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Chapter 1

Matter and Radiation

For a comprehensive treatment of this subject see:
Rybicki and Lightman: Radiative Processes in Astrophysics, Wiley, New York 1979
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1.1 Kinetic theory of free particles

To understand astrophysical plasmas, and especially stars, we need to know their
equations of state, i.e. the relations between density ρ, temperature T, pressure P and
energy density u:

For the classical ideal gas we have (k = Boltzmann’s constant):

The classical ideal gas law applies for most hydrogen burning stars (main sequence stars,
see below).

Generally, an equation of state for a gas can be derived with kinetic theory from the
Momentum or energy distribution function of the particles.

Consider a cube of volume L3 with N homogeneously distributed particles, i.e. we have
the particle density n0 = N/L3. Provided the distribution function of the momenta n(p) is
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isotropic we can calculate:

The pressure P on a wall is determined by the transferred momentum     per time interval 
dt and per area L2:

The momentum transferred to the wall perpendicular to the x-direction is:

which is readily understood if we consider that:
Term 1 = transferred momentum per particle
Term 2 = all particles in this volume reach the wall during dt
Term 3 = density of particles with momentum p

For an isotropic distribution of momenta, we can write in spherical polar coordinates:

3 2

0

( ) ( )4π
∞ ∞

−∞

= =∫ ∫on n p d p n p p dp

N

2 2

2

0 Term 1 Term 2 Term 3

1

2 ( )x x x y z

F dpP
L L dt

dp p dtL n p dp dp dp
∞ ∞ ∞

−∞ −∞

= =

= ∫ ∫ ∫

�

� �	
���	��

v

3 2sin cos ,  ( )sin cos ,  sinx xp p p d p p d d dpθ ϕ θ ϕ θ θ ϕ= = =v v

dp�



IMPRS Astrophysics Introductory Course                          Fall 2007

Page 5

and obtain for the pressure:

i.e.

The pressure is determined by the momentum distribution function of the particles.

The energy density of the particles is:

where ε(p) = kinetic energy of particle with momentum p. In the non-relativistic case we
have of course ε = p2/2m. For relativistic particles we need:
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1.2 Equilibrium distribution functions of fermions and 
bosons

All particles known obey either Bose-Einstein or Fermi-Dirac statistics. At low temperatures,
the nature of the particles is important for determining their thermodynamic behaviour.
At high temperatures, all ideal gases of free particles behave in the same way, i.e.
like the classical ideal gas.

Using the grand canonical partition function one can show that fermions and bosons have
the following energy distribution functions in thermodynamical equilibrium:

E = energy of the particle
dN = number of particles p in energy range (E,E + dE)
dg = number of quantum states in energy range (E,E + dE)

= αd3xd3p/h3 (multiplicity α due to particle spin)
+1 in denominator = Fermions, Pauli-principle, only one particle per phase space cell h3

−1 in denominator = Bosons, no Pauli-principle
η = “Degeneracy parameter” = (chemical potential μ)/(kT)

/ 1η− +=
±E kT

dgdN
e
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For all massive particles which are neither created nor destroyed, it is determined from the
requirement of particle number conservation:

This does not apply for photons in a black body environment which have η = 0.

Depending on η we can identify:

η » 1 highly degenerate systems
−5 < η < 5 medium to weakly degenerate systems
η « −1 non-degenerate systems

(see below for explanation).

1.2.1 Momentum distributions of non-degenerate free particles

If η « −1, we have exp(−η + E/kT) » 1 and consequently:

/ .
1η− += =

±∫ E kT

dgN const
e

/    η −∝ E kTdN e e
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As the kinetic energy for free particles is:

and the number of quantum states within (E,E + dE) is:

we have:

Integrating yields:

which we can use to eliminate eη and to obtain the well-known Maxwell distribution:

This is the energy distribution function of non-degenerate free particles in thermodynamic
equilibrium.
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1.2.2 Criteria for the degeneracy of a free particle gas

We first define the following two parameters to simplify the discussion:
Typical de Broglie wavelength λdeBroglie of a particle in a thermodynamical plasma:

Mean particle separation ro:

In the previous subsection we have shown that for large negative η:

which can be rewritten as:

Therefore, η « −1 implies a large separation of the particles, in which case their quantum
nature is not anymore relevant and we can treat them as classical particles.
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Degenerate systems in astrophysics are mostly fermionic. Then the Pauli principle ap-
plies and the maximum phase space density is α/h3, i.e. one particle per phase space
cell.
For fermions we have for the energy (ε = p2/2m) distribution function:

where we have used η = μ/(kT).

