4) Density in units of g/cm3

5) Pressure in units of dyn/cm?

6) Luminosity fraction in units of the solar luminosity
7) X(1H): the hydrogen mass fraction

8) X(4He): the helium 4 mass fraction

9) X(3He): the helium 3 mass fraction
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mass radius temp. density pressure luminos. X(1H) X(4He) X(3He) X(12C) X(14N) X(160)
0.0000899 | 0.00942 1.567E+07 1.515E+02 | 2.321E+17 0.00081 0.34017 0.63864 7.48E-06 | 2.61E-05 | 5.93E-03 | 9.56E-03
0.0008204 | 0.01976 1.557E+07 1.480E+02 | 2.274E+17 0.00728 0.34981 0.62902 8.18E-06 | 2.54E-05 | 5.86E-03 | 9.63E-03
0.0024774 | 0.02875 1.542E+07 1.432E+02 | 2.211E+17 0.02148 0.36311 0.61574 9.22E-06 | 2.46E-05 | 5.77E-03 | 9.72E-03
0.0074817 | 0.04213 1.512E+07 1.340E+02 | 2.083E+17 0.06189 0.38972 0.58917 1.17E-05 | 2.30E-05 | 5.62E-03 | 9.85E-03
0.0214764 | 0.06146 1.454E+07 1.183E+02 1.851E+17 0.16215 0.43748 0.54151 1.76E-05 | 2.07E-05 | 5.45E-03 | 9.98E-03
0.0412353 | 0.07852 1.393E+07 1.040E+02 1.627E+17 0.28212 0.48312 0.49596 2.61E-05 1.87E-05 | 5.35E-03 1.00E-02
0.0649220 | 0.09385 1.334E+07 9.180E+01 1.426E+17 0.40211 0.52320 0.45596 3.77E-05 1.70E-05 | 5.31E-03 1.00E-02
0.0939286 | 0.10922 1.274E+07 8.060E+01 1.234E+17 0.52214 0.56017 0.41907 5.49E-05 1.53E-05 | 5.27E-03 | 9.97E-03
0.1309751 0.12601 1.207E+07 6.963E+01 1.040E+17 0.64221 0.59535 0.38396 8.29E-05 1.36E-05 | 5.25E-03 | 9.93E-03
0.1821073 | 0.14640 1.128E+07 5.804E+01 8.322E+16 0.76229 0.62976 0.34960 1.37E-04 1.05E-04 | 5.08E-03 | 9.88E-03
0.2653109 | 0.17616 1.019E+07 4.405E+01 5.858E+16 0.88233 0.66486 0.31448 2.87E-04 | 2.26E-03 1.99E-03 | 9.81E-03
T0.3924312 0.21910 8.803E+06 2.886E+01 3.378E+16 0.96464 0.69129 0.28766 8.36E-04 | 3.41E-03 1.08E-03 | 9.74E-03
0.5077819 | 0.25967 7.707E+06 1.883E+01 1.941E+16 0.99136 0.70158 0.27599 2.34E-03 | 3.44E-03 1.07E-03 | 9.68E-03
0.6069345 | 0.29903 6.818E+06 1.221E+01 1.115E+16 0.99853 0.70612 0.27127 2.61E-03 | 3.43E-03 1.06E-03 | 9.63E-03
0.6897996 | 0.33815 6.075E+06 7.863E+00 | 6.412E+15 0.99972 0.70917 0.26983 1.07E-03 | 3.42E-03 1.06E-03 | 9.60E-03
0.7577972 0.37771 5.439E+06 5.045E+00 3.686E+15 1.00001 0.71108 0.26862 4.47E-04 | 3.41E-03 1.06E-03 | 9.57E-03
0.8128569 | 0.41816 4.884E+06 3.228E+00 | 2.119E+15 1.00007 0.71248 0.26749 2.22E-04 | 3.40E-03 1.05E-03 | 9.54E-03
0.8569686 | 0.45981 4.392E+06 2.062E+00 1.218E+15 1.00007 0.71369 0.26642 1.42E-04 | 3.39E-03 1.05E-03 | 9.51E-03
0.8919826 | 0.50286 3.951E+06 1.316E+00 7.004E+14 1.00006 0.71481 0.26537 1.14E-04 | 3.38E-03 1.05E-03 | 9.49E-03
0.9195303 | 0.54740 3.550E+06 8.416E-01 4.027E+14 1.00004 0.71589 0.26433 1.05E-04 | 3.37E-03 1.05E-03 | 9.47E-03
0.9410043 | 0.59333 3.176E+06 5.403E-01 2.316E+14 1.00003 0.71678 0.26345 1.01E-04 | 3.37E-03 1.05E-03 | 9.47E-03
0.9575656 | 0.64028 2.815E+06 3.503E-01 1.331E+14 1.00002 0.71763 0.26227 1.00E-04 | 3.43E-03 1.06E-03 | 9.63E-03
0.9701625 | 0.68738 2.432E+06 2.317E-01 7.656E+13 1.00002 0.72679 0.25375 1.00E-04 | 3.32E-03 1.03E-03 | 9.32E-03
0.9738342 0.70387 2.282E+06 2.018E-01 6.290E+13 1.00001 0.73331 0.24792 1.00E-04 | 3.20E-03 | 9.93E-04 | 8.99E-03
0.9782230 | 0.72563 2.060E+06 1.706E-01 4.817E+13 1.00001 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03
0.9821147 0.74708 1.846E+06 1.445E-01 3.653E+13 1.00001 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03
0.9881550 | 0.78631 1.483E+06 1.037E-01 2.101E+13 1.00001 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03
0.9923273 | 0.82067 1.191E+06 7.437E-02 1.209E+13 1.00001 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03
0.9951255 | 0.85036 9.572E+05 5.337E-02 6.954E+12 1.00001 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03
0.9969548 | 0.87569 7.691E+05 3.831E-02 4.000E+12 1.00001 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03
0.9981246 | 0.89708 6.181E+05 2.750E-02 2.302E+12 1 .000040 0.73902 0.24276 1.00E-04 | 3.11E-03 9.64E-04 | 8.73E-03




