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Abstract—We show that passage to a statistical description of stellar systems is possible when considering

the evolution on time scales longer than τm ≈ 5

√
τ4

d τc, where τd is the mean dynamical (Keplerian) time and

τc is the two-particle collisional relaxation time.

PACS numbers : 02.50.Ey; 04.40.-b; 05.45.-a; 95.10.Fh; 98.10.+z
DOI: 10.1134/S1063773706010038

Key words: celestial mechanics, stellar dynamics, relaxation, stochastization, stellar systems.

INTRODUCTION

The characteristic time scale of “forgetting” the
initial conditions plays an important role in study-
ing the dynamics of stellar systems. Indeed, if τm is
shorter than the evolution time scales considered in
a formulated problem, then we can pass to simpli-
fying statistical–mechanical or kinetic descriptions.
Otherwise, strictly speaking, we must solve the com-
plete celestial-mechanical problem of the motion of
N gravitating bodies and solve it exactly, because
there are no a priori arguments that the sought-
for physical solutions are asymptotically close to the
solutions obtained numerically, most commonly in
the form of moments of the distribution averaged over
the entire 6N-dimensional phase space. In addition,
the procedure for choosing the initial conditions that
affect crucially the result becomes much more com-
plicated.

THE CHARACTERISTIC TIME SCALES
OF A SYSTEM OF GRAVITATING POINTS

From dimensional considerations (see Dibai and
Kaplan 1976), we can obtain two time scales for a
system of gravitating points of mass m distributed
with a mean space density n and a velocity dispersion
v2
0 : the collisional time

τc =
v3
0

(Gm)2n
(1)
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and dynamical time (the crossing time of the stellar
system or the Keplerian time)

τd = (Gmn)−1/2. (2)

The results of most studies group around these two
estimates. Taking into account only the pair (two-
particle) interactions, Chandrasekhar (1948) derived
a time of the order of (1), to within a factor that di-
verges logarithmically in impact parameter. By taking
into account only the collisionless collective effects
of “violent relaxation,” Lynden-Bell (1967) derived a
time of the order of (2), to within a factor determined
by the Landau damping constant

The ratio of these times can be easily shown to
be given by a dimensionless combination of the scale
lengths commonly considered in stellar dynamics,

τd

τc
=

1
8

(
p⊥
d0

)3/2

. (3)

Here, p⊥ = 2Gmv−2
0 is the impact parameter of such

a close encounter at which the relative velocity vector
of the two stars that had the relative velocity v0 at
a (formally) infinite distance from one another turns
through 90◦ in the frame of reference associated with
their center of mass, and d0 = 0.5n−1/3 is the mean
distance between the stars in the system. For conve-
nience, we then represent the time scale of interest as

τm =
(

p⊥
d0

)α

τ0, (4)

where τ0 = v0(Gmn2/3)−1 and α is the sought-for
parameter. It can be easily shown that α = −1 and
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α = 0.5 for Eqs. (1) and (2), respectively, and

τ3
0 = τ2

d τc. (5)

The classical approach to estimating τm using
the a priori assumption that the system relaxes to
an equilibrium state, which consists in calculating
the parameter α in terms of a certain interaction
model, involves arbitrariness in choosing the relax-
ation mechanism and the related parameters and con-
tains a vicious circle (because the relaxation time to
equilibrium is calculated by assuming that the equi-
librium state is actually reached).

SELF-CONSISTENT ESTIMATION
OF THE STOCHASTIZATION TIME

The methods of stochastic dynamics (see Likht-
enberg and Liberman 1982), which date back to the
classic work by Krylov (2003), serve as a reason-
able alternative to this approach. Let us explain the
essence of the method without going into mathemat-
ical details. A Hamiltonian system with 3N degrees
of freedom can be represented by a point in 3N-
dimensional (configuration) space. The dynamical
evolution of the system can be described by the mo-
tion of the representing point along a geodesic curve.
Analysis of the properties of the bundle of geodesic
lines emerging from a small region of close initial
conditions makes it possible to determine whether the
properties of stochasticity manifest themselves in the
behavior of the system. Indeed, if the geodesic lines
diverge rapidly (exponentially), then, provided that the
volume accessible for the system is limited (in config-
uration space), they become greatly entangled and, at
a finite observation accuracy, randomly fill the volume
almost irrespective of the initial conditions. This
phenomenon is called mixing and is a property strong
enough to prove that the system is ergodic. The
absence of mixing is indicative of a relative stability
of the motion. Relaxation, in particular, results in the
filling of all the phase-volume cells accessible for the
system. Therefore, the rate of divergence or the rate of
increase of the (coarse) phase volume filled with the
representing points corresponding to different initial
conditions (its logarithm is the Kolmogorov–Sinai
entropy) gives an idea of the stochastization time
of the system, a constructive analog of the relaxation
time (Zaslavsky 1984).

The Hamiltonian of a stellar system is so com-
plex that the equations of geodesic lines cannot be
derived in the most general case without using addi-
tional assumptions and simplifications. The simplest
of them is to postulate a local homogeneity of the stel-
lar system and the Poissonian nature of the appear-
ance of the nearest neighbors of the trial star (which
seems to be valid, since the stellar system is fairly

sparse). Based on this assumption, Gurzadian and
Savvidy (1983, 1984, 1986) and Gurzadian (1998)
derived the following formula for the stochastization
time:

τGS = 3.752/3
(
2π

√
2C

)−1
τ0 ≈ 0.27τ0C

−0.5, (6)

where C is the mean square of the dimensionless force
acting on a star in a homogeneous stellar system,

C =

βmax∫

0

β2H(β)dβ, (7)

calculated from the Holtzmark distribution H(β) (see
Chandrasekhar 1948). Since the Holzmark distribu-
tion diverges at large forces βmax → ∞ (rmin → 0)

as β
−5/2
max with τGS → 0, it seems natural to limit

βmax and, accordingly, the minimum distance rmin.
Gurzadian and Savvidy (1983, 1986) assumed that
rmin = p⊥ and postulated C = 1; they estimated the
stochastization time to be τGS ∼ τ0.