Complete degeneracy is approached if the system is cooled to temperatures which are
much smaller than the chemical potential μ, i.e. η » 0 (see also figure below):

In this case, μ is called the Fermi energy εF = μ, the corresponding momentum is called
the Fermi momentum pF. εF is the energy of the most energetic particle in the system
(remember: dU = TdS − PdV + μdN).
We can determine η by requiring that the integral over the occupation numbers is N:
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Solving for η and inserting λdeBroglie and ro we finally have:

If the distribution of momenta is isotropic and the particle distribution homogeneous, this
yields:

Substituting x = p2/(2mkT) we obtain:

For strong degeneracy η » 1, 1/(exp(−η + x) + 1) can
be approximated by a step function (see figure) and
the integral simplifies to:
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Therefore, η » 1, if ro « λdeBroglie. The quantum mechanical nature of particles cannot be
neglected anymore if their separation is smaller than their typical de Broglie wavelength.

We can calculate the Fermi momentum pF from the fully degenerate case:

or:

The Fermi momentum is the highest particle momentum in case of infinite degeneracy.

Bottom line: (λdeBroglie/ro) determines the degree of degeneracy:
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1.2.3 Astrophysical examples of degenerate fermions

We consider a white dwarf, a neutron star and the sun, all at a mass of one solar mass.
The mean densities and temperatures are

The ratio (λdeBroglie/ro) is:

Degree of degeneracy

Sun: ideal gas, Maxwell/Boltzmann
White dwarfs: electrons degenerate, protons Maxwell
Neutron star: neutrons degenerate
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1.3 The Planck distribution function for photons

Photons are bosons. Because their particle number is not conserved in thermodynamic
equilibrium, we have η = 0 and, so, their distribution function is:

Considering that in full thermodynamical equilibrium the distribution of momenta is isotropic
and that photons have two directions of polarization, we obtain for dg:

Energies, momenta and frequencies of photons are related via:

Inserting yields the number density of photons in the frequency interval (ν, ν+dν):
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Multiplication with h results in the energy density of photons in the frequency interval
(ν, ν+dν):

If we define the intensity Bν(T) as the energy which flows through a unit surface per
second and per solid angle, we obtain for the relation between energy density and intensity
(without derivation):

Bν(T) is the Planck function of photons in thermodynamic equilibrium (black body
radiation):

Note: the frequency distribution of radiation of a system in thermodynamic equilibrium is

isotropic
homogeneous
independent of chemical composition of emitting material
only dependent on temperature
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For high and low frequencies we have:

Rayleigh-Jeans approximation

Wien’s approximation

Integration over frequency yields the Stefan-Boltzmann law for black body radiation:
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1.4 Equations of state

For the Maxwell gas we have:

Using pv = p2/m, ε = p2/(2m) and the pressure equation from kinetic theory:

we obtain:

and

For a non-relativistic degenerate Fermi gas we obtain analogously:
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(where pF is the Fermi momentum as defined above), or:

(calculation of Ukin not shown).

For very high densities, we get a relativistic degenerate Fermi gas, i.e. pF » m0c2.
We then have to use the relativistic ε(p): pv(p) = pc(1 − m0c2/2p2) (Taylor series of
square root) to get:
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Temperature density diagram, adapted from Phillips (see Bibliography)
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Summary: equations of state

Normal stars: P = nkT, ρ = μmpn, Ukin = 3/2·P. (μ is the mean particle weight; it is
operationally defined via μ = ρ/(mpn)

White dwarfs: Degenerate electron gas supplies pressure, n = ne, ρ = μempne, μe = zμ,
where z is the number of free electrons per atom.

non-relativistic degeneracy (ρ < 106gcm−3): P = A1ρ5/3, Ukin = 3/2·P
relativistic degeneracy (ρ > 106gcm−3): P = A2(ρ4/3 − B2ρ2/3), P = 1/3·Ukin(1 + C2ρ−1/3)

Neutron star: Degenerate neutrons supply pressure, n = nn, ρ = nmn, formulae like white   
dwarf, but with different coefficients A1,A2,B2 and critical density.