Fig.22.4. a,b The run of some func-
tions inside zero-age main-sequence
models for M = 1My (solid lines)
and M = 10Mg (dashed lines) with
the same composition as in Fig.22.1
(Xy = 0.685, Xy = 0.294); (a) den-
sity ¢ (in g cm™?), (b) radial mass dis-
tribution m(r), (¢) temperature 7' (in
K), (d) nuclear energy production (in

. 0 L erg g=t s™1), (e) local luminosity /

m/M 05 m/M

Diagram from Kippenhahn & Weigert, Stellar Structure and Evolution.
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3.5 An analytical model for main sequence stars

Correct solutions for the main sequence can only be obtained with numerical methods.
However, a simple but pretty good analytical model which provides important physical

Insights is the following:

analytic approx.
solar model

— [AY)

o)

02 04 06 08
FIR,

0

[a—y

@ Main sequence stars are chemically
homogeneous.

@ The density profile is parameterized by:
p(r)=p.e " (3.5)

with H = 'R, R =radius of star, and 6~ 0.1.
For the sun p, = 230 g/cm3.

@ The energy production is constrained to
R < 26:

e =¢g,p T f <20R
e (r): C Opc c or r (36)
0 for r >20R
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The standard model of the sun and other main sequence stars shows that these
approximations are o.k. With (3.5) and (3.6) and the basic equations (3.1)-(3.4) it is possible

to derive the scaling relations of the main sequence. Integration of (3.2) via inserting of
(3.5) yields:

M(r)= 4npcjr e dp!
0

2
M(r)= 47tp02H3 [l—e”H (1+%+%#ﬂ

Forr - R we have eH — =16 ~ 0, which means:
M(R)=4mp 2H’

1 M 1
= = 0 ~170p
65° an /3R 65~ P

For the pressure we derive from (3.1) and (3.7):

P.

M

r

P(R)- P, =G| (2’") o (r)dr

R —r/H

P = G4np32H3Je

2
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Setting x = r/H it follows:

18 _x
P =G4np’2H"’ je—2 l-e™ 1+x+lx2
y X 2

o J/

~ -2 M
and thus: ~5.61072 for 1/8>1

P :5.6><10‘2G4?n P’ 65°R’ (3.9a)

LGM? 1

e (3.9b)

P =220

and using the ideal gas law P, = kg/y,m,-p. T, and omitting radiation pressure, we obtain
the equivalent of the Virial Equation for stars:

2 “]"(mp G]le (3.10)

T =5.6X0
o

B

From this we conclude for main sequence stars:

higher mass
— higher gravitation
— higher pressure and higher temperature
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For the luminosity we obtain from (3.3) and (3.6):
2H

L=4n X} [ rp’e,T dr
0
2H

=4n X, e, T°p> J. e yidy
0

=g, T'p2 X} 4?751{363 %[1—54 -13]

where describes the temperature dependence of the fusion process (a = 5 for pp and
a =17 for CNO,...) and we have used

X’ 2
Ie“xxzdx =e" | w——+t—
a- a a

Xe " M*
5° K
L=0.096Me X, p.T" (3.11b)

where the last equation was derived using (3.8). As £,X,°p, T % is the energy production rate

per gram, (3.11b) implies that around 10% of the total mass is involved in the fusion process.
Equation (3.11) does not yet fix the luminosity of a star of given mass M, as we have still the
freedom to choose T,. T, can be determined via the energy transport equation which will

finally yield the unique dependence of L on M as claimed in the Russel-Vogt theorem.

