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Summary. There are four primary causes of giantness: [1] the opacity law in the 
lower envelope (Kramers or Thomson or a mixture); [2] the abrupt molecular 
weight change across the shell; [3] convection (following gravothermal insta- 
bility), or electron degeneracy, in hydrogen-exhausted cores above a certain 
mass, and [4] approximate thermostatic control of the core by simultaneous 
hydrogen and helium burning. None of these four primary causes can be 
promoted above the others in the hierarchy of cause and effect underlying 
giantness. [1] furnishes highly extended envelope solutions, but these solutions 
would be inaccessible but for [2] and [3], and would be accessible only 
transiently but for [4]. A simple explanation of giantness simply does not exist. 

The details of nuclear energy release are of secondary importance in 
determining the overall structure of giants. The high luminosities, low surface 
temperatures and outer convection zones of giants are consequences, not 
causes, of giantness. 

The strong gravitational field and convective stability in the shell and lower 
envelope are key instruments in making giants giant but they are not primary 
causes. 

To construct a realistic model of a giant from polytropic segments requires at 
least five segments. Extended giant envelopes are fundamentally different from 
soft polytropes. Giant cores are fundamentally different from hard polytropes. 

Non-quasistatic core contraction is triggered by gravothermal instability, 
which always pre-empts the Schönberg-Chandrasekhar Limit. Spasmodic mass 

loss from giants can be triggered by small adjustments in the core. 

1 Introduction 

When a star evolves from the main sequence to the red giant phase, the core of the star (the 
region interior to the hydrogen-burning shell) becomes denser, for physical reasons which are 
well understood. What is at first sight rather unexpected, is that the envelope (the region 
exterior to the shell) simultaneously swells up until there is an enormous contrast between the 
mean core density and the mean envelope density, typically by a factor ^ 106. The problem - 
and it is a problem which has exercised several authors over the years without any consensus 
being reached (e.g., Höppner & Weigert 1973; Eggleton & Faulkner 1981; Iben & Renzini 
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506 A. P. Whitworth 

1984; Yahil and van den Horn 1985; Applegate 1988) - is to establish a clear hierarchy of 
cause and effect in the physics which underlies the swelling of the envelope. There are really 
two questions here: 

(I) Why do giant envelope configurations exist? 
(II) Why can giant envelope configurations only sit on cores above a certain mass? 

Two points seem particularly important in this context. First the giant phase is not a final or 
transient instability. Although giants are predicted to make complicated and wide-ranging 

excursions on the Herzsprung-Russell Diagram, the giant phase is none the less stable, in the 
sense that the amount of hydrogen which a star burns as a giant is comparable with the amount 
it burns on the main sequence. In other words, the giant lifetime is ultimately a nuclear time- 
scale, and not a thermal or dynamical one. One can therefore expect to obtain useful insights 
from the time-independent equations of quasistatic stellar structure. 

Secondly, most of the density contrast between the core and the envelope of a giant is due to 
a precipitous density drop, | d \n[p\jd \n[M] | ^ 33, across and immediately above the shell (e.g., 
fig. 28.3 in Schwarzschild, 1958). This precipitous density drop is the key to understanding 
why giants are giant. 

2 Plan of paper 

In Section 3 we introduce the basic variables, and in Section 4 we describe a simple model of a 
giant. 

In Sections 5-7 the approach is analytic; the critical features of giant structure are 
uncovered deductively. Section 5 deals with giant envelopes and the almost-singular solutions 
which describe them, showing how critically dependent on the opacity law these solutions are, 
the physical reason for their existence, and what conditions are required for them to be set up. 
Section 6 deals with the hydrogen-burning shell and the role of the associated molecular 
weight and luminosity changes. Section 7 deals with the core, the role of gravothermal insta- 
bility in its evolution, the existence of a critical core structure which can support the almost- 
singular envelope solutions, the equivalence of electron degeneracy and convection in 
producing this critical structure, and the thermostatic control on core structure exerted by 
hydrogen and helium burning. 

In Sections 8 and 9 the approach is synthetic. Section 8 shows how the different key parts of 
a giant fit together. Section 9 traces the hierarchy of physical cause and effect underlying this 
structure, and thereby identifies the primary causes at the head of the hierarchy. Section 10 
summarizes the main conclusions. 