Photons: photons are bosons, therefore
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1.5 The Boltzmann formula

Consider free non-degenerate atoms with an excited electron. The energy of one atom A
is the sum of its kinetic energy plus the excitation energy Ei:

The number of quantum states within (E,E + dE) is:

where gi is the degeneracy of the excited level (see below). Integrating over the distribution
function gives:

or:
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where ni gives the number density of atoms with an electron in quantum state i. The
number density ratio of atoms in two different energy levels Ei and Ej is:

which is the famous Boltzmann-formula for the ratio of occupation numbers.

To obtain the number density nA,i of an atom or ion A in a quantum state i relative to
the number density nA of all atoms or ions A, we first have to calculate the sum over all
quantum states, i.e. to derive the partition function:

With ZA we then have:
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1.6 The Saha equation

We now treat the simplest case of ionisation (bound-free transition) which is described by:

atom in ground state + photon  → ionised atom in ground state + free electron

We have:

where we have approximated with very good accuracy: mI = mA. The number of states is:

As in the previous section, we integrate over the distribution function for each of these
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particles to obtain the particle number densities:

where we have used ge = 2 for the two spin states of the electron. As energy is conserved,
the chemical potentials have to fulfill the relation:

(note that the chemical potential of photons vanishes). Therefore, the product nI · ne/nA
allows to eliminate all unknowns η and we obtain the Saha-Equation:
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1.7 Radiation: basic definitions

Definition of Intensity:
Consider energy flowing through a small surface element. We then define the intensity
as the energy per frequency dν per time dt per solid angle dω and per projected area
cosθdσ flowing through the surface into the direction θ, i.e. via:

Iν = Intensity per frequency
dσ = Surface of receiver at r
dω = Solid angle within which

radiation is received
θ,Φ = Angles with respect to

the norm of dσ
ν = frequency
t = Time

The intensity has the following properties:

dim [Iν] = erg cm−2 s−1 Hz−1 sterad−1

4 cosd E I d d d dtν ν θ σ ν ω=
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Particle picture: Number of particles times hν per dνdω dt and per cosθ dσ
Wave picture: Absolute value of Poynting vector
Iν does not depend on distance (in the absence of absorption and in Eucledian
space)

Proof: for the above geometry the amount of energy d4Eν passing through the left
surface is exactly the amount of energy flowing through the right surface d4Eν‘ =
d4Eν,  we have:
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The solid angles under which the area elements appear are:

(r = distance between the surfaces) which we can insert above and obtain:

This is nothing else than the conservation of surface brightness!

Radiation flux density of a star:
The energy flux through dσ in all directions is:

which with the definition of Iν yields:

One now defines the radiation flux density Fν as
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This is an integral over the full sphere, i.e. it represents the net energy emitted through
the area dσ (energy emitted minus energy received). For stars, the received energy can
be neglected.

Luminosity of a star:
We obtain the luminosity per frequency of the star via multiplication with the whole
surface area (R = radius of the star):

Further integration over ν gives the total luminosity:

Effective temperature of a star:
If a star emits approximately black body radiation, we can write for the total luminosity
according to the Stefan-Boltzmann-law:

This is the defining equation for the effective temperature Teff . This equation implies:
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and

where Bν is the Planck radiation law (see below) and σB = 5.67·10−5 erg/s/cm2/K4 is the
Stefan-Boltzmann constant.

Flux of a star received on earth:
The flux per frequency received on earth is the luminosity emitted per frequency divided
by the surface area of a sphere with a radius corresponding to the distance r between
star and earth:

where the latter equation only holds if the star emits black body radiation.
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1.8 Atomic and Molecular Transitions

Emission and absorption of photons occurs through processes in atoms, molecules, and
solid bodies. These processes are governed by Quantum Mechanics. We have a:

discrete spectrum of energy eigenvalues for bound electrons (E < 0)
continuous energy spectrum for free electrons (E > 0)

The following interactions between photons and electrons are possible (provided the 
quantum mechanical transition rules are fulfilled):

absorption
spontaneous emission
stimulated emission

whereby these transitions can occur between the following energy levels:

discrete-discrete (bound-bound) → spectral lines
discrete-continuous (bound-free) → ionization/recombination continua
continuous-continuous (free-free) → “Bremsstrahlung” (ion required!)
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1.8.1 Eigenvalues of hydrogen and H-like ions (only one e−)

The state of the electron is described by the following quantum numbers:

n Main quantum number n = 1, 2, 3, ...
l Orbital angular momentum l = 0, 1, 2, ..., n − 1
ml z-component of orbital angular momentum ml = −l,−(l − 1), ..., l − 1, l
s Electron spin s = ±1/2

Energy Eigenvalues (a0 = Bohr radius = 0.529 Å )

Balmer lines: n = 2 → n = 3, 4, 5, ... (Hα, Hβ, Hγ, ...)