L=3.8X0"

(3.11a)
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To solve the energy transport equation (3.4a) we assume that

I'=T for r<2H

and we solve only for r > 2H beyond which L is constant. For the opacity we make the
rather wild approximation:

K=x,-p with «,=const. (3.12)

Furthermore, we assume that we only have radiative energy transport (cf. eq. 3.4a):

dr* 3 L(r)

=— K
dr 4no , P r

Integrating from 2H to R it follows (L =const!):

R e—(r/H)

3
T*(R)-T*=- K. L dr
( ) c 4TCGB 0 pcz'!:_[ ]"2

This integral can be solved by substituting again x = r/H:
R —(r/H) 1/6 —x 1

[ dr=%!e—2dxzzi—:dx=1.9-1o2ﬁ

u T X
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and because of T4(R) « T % for r > 2H we have:

(3.13)

Equation (3.13) states how the opacity changes the central temperature for fixed L, M and
R (high opacity — steep T-gradient — high central temperature). In contrast, equation
(3.10) determines T, in such way that hydrostatic equilibrium is satisfied (this corresponds to

the virial theorem). Putting these equations together we finally obtain the mass-luminosity

equation of the main sequence:
4

HCmp

Os pp (3.14)
KO

L=3X0"

Note: for constant mass the following applies

@ L~«x,”' Higheropacity —  smaller luminosity
o L~ps? FusionHtoHe — highery, — higher L.
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Fig.22.3. The line gives the mass—luminosity relation for the models of the main sequence shown
in Fig. 22.1. Measurements of binary systems are plotted for comparison (the symbols have the same
meaning as in Fig.22.2)

-1.0

from Kippenhahn & Weigert: Stellar Structure and Evolution
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/*0085
3 4 5 6 7
igM/Mg lg(p./pe)

Fig. 23.2. Mass—luminosity relations for the mod- Fig.23.3. Central temperature 7; (in K) and

els of the hydrogen, helium, and carbon main central density gc/pe (oo in g cm™3, p =

sequences of Fig.23.1 molecular weight per electron) of the mod-
els on the hydrogen, helium and carbon main
sequences of Fig.23.1. The labels along the
lines give the stellar mass M (in Mgp). The
dashed lines indicate constant degeneracy pa-
rameters 1 of the electron gas
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Inserting of (3.13) and (3.10) into (3.11a) results in the mass—radius—relation:

oc4 o—1

ROC oc+3 (X e K )(+3 Moc+3

Inserting vyields:

1 o1
Q@ pp:a=5: = Rocug(XzaK)BMz

13 4

@ CNO:a =171 _ R Lt zo (X28 K )zoMs

which agrees with the observed relation R o< M *°Inserting in (3.10) gives T, as a function

of mass:
7

— ]'; oc IJVEMO.S
7

0 CNO:a=17: = T ocpu®M"

Q@ pp:a=5:

Note:

- T, decreases with decreasing mass. Numerical calculations show that below
M < 0.08Mg no nuclear H-burning can take place — brown dwarfs. For M < 1.4Mg
— pp-chain, for M > 1.4Mg — CNO-cycle.

@ T, increases with p; therefore the temperature rises with increasing age as H—He.

IMPRS Astrophysics Introductory Course 0 Fall 2007
3




With these equations we can now determine the effective temperature as a function of the

L 1 u
Th o« — oc — < M
eﬂ R2 RZ KO

Mass.

Replacing R using (3.15) one obtains:

10+o 1 54+ 114+
6+20 340 12+40 12+40
X, Frox, 124 pf

c

or

@ pp:a=5: o

@ CNO:a=17: 10 V' 204~ 40 A4 20
7;/,‘7' oc A0 X, 20K, 40 )f 20

Note that according to this:

o T.qincreases with increasing mass.
o T decreases with increasing K, i.e. at a given mass, metal poor stars are hotter.
o T.qincreases with increasing y, in the pp-chain and in the CNO-cycle.