To avoid diverting the reader too far from the main line of reasoning, certain aspects of the 
problem are treated in appendices. Appendix A deals with conditions at the base of the 
envelope in the almost-singular solutions. Appendix B maps out the quasistatic evolution of 
isothermal cores up to the Schönberg-Chandrasekhar Limit (hereafter SCL), and demonstrates 
that the SCL is always pre-empted by gravothermal instability. Appendix C demonstrates that 
our explanation of why giants are giant is confirmed in every regard by the detailed numerical 
models tabulated in Novotny (1973). Appendix D reviews previous attempts to explain why 
giants are giant and explains why they are either incomplete or ill-considered. 

3 Variables 

In view of the extreme inhomogeneity of giants and the associated steep gradients, it is 
advantageous to work with logarithmic variables and their derivatives. The following, whilst 
not unique, are useful since each one embodies a different aspect of stellar structure (energy 
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Why red giants are giant 507 

transport, hydrostatic balance and mass conservation), and this facilitates the disentangling of 
different physical effects. 

A = 
d\n[T] 

d\n[P] 
= Minimum 

[ 3PKL 1 áíln[r]| 

[64T, d\n[p\\ 

dHP]=GMp=R 

rfln[Ä] RP ~ hr ’ 

</ln[i?] _ M _p 

d\n{M]~ An R* p~ 2>p 

(3.1) 

(3.2) 

(3.3) 

ftp is the pressure scale-height; all other variables have their usual meanings. We use ln[M] as 
the independent variable. Except in the core, A is preferred to the more seasoned polytropic 
exponent Yj = d\n[P]ld\n[p], because A is better behaved than rj in the detailed numerical 
models tabulated by Novotny (1973); this is because T and P are continuous across a 
molecular weight discontinuity, whilst p is not. The polytropic index n = {r]-\)~{ is a hapless 
variable in giants, since it tends to switch through ± °o twice at each molecular weight change 
(i.e. four times in helium-burning giants); its mathematical advantages are redundant in the age 
of the computer. 

4 Model 

We start with a simple quasistatic model of a giant comprising a core, a shell, and an envelope. 
All chemical inhomogeneity and all luminosity generation are confined to the shell, which has 
negligible thickness. Inside the shell is the core, and outside is the envelope. We shall eventually 
need to relax some of the assumptions of this model, in particular to allow luminosity genera- 
tion in the core. However, we first develop the simple model as far as it will go; and we retain 
throughout the assumption of zero luminosity generation in the envelope so that equations 
(3.1) to (3.3) are the full set of differential equations for the envelope structure. Further details 
of the simple model are summarized in Fig. 1. 

5 Envelope 

To understand why giant envelope configurations exist, we must simply understand why 
certain solutions of equations (3.1) to (3.3) involve a precipitous density drop at the base of the 

envelope. A precipitous density drop requires C to become large and to remain large over a 
significant part of the solution, i.e. large C and small \C'\ = \d\n[C]ldln[M] |. 

5.1 EQUILIBRIUM POINTS AND SINGULAR SOLUTIONS 

We adopt an ideal gas equation of state P^pkT/m and an opacity law K = K0p
aT~ß/me, 

where m and me are the mean masses per gas particle and per electron, respectively. We also 
assume radiative energy transport. Then for the envelope, with L, m and me all uniform, 
equations (3.1 ) to (3.3) give 

A! = d\n[A}ld\n[M} = {yA-ô)BC-\, (5.1) 

B' = ¿/ln[5]/0Íln[M] = A5C-C+l, (5.2) 

C' = <71n[C]/öfln[M] = (l - A)BC — 3C+ 1, (5.3) 
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508 A. P. Whitworth 

SUBSCRIPTS: 

Figure 1. Schematic diagram of a giant showing (i) the different zones (lefthand column); (ii) the different 
subzones and their definitions (central column), and (iii) the boundaries between subzones, their definitions and 
the subscripts used to distinguish them (righthand column). 

where y = a + /? + 4 and <5 = a + 1. Primes will be used throughout this paper to denote the 
operation dln[ ]/dln[M]. 

These equations have an equilibrium point (A' =Z?' = C' =0) at 

(2(5 + 1) 
eq 2(y + 2) ’ 

2(y + 2) 
eq (y+1 — 2ô) ’ 

r = '-'eq 
(y + 1 — 2Ô) 

(y-4ô) 
(5.4) 

corresponding to a singular solution with R°cMc’q, />ocM TttM~AeqB',,Cm, p<x- 
M " etc_ These singular solutions are analogous to those for polytropes discussed by 

Chandrasekhar (1939). However, here we include the equation of radiative energy transport, 
so that there are three differential equations (rather than two) and we solve for the polytropic 
exponent rj = (1 - A)~l (rather than assuming it ab initio). 