Degree of degeneracy per energy eigenvalue
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1.8.2 Eigenvalues of atoms with more electrons

N(electrons) = 1
Alkali metals
Electrostatic shielding of nuclear potential

N(electrons) > 1
LS-coupling (spin-orbit « Coulomb)

jj-coupling (spin-orbit » Coulomb)

1.8.3 Eigenvalues of molecules

Molecular transitions important in interstellar medium and cool stars

transition through vibration (near IR) and rotation (submm, mm, radio)

Eel » Evib » Erot

 ,     ,    

 ,    

i i

i i i i

L l S s J L S

j l s J j

= = = +

= + =

∑ ∑

∑
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1.8.4 Probability of line transitions

The probability for a line transition l → u (u → l) through absorption (emission) of a photon
with frequency (ν, ν+dν) from (into) the solid angle (ω, ω+dω) is:

where Aul, Bul, Blu are the Einstein Coefficients which are related via:

with: h = Planck’s constant
gl, gu = statistical weights of the levels l, u = degree of degeneracy

Aul needs to be derived with quantum mechanical methods.

2
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φ(ν)dν describes the probability for absorption or emission with frequencies (ν, ν+dν). φ(ν)
is needed because emission and absorption lines are broadened. φ(ν) is normalized via:

1.8.5 Line broadening

Lines are broadened because of:

Heisenberg’s uncertainty principle: the excited level has finite lifetime τnatural = 1/Aul
which implies an energy uncertainty (natural line width) ΔE of:

Using quantum mechanics we can derive the line profile which has the following shape:

This is called a damping or Lorentzian profile. In classical damping theory, an oscil-

( ) 1dϕ ν ν
∞
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1
2 2

       (Heisenberg's Uncertainty Relation)

/ 2( ) 2
( ) ( / 2)

ul

c ul

E h

A
A

τ

ϕ ν π
ν ν

−

Δ ⋅ ≥

=
− +



IMPRS Astrophysics Introductory Course                          Fall 2007

Page 37

lating and radiating electron would have:

where λ0 is the central wavelength of the line.

Thermal motion of atoms imply a Maxwell distribution of their velocities (in thermal
equilibrium):

The Doppler-effect then causes a frequency distribution:

with a thermal line width of:

Perturbations of the energy levels through electromagnetic interaction with neighbouring
particles (atoms, ions, electrons), Stark-effect. We have:
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where γ is now related to the life times τ via:

and the pressure induced line width is:

The final broadening function φ(ν) is obtained via convolution of this latter broadening
function with the thermal broadening function → Voigt profile:

1 1

1
particle density

natural pressure

pressure

γ
τ τ

τ
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Width of line core proportional to
T^1/2 or particle velocity.
Width of wings proportional to
particle density.
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1.8.6 Interaction cross sections

Interaction cross sections for line transitions. The reaction probability dWlu  for an
atom to be excited by a parallel beam of radiation can be written as:

where σlu(ν) is the cross section for the reaction and cnν(ν)dν is the photon flux in
(ν, ν+dν), i.e. the number density of photons in (ν, ν+dν) times the speed of light.
cnνdν we can rewrite as

where cdtdA is the volume element we consider and of which dA is chosen to be the
surface element perpendicular to the direction of radiation. Using the definition of the
intensity (for a parallel beam there is no dω) and taking into account dA = dσcos θ we
obtain:

Comparing this with the initially given definition of dWlu, we finally arrive at:
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Interaction cross sections for bound-free transitions. Be νl the frequency corre-
sponding to the ionization energy. Then, in case of hydrogen, we can use the Kramers
approximation for the interaction cross section:

For more complex ions higher order terms in (νl/ν) are needed as well. As for line
transitions, there exist again simple relations between the cross sections for absorption,
stimulated emission and spontaneous emission.

Interaction cross sections for free-free transitions (Bremsstrahlung).
This cross section depend also on the velocities of the free electrons. We have:

where ne is the electron density per velocity interval and gff is the Gaunt-factor, a
quantum-mechanical correction to the Kramers-approximation.