After correcting the obvious error in Gurzadian
and Savvidy (1983) and properly integrating (7), we
obtain under the same assumptions

C ≈ 3e−yy−1/3 − Γ(2/3) (8)

+ y2/3
∞∑

k=0

−yk

k!(k + 2/3)
,

where y = 4π(rmin/d0)3/3 and Γ(2/3) is the Gamma
function, or, simplifying this expression for the realis-
tic case of rmin � d0, we obtain a more accurate value
of integral (7),

C ≈ 2
d0

rmin
. (9)

Following Gurzadian and Savvidy (1983) and assum-
ing that rmin = p⊥, we obtain the corrected estimate,

τ ′
GS ≈ 0.125

(
p⊥
d0

)0.5

τ0. (10)

Under our assumptions, τ ′
GS ≈ τd should have

been considered to be an estimate of the stochasiza-
tion time. Its low value may appear surprising (10−3τ0

and 10−5τ0 for a globular cluster and the Galaxy,
respectively). Note also that with the above constraint
on rmin, the energy per unit volume of the system, its
square, and other macroscopic quantities averaged
over the Holzmark distribution closely match those
for a continuous medium. As a matter of fact, under
these conditions, the Holzmark distribution yields the
regular force.

The conflict between the assumptions made and
the basic physical principles is the source of the effects
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mentioned above. Indeed, the mixing being proved
suggests the ergodicity of the system as a necessary
condition, i.e, the equality between the time-averaged
(i.e., measured physical) and ensemble-averaged
(calculated) quantities. It is absolutely clear that
encounters with impact parameters of the order of
p⊥ occur on time scales of the order of the collisional
relaxation time, Tr ∼ τc/100, which is ∼1014 yr for the
Galactic disk. Therefore, the assumption of rmin =
p⊥ arbitrarily extends the ensemble of systems to
include the events (extremely close pair interactions)
that could not occur in the sought-for time τm and
should not have showed up when averaging over the
time, but, as we see from formulas (7) and (10),
make the overwhelming contribution to the esti-
mated force. Hence the error—the implausibly short
stochastization time and, as a result, the analysis of
hydrodynamic phenomena.

A way out of this situation could be the solution
of a partially self-consistent problem, i.e., allowance
for only those close interactions (encounters) that can
occur on the mixing time scale with a nonnegligi-
ble probability. Therefore, we seek for an order-of-
magnitude estimate, and we can write the following
equation for rmin and, hence, for the sought-for mix-
ing time τm(rmin):

τm(rmin)v0nπr2
min ≈ 1 (11)

(clearly, using an approximate equality in this case
does not introduce a serious error). The solution of the
complete self-consistent problem based on the sub-
stitution of the stationary Holzmark distribution with
a different, theoretically more justified, distribution of
the random force appears impossible.

The solution of Eq. (11) in the asymptotics (9) is

r5
min ≈ 6.5d3

0p
2
⊥, (12)

which yields the ultimate formula for τm:

τm ≈ 0.17
(

p⊥
d0

)1/5

τ0. (13)

The latter agrees well with the result by Genkin (1972),
who estimated τm ≈ τ0 by qualitatively analyzing the
“violent” relaxation stage, strictly speaking, based on
a similar idea—the attempt to take into account a
wider variety of interactions.

In connection with our estimates of the time scale,
the results by Petrovskaya (1986) should be men-
tioned. As is well known, Agekyan (1959) suggested
a new method to make allowance for pair interactions.
It is based on the treatment of the change in the ve-
locity of a star as an absolutely discontinuous random
process. Agekyan gave a formula for the probability
of an encounter with a given change in the absolute
velocity of a star. Petrovskaya (1986) showed that

using the probabilistic approach makes it possible to
correct the Holzmark distribution for large dimen-
sionless forces in formula (6) and to ensure the con-
vergence of the integral for the second-order moment,
because the corrected distribution has the asymp-
totics H1(β) ∼ exp(−1.5αβ2)/β3 at β > 100QH (the
dimensionless force at the mean distance). A simple
estimate shows that the relative contribution from
encounters with β > 100QH for realistic rmin/d0 ∼
10−3–10−4 does not exceed 2× 10−3, which does not
change our conclusions at all.

CONCLUSIONS

Representing Eq. (13) in terms of the commonly
used time scales τc (1) and τd (2) may prove to be
more convenient. Using Eqs. (3) and (5), we obtain

τm ≈ 0.224 5

√
τ4

d τc. (14)

In a spatially homogeneous system (which is an ad-
ditional strong assumption), the ratio τc : τd depends
on the total number N of stars in the system, which
allows formula (14) to be simplified:

τm ≈ τd
5
√

N. (15)

Comparison of the τm values in a globular cluster
(τm ∼ 106–107 yr) and the Galactic halo (τm ∼
1010–1011 yr) with the cosmological time (1010 yr)
shows that applying the statistical–mechanical meth-
ods to stellar systems is quite justifiable from the
viewpoint that an equilibrium (in the sense of filling
the phase volume) is established in them in a time
shorter than the age.

Note, however, that the stochastization of motions
in stellar systems is not relaxation in the sense this
term is applied to ordinary gases or plasma. On time
scales longer than τm, a stellar system is described
by a number of parameters that is much smaller than
the number of mechanical parameters, 6N , but larger
than that in the statistical mechanics of an ideal gas,
especially when analyzing systems with a common
angular momentum.
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