5.2 ALMOST-SINGULAR SOLUTIONS AND THE SLOUGH 

Since in reality the opacity does not obey a perfect power law, the equilibrium point of 
equation (5.4) is blurred. However, there is still an extended slough around the equilibrium 
point, i.e. a finite volume of {A, B, C)-space in which solution paths advance very slowly with 
changing path parameter ln[M]. This slough corresponds to a sheaf of almost-singular 
solutions, i.e. solutions which over a significant part of their range, A \n[M]sloughJ diverge only 
slowly from the singular solution. 
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5.3 KRAMERS AND THOMSON OPACITY 

Why red giants are giant 

For the two opacity laws operating near the base of a giant envelope, i.e. Kramers (a - 1, 
^ - 7/2, therefore y - 17/2 and <5 - 2) and Thomson ( a - 0, ß- 0, therefore y - 4 and ô - 1 ), 
the equilibrium points and the sloughs surrounding them have the following important 
properties, which are elaborated in Appendix A: 

(i) Both equilibrium points, and hence also both sloughs, embrace exceptionally large C- 
values: 

[(5/21,42/11,11) (Kramers), 

[( 1 /4, 4, oo ) (Thomson). 
(5.5) 

Consequently the almost-singular solutions involve very steep density gradients, 
|p'| =(1 ~A)BC^ 33. 

(ii) Both sloughs are very extended in the C-direction (see Figs 2 and A1 ). 
(iii) The two sloughs are almost exactly co-extensive (again see Fig. Al). Consequently our 

arguments are still valid for a mixture of Kramers and Thomson opacity. This is important 
because conditions near the base of a giant envelope may run very close to the locus in (p, T )- 
space where Kramers and Thomson make equal contributions to the opacity. 

(iv) In both sloughs the almost-singular solution paths move away from the associated 
equilibrium point, and hence out of the slough, with increasing path parameter ln[M] (i.e. the 
equilibrium points are unstable). Consequently, almost-singular envelope solutions must start 
near the singular solution at the base of the envelope and diverge from it further out. 

(v) Almost-singular solution paths do not in general make multiple turns about the 
associated equilibrium point. They tend to move parallel to the elongation of the slough so that 

they expend a lot of mass before escaping from the slough, i.e. A \n[M}slough is large. This 
means that the resulting density drop, 

A\ïl[p\sloUgh~ (1 ^eq)-^eq (^*6) 

is both precipitous and large. 
(vi) The condition for C' > 0 is Æ> (3C-1 )/( 1 — A) C, which in the vicinity of the slough 

(A - 1/4 and O 1 ) is roughly equivalent Xo B> A. 

Thus, for Kramers opacity, Thomson opacity, or a mixture of the two, there is a very thick 
sheaf of almost-singular envelope solutions, in which the base of the envelope (subscript 3) is 
bogged down in the slough with 0.22 ^ A3 ^ 0.27 (typically A3 - 1 /4), 3.4 4.6 (typically 
53 — 4), 11 ^ C3 ^ °o (typically C3 - 14). This means that the density falls precipitously through 
several orders of magnitude near the base of the envelope, before bottoming out. All the giant 
models tabulated by Novotny (1973) have envelopes described by almost-singular solutions of 
precisely this form. 

Here then we have the mathematical answer to question (I): giant envelope configurations 
exist because the opacity law (Kramers, Thomson, or a mixture) furnishes the equations of 
envelope structure with almost-singular solutions which involve a precipitous density drop at 
the base of the envelope. Moreover, the answer to question (II) (why can giant envelope 
configurations sit only on cores above a certain mass?) now reduces to identifying the circum- 
stances which will deposit the base of the envelope in the slough. We reiterate that envelope 
solution paths based on equations (5.1) to (5.3) necessarily climb up out of the slough as they 

proceed outwards through the star. Therefore we have to look to additional terms in the 

structure equations for the shell, over and above those in equations (5.1) to (5.3), to transport 
the solution path into the slough. 
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510 A. P. Whitworth 

5.4 INFLUENCE OF THE OPACITY LAW ON THE ALMOST-SINGULAR SOLUTIONS 

At this juncture it is worth considering how critical the opacity law is. The condition for 
ll^Ceq^°ois 

3.0a ^3.2a + 0.3. (5.7) 

We stress that this should not be interpreted as a discontinuous constraint on a and ß. The 
inequalities are chosen simply to demonstrate how tight the limits on a and ß can be made and 
yet still embrace both Kramers and Thomson opacity. The point is that if one were to relax 
these limits, the additional combinations of a and ß thereby admitted would still have equilib- 
rium points, sloughs, and almost-singular solutions, but they would be less effective in pro- 
moting giantness on two counts. 