Note: If thermodynamical equilibrium holds, we know from Wien’s law that the maximum
or typical frequency of the photons is proportional to the temperature ν ~ T. Therefore,
we expect that the opacities κ ~ nσ (see below) for bound-free or free-free transitions
decrease with the same power of the temperature as the power of the frequency, i.e.

3
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~ T−3. Modifications from this simple expectation are introduced because, e.g., the
ionization changes as a function of temperature. Therefore, the opacity for bound-free
and free-free transitions actually shows κ ~ ρT −3.5.
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1.9 Other Emission and Scattering Processes
1.9.1 Rayleigh Scattering

Interaction of bound electrons with low-energy photons.

Absorption or emission of a photon can be described as a resonance effect, with the
interaction cross section σ being:

where hν0 corresponds to the energy of the line transition.

Even if a photon has a frequency much lower than ν « ν0, there is still a small chance
of interaction. The scattering part of the interaction is called → Rayleigh scattering.
For hydrogen, the Rayleigh cross section per atom is (now in wavelength λ):

The reference wavelength does not just correspond to Lyα (1215Å) or the Lyman limit
(912Å) because all Lyman lines contribute to the scattering.

Rayleigh scattering is the origin of the blue sky.
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1.9.2 Thomson Scattering

Interaction of free electrons with low-energy photons

This corresponds to a ’resonance’ with ν0 = 0. Therefore we have:

Note: The Thomson cross section roughly corresponds to the radius at which the
electrostatic potential of the electron equals its mass.

A better approximation for low energies is obtained from an expansion of the Klein-
Nishina formula:

Important for IR, optical, UV radiation in:

Stellar atmospheres, stellar cores
Interstellar and intergalactic gas
Quasars
Big Bang (coupling of photons and matter before recombination)

4
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1.9.3 Compton Scattering

Interaction of free electrons with high-energy photons

An expansion of the Klein-Nishina formula in this case is:

i.e.

Compton scattering is important for

Extremely hot gas
X-ray and γ quanta

Interaction of high-energy free electrons with low-energy photons is called inverse
Compton effect.

X-ray production in jets and active galaxies
Sunyaev-Zeldovich effect
(scattering of the 3K radiation at X-ray gas of galaxy clusters)

1
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1.9.4 Synchrotron Radiation

Relativistic electrons

gyrate in a homogeneous magnetic field B. As they are accelerated in this process,
they emit radiation. Low-energy electrons emit cyclotron radiation, relativistic electrons
emit synchrotron radiation.

The radiation is emitted tangentially in a tight cone with apex angle θ

Because there is a preferred plane of gyration perpendicular to the magnetic field,
synchrotron radiation is highly polarized. The polarization is perpendicular to the
magnetic field direction.
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The observer sees a series of short flashes, implying a broad energy distribution. The
peak of the spectrum is at:

For a power-law distribution of electron energies (as e.g. observed in the cosmic ray
energy distribution):

we obtain a volume emissivity (see below for exact definition) of radiation:

Synchrotron radiation is observed, e.g., in

Neutron stars → rotating magnetosphere
Supernova remnants
Spiral galaxies → galactic magnetic fields
Galaxy clusters
Active galactic nuclei, jets

Synchrotron radiation is a typical form of non-thermal radiation.
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1.10 Radiative Transfer
1.10.1 Absorption coefficient

The intensity Iν changes, when a light beam passes through matter. Photons can be
absorbed, emitted and scattered.

We expect that the reduction in intensity dIν will be proportional to the intensity Iν itself and
proportional to the path length ds through the material (this may not be correct for very high
intensities!). Therefore, we define the absorption or opacity coefficient via:

The inverse of the absorption coefficient is proportional to the mean free path of a
photon. Furthermore, as discussed above the probability for absorption of a photon by a
single atom in state l is:

If we have nl atoms per volume in level l, we obtain for the number of photons dNγ
abs

absorbed in the volume dV = dσ·ds along the beam:

3 ( )abs lu
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Therefore, the intensity is reduced by:

i.e.

where we have used σlu = hν/4π · Blu φ(ν). This equation relates the absorption coefficient 
to the microphysical cross section. Including also stimulated emission we have

or, because of guBul = glBlu we can also write:

If we generalize to all other bound-bound, bound-free and free-free absorption of all 
elements, and include Thomson scattering, we obtain a formula like:
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α = Elements
β = Degree of ionization
γ = Levels within degree of ionization
δ > γ = Levels above 
nγ α,β = Occupation numbers
σγ α,β = Absorption cross sections
gγ α,β = Statistical weights of levels
ne = Number density (cm−3) of free electrons
bγ α,β = nγ α,β(NLTE) / nγ α,β(LTE) ≈ 1 (see below)

negative terms = stimulated emission
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Modern astrophysics takes millions of lines and several 10, 000 bound-free and free-free
transitions into account considering almost all elements in all levels of ionization.