Equations (3.14) and (3.16) explain an important observation in the MilkyWay: Metal poor
stars in the galactic halo (population Il stars) form a main sequence which is located below
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the main sequence of the solar neighborhood stars (population I). Halo stars have M < 1Mg,
i.e. have the following relations:

1

-0.3 B
T'eﬁ’ oc !"LCKO M

Lo i, 'M’
Therefore the main sequence shifts as follows (for fixed mass):

Higher metallicity implies higher k, (K t — n._ 1 — K, 1). Therefore, the main sequence

of metal rich stars lies to the right (at lower temperature) of the main sequence of a metal
poor stars. Or, put in another way, metal rich stars have a higher L and M for fixed T .

— This can be used to guesstimate the metal content z without spectroscopy.

The above formulae can, after taking into account the different temperature dependence
of the energy production, also be used to determine the location of the He or C main
sequences. These lie, at a given mass, both at higher temperature and luminosity.
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Fig.23.1. In the Hertzsprung-Russell diagram the solid lines show the normal hydrogen main se-
quence (H-MS; Xy = 0.685, Xy, = 0.294), the helium main sequence (He-MS; Xy = 0, Xg. = 0.979)
and the carbon main sequence (C-MS; Xy = Xue = 0, Xc = Xo = 0.497). The labels along the
sequences give stellar masses M (in units of M). Three lines of constant stellar radius (R in units
of Rg) are plotted (dashed)

IMPRS Astrophysics Introductory Course Fall 2007




Combining (3.14) and (3.16) we obtain luminosity—temperature—relation on the main
sequence:

-200-16 12 4+200  36+120

11+ X[1{1+0c K011+0c ];ﬂl 1+ (317)

Lol

C

or
-13 3 7

@ pp:a=5: Locuch[‘}KgQ;

25 3 19 60
@ CNO:a=17: Locucl4X;IK&4Teﬁz

So, L ~ T4%-8° with is in agreement with the observation L ~ T 4.

The fact that we can derive two-parameter relations as this one or the others above are the
analytical manifestation of the Russel-Vogt-Theorem (but remember the comments made
above).
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To derive the nuclear time scales and main sequence life time, we use from eq. (3.11b):

L= 0.096 M X g, X, p T

— .
mass used for fusion e = energy production per

gram and time

The energy per gram available at the beginning is:

AE 3
4m 4
p —
o He fusion for ©nly 3/4 of the initial

hvd mass in hydrogen
YAOBENEES90% in number)

X

with AE = 26.21 MeV. The life time on the main sequence is then approximately:

energy content 3 AE

Tnuc _

energy consumption 4 4m g,

or, using (3.11b):

T, .~ 0.02% =~9-10° yr

me o

MM,
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This can be compared to the results of a numerical model: 1= 7 x 10%r.

Using the mass—luminosity—relation L ~ M3 it follows:

T =8:10"yr

Note:

@ the most massive stars only live < 108yr.
@ the least massive stars live > 10Myr.
o aftert=r1, . the central hydrogen is used up, the star leaves the main sequence.

— hydrogen shell burning
— helium burning (dependent on mass)

The approximate analytical model is able to predict qualitatively the essential properties
of main sequence stars. One key assumption of the model was radiative energy transport.
Numerical models show, however, that convective zones are present in nearly all stars.
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3.6 Convection, fully convective stars, Hayashi-line
Convection sets in if

rad

with 1 — 1/y = 0.4 for one—atomic gas and 1 — 1/y < 0.4 in ionisation— or recombination—
zones. Using that

dinT _PdT _ k dT
dinP T dP um, P dP
and dividing (3.4a) by (3.1) it follows
< 1 L 1
3 k K () o1

1646, W, T° M(r) Y
In our analytical approximation, ignoring the density gradient, inside the nuclear burning
region we have:

dL(r) =e,p T 4 r’dr

L) e piTe 27

L(I") = M(r)gOch:x

Inserting this into the equation above yields the criterion for instability:
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kX g,p. I S1-1-04
64m W,G Y

Using the above derived values for T, and p. as functions of mass gives:

M >1.4M o — core convective

M <1.4M - core radiative

Moreover, outside the nuclear burning zone we can also have recombination zones:

He™m < H”
He® <« He
H™ < H

H < H

In these areas c; is large (1 — 1/y small), there is almost always convection. The cooler a

star, the deeper this convection reaches into the star. We find two type of main sequence
stars:
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@ hot stars
@ convective core
@ radiative envelope