Firstly, the equilibrium points, and hence also the sloughs, would be at smaller C-values for 
/?> 3.2a+ 0.3, whilst for ß< 3.0a the sloughs would be shallower and therefore easier to 
escape from, giving smaller Á \n[M]slough. Either way, it is clear from equation (5.6) that the 
density drop at the base of the envelope would tend to be smaller. 

Secondly, the slough would be less extended in {A,B, C)-space, and would therefore 
correspond to a thinner sheaf of almost-singular solutions (i.e. a narrower range of giant 
envelope configurations). This would mean that a more specific disposition of the core boun- 
dary is required for the base of the envelope to be deposited in the slough (i.e. for a giant 
envelope configuration to be set up). And this would tend to make gianthood a less sustained, 
less universal, phase of stellar evolution. 

In other words, nature has contrived two distinct opacity laws, both of which are optimized 
to make a wide range of stars develop and sustain a giant phase. (This is demonstrated 

graphically in Fig. Al.) 

5.5 THE PHYSICAL BASIS OF ALMOST-SINGULAR SOLUTIONS 

Having shown mathematically how critical the opacity law is, it is appropriate to determine the 
physical basis of the almost-singular solutions which describe giant envelope configurations. 

A3-l/4 means that the gas is stable against convection (i.e. A<2/5) at the base of the 

envelope and so energy transport is radiative. This convective stability is very fundamental to 
giant structure {cf. Eggleton & Faulkner 1981) and is due to two factors. First shell hydrogen 
burning displaces luminosity generation from the centre of the star, thereby relieving the flux 
bottleneck. Hence, despite the high luminosity, a relatively small temperature gradient | T'| is 
required for energy transport. Secondly, because the gravitational field is very strong at the 
boundary of a sufficiently massive and condensed core, a very large pressure gradient | P' | is 
required for hydrostatic balance. 

Now, if I P' I is very large at the base of the envelope (typically | P'31 = B3 C3 - 56) and | P' | is 
relatively small (typically | T!

3\ =A3B3C3- 14), then \p'\ is very large because in a chemically 
homogeneous ideal-gas region p'^P'-T’ (typically | p31 = ( 1 - A3) P3 C3 - 42). 

On the one hand this means that as we move outwards from the base of the envelope the 
effective radiative conductivity, 

16qT3 \(16omJ3Kf)Tl3l2p-2 (Kramers), 
rad 3pK {(16ame/3A'Jh)r3p_1 (Thomson), 

stays high, and so | P'| stays relatively small. Hence as long as |P'| stays large, \p'\ also stays 
large. On the other hand, if | p' | is too large, M hardly increases at all with increasing R and so g 
falls off roughly as P ~2. Then | P' | = g2/4 tzGP decreases, and with it | p' |. 
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Why red giants are giant 511 

The almost-singular solutions arise when an approximate balance is struck between these 
opposing influences on | p' |, so that a large | p' \ can be sustained over a large À ln[M], thereby 
producing a large and precipitous density drop. 

We note that for equilibrium points with large Ceq it is inevitable that Aeq- 1/4 and Beq - 4. 
This is because large Ceq means that |p'|eq large, and so M increases only slowly with 
increasing R and g falls off roughly as R~2. Consequently, P=g2/4jzGl P'leq°cg2 falls off 
roughly as R~4, i.e. Beq-4. But then dP/dR = - GMp/R2<*pR~2<*R~5, i.e. p^R~3^P3/4, 
giving T oc P/p oc p1/4, i.e. Aeq - 1 /4, and dM/dR ^R2p^R~l, i.e. M- constant + 0(ln[/?]). 

5.6 CONDITIONS AT THE BASE OF THE ENVELOPE 

We now consider question (II): why can giant envelope configurations only sit on cores above a 
certain mass? Or equivalently: what circumstances will so dispose the core boundary that 
the base of the envelope falls in the slough? At first sight it appears that the answer to this 
question is rather simple: only a massive core can (a) supply a strong gravitational field at its 
boundary, and (b) substantially relieve the flux bottleneck by displacing hydrogen burning