Important absorption processes in cool stars (Teff ≤ 8000 K) are:

H−: bound-free/free-free
HI, AlI, MgI: bound-free
HI and all neutral elements: lines
H2, CH, NH, OH, CO, C2, CN (diatomic molecules): bound-free/free-free/lines

Important absorption processes in hot stars (Teff > 8000 K) are:

H, HeI, HeII, abundant metal ions: bound-free, free-free
Free electrons: Thomson scattering
All ions: lines

Because the occupation numbers nγ α,β enter κν, this is a function of temperature and
density: κν(T,ρ). For not too large ranges in temperature and density, one can usually
separate (see above, relation between κ and cross section):

1...2 ( )Tν νκ ρ κ=
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κ/ρ (in m2/nucleon) against λ in nm for the sun (T = 5000K) and τ Sco (T = 28000K).
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1.10.2 Emission Coefficient

Spontaneous emission enhances the intensity of radiation or can be the sole source of
radiation. Spontaneous emission requires atoms or ions to be in excited states, i.e. they
are in a hot plasma or exposed to radiation. We define the emission coefficient via:

Note: dIν is independent of Iν because spontaneous emission does not depend on the
incident radiation as stimulated emission (which was therefore included above with the
extinction coefficient)

Because of the general Einstein relations between cross sections σabs and σspont, we have

Therefore we have here as well: εν = εν(ρ,T).
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1.10.3 Radiative Transfer Equation

Taking into account absorption, stimulated and spontaneous emission as processes reduc-
ing or adding intensity, we finally write the Equation of Radiative Transfer:

or

This an inhomogeneous 1st order differential equation which can be solved straightforwardly
as long as κ and ε are known as a function of density, temperature and chemical
composition and are not dependent on Iν (as in case of a Laser or the absence of 
thermodynamical equilibrium).

N
 emissionabsorption

dI I ds ds

dI I
ds

ν ν ν ν
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We rewrite the equation of radiative transfer as:

where Sν is called the source function. We then multiply by exp(τν) and obtain:

which is equivalent to:

0
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To solve the equation, we introduce the optical 
depth τν defined via:
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of which integration yields:

or by multiplication with exp(τν):

This relation can be explained as follows:
Iν0 is the radiation falling onto a plane-parallel sheet of plasma with an optical depth of τν.
What remains from this incident radiation after the sheet has been crossed is Iν0 ·exp(-τν). 
On the other hand, the sheet emits radiation itself. At each position along the ray, εν/κν
is contributed. This contribution is however again reduced by the optical depth of the 
remaining path to the edge of the sheet, i.e. by τν − τ‘ν .

We conclude that:

Radiation cannot penetrate areas with τν » 1
If we observe a radiating object, we cannot receive emission from regions with τν » 1
(τ measured inward from the surface of the object).
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0

                Equation of radiative transfer

'                              Optical depth or optical path

/                                Source Function

 

s

dI I ds ds

ds

S
dI I S
d

ν ν ν ν

ν ν

ν ν ν

ν
ν ν

ν

κ ε

τ κ

ε κ

τ

= − +

=

=

= − +

∫

( )0

0

                        Equation of radiative transfer

   Integral of eq. of radiat. transferI I e e d
ν

ν ν ν

τ
τ τ τν

ν ν ν
ν

ε τ
κ

′− − − ′= + ∫

For several layers of gas at different temperature (stellar atmosphere!), the observed
intensity reflects the temperature at τ ≈ 1, because τ ≈ 1 corresponds to the mean free
path of the photons.

In summary we have:
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1.11 Thermodynamical equilibrium and radiative transfer

In perfect radiative equilibrium, we have Iν = Bν(T) and the radiation field is isotropic and
homogeneous, i.e. we also have dIν/ds = 0. Under these conditions, the radiative transfer
equation reduces to Kirchhoff’s law:

In principle, only a closed system can be in thermodynamic equilibrium. Therefore, radiative
systems, like stars, can never be in a complete global thermodynamic equilibrium.
Nevertheless, stellar interiors and many other systems are in approximate local thermo-
dynamical equilibrium (LTE) if the following two conditions hold:

Elastic collisions of particles are efficient in establishing a Maxwell velocity distribution
with a single local kinetic temperature.

Inelastic collisions are more frequent than radiative absorption and emission processes
and determine the occupation numbers of ionized states and energy levels. This is the
case, if the particle density is high enough (see section on LTE below).

Because it does not matter whether the equilibrium occupation numbers are established
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via photons or particles, the occupation numbers can be calculated with the Boltzmann
and Saha formulae using the local kinetic temperature. Consequently the radiation emitted
in the small volume in LTE also follows a Planck law and we have Sν = Bν(T) = εν/κν
i.e. again Kirchhoff’s law. The total local distribution function of photons is however not
determined by the local temperature:

but by the local radiative transfer equation:

At any frequency, depending on the difference between incident radiation and locally emit-
ted black body radiation, the intensity either decreases or increases when passing through
the small volume in LTE.

In the theory of stellar atmospheres, LTE is usually assumed (but see exceptions discussed
later). As already indicated, this assumption does not mean that we assume complete
thermodynamic equilibrium, it only means that we assume that the emission is black-body-
radiation of a temperature corresponding to the kinetic temperature of the particles. Even
if the incident radiation is concentrated in one line, LTE implies that the radiation emitted
within a small volume follows Bν(T).
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1.12 Emission and absorption line spectra

We now discuss under which conditions we will observe emission and absorption line spec-
tra. We consider a box of length s filled with hot gas and located in front of a light source
with intensity distribution Iν0. We integrate the equation of radiative transfer through the box:

and obtain (as above):

or:

where τν is the optical depth through the hot gas at frequency ν and Sν is its source function.

Four limiting cases illustrate what this equation implies:

Iν0 → 0, τν « 1, LTE, i.e. the gas is in LTE but optically thin, and the background
illumination is negligible. Expansion of the exponent in a Taylor series results in:
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This means that the gas will show strong (weak) emission where κν is large (small).
At frequencies corresponding to line transitions between discrete energy levels of the
atoms or ions of the gas, κν is large and we will see a characteristic emission line
spectrum. Astrophysical examples for this situation are: stellar winds, star formation
regions, and active galactic nuclei.

Iν0 → 0, τν » 1, , i.e. the gas is in LTE and optically thick, and the background
illumination is negligible. This reduces the equation to:

The gas in the box emits a featureless black body spectrum. Here an astrophysical
example is the cosmic microwave background.

Iν0 ≠ 0, τν « 1, i.e. the gas is optically thin, and it is illuminated by a background
source. We have:

If we have Bν = Sν < Iν0 and κν is large because the frequency corresponds to a line
transition in the gas, we evidently obtain an absorption line (astrophysical examples:
stellar atmospheres, interstellar medium in front of a star, intergalactic gas in front of a
quasar).

    or          in LTEI S I Bν ν ν ν= =

0 0 0
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On the other hand, if Bν = Sν > Iν0 and, again, κν is large because the frequency
corresponds to a line transition in the gas, we will see an emission line on top of the
background spectrum. Stellar coronae are example of this phenomenon.

Iν0 ≠ 0, τν » 1, i.e. the gas is optically thick, and it is illuminated by a background
source. Here we have again, as in the second case:

I Sν ν=
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1.13 Validity of Local Thermodynamical Equilibrium

In almost all plasmas (except very thin ones with magnetic fields), the Maxwell distribution
is valid. The validity of Saha and Boltzmann formulas on the other hand depend on the
ratio of photon energy density uphoton to particle energy density uparticles

ncrit = 36.5 · T3 is the limiting relation for which uphotons = uparticles.

If a system is in Non-LTE the population of energy levels and ionization states needs to
be calculated explicitly on the basis of the radiation field and collisions. The Boltzmann
and Saha equations cannot be used anymore. Radiative transfer in this case requires the
solution of non-linearly coupled differential equations implying a significant numerical effort.
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Stellar atmospheres    (n 
= 1013...1016 cm−3) for Teff ~
25000 K

Stellar cores

Atmospheres of super-
giants (n = 1010...1013 cm−3)

Outer atmospheres 
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Interstellar medium
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