CNO-cycle restricted to the
center

radiation pressure important
for M 2 20Mg

M <1.4M

@ cool stars
@ radiative core
@ convective envelope

@ pp—chain slightly concentrated
to the center

@ fully convective for
M < 0.3Mg
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Fig.22.7. The mass values m from centre to surface are plotted against the stellar mass A7 for
the same zero-age main-sequence models as in Fig. 22.1. “Cloudy™ areas indicate the extension of
convective zones inside the models. Two solid lines give the m values at which » is 1/4 and 1/2 of
the total radius R. The dashed lines show the mass elements inside which 50% and 90% of the total
luminosity L are produced

)
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Fig.22.8 (a,b). The solid lines show
the actual temperature gradient V =
dInT/dIn P over the temperature T
(in K} inside two zero-age main-se-
quence models (same composition as
in Fig. 22.1). The corresponding adi-
abatic gradients V.4 (dotted lines) and
radiative gradients Vi.4 (dashed lines)
are also plotted, and the location of
the ionization zones of hydrogen and
helium are indicated (arrows)
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Fully convective stars

Fully convective stars are not only found for M < 0.3Mg on the main sequence but also
stars on the giant branch as well as young stars before ignition of nuclear burning (see —
star formation, — stellar evolution) are fully convective. The properties of fully convective
stars were investigated in the beginning of the 60’s by Hayashi.

The notation ’fully convective’ is a little misleading, because the star has an outer layer
with radiative energy transport (the star shines!). Literally fully convective stars would be
infinitely cool and infinitely large.

For the understanding of fully convective stars linking the conditions of the central regions
with the stellar atmosphere is essential. Here we present an approximation to the exact
calculation.

In the inner parts of fully convective stars, the adiabatic relation between pressure and
temperature applies:
e
_ v-1
where C is constant, C = C(M,R,pn). C@ &)rgtgnt because for each radius an ascending
adiabatic mass element always has to be in P-, T- equilibrium with the environment.

To determine the effective temperature of fully convective stars requires that we determine
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the pressure in the stellar atmosphere. In the stellar atmosphere, the photons escape to
infinity on average from the radius where the optical depth is unity (1 = 1). The theory of
stellar atmospheres links the opacity with the gravitaional acceleration and the Temperature
via:

Tt =1)= gt =Dum,
kT(t =1)

For i¢ we have in the sun in cgs units:

K =6.9-107°pP*'T?

: _ kT P
Inserting and using ——=— vyields:
wm, p

6.9.10—26P1.7T5.3 ~ g

(M/M,)

RIRY we get:
©

With ¢ =274

P THM™ R for T =1

This is the pressure for T = 1, from which photons escape on average, i.e. at the radius
where convective energy transport changes to radiative energy transport. This pressure
must equal the pressure resulting from convective energy transport from the center:

¥

P =P =CIT}"
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where the temperature in the transition area was set to T ;. Using the approximation
Yy = 5/3 we have 5

C];]Ejp oc ]-;;.IM()ﬁR—l.Z (*)

In this equation, C still is a function of M,R and y, and can be determined from the
parameters in the core: )
P =CT}

From the analytical model we get (Egs. 3.9b and 3.10):
M2
R4

M

T ocl—
e M

})Coc

With this we get for C:
C oc M—O.SR—I.SH—Z.S

Inserting this into (*) gives

02 0.06, | 045
Iy oc MR

or with all constants: 0

M R |
T, =22X40K|— — 049

O (O]
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'—.

for fully convective stars. This corresponds to a nearly vertical | S
line in the Hertzsprung—Russel diagram, it is called the
Hayashi—line. The position of the line depends only slightly on
the stellar parameters and is located around T = 2000K.

“Wewn

?

T

Note: To the right of the Hayashi—line there is no hydrostatic equlibrium configuration for
stars.

Reason: Consider three stars with the same L and M: one on the Hayashi line, the others
slightly left and right aside. The star on the left has higher T_, and is partly radiative

because 4L |,,<1-1. Integrated over the star we have (41F) left of the Hayashi line

rad dinP

smaller as on the Hayashi line for the fully convective star. Because of continuity reasons

on the right side of the Hayashi line (%) s larger than on the line. This means that

somewhere in the star it should apply: g5 |.,>1-- This is impossible because (a) if the

star is fully convective, this would force gy >1--, or (b) the star would get immediately

fully convective which would move it onto the Hayashi line.
— stars to the right of the Hayashi line are not stable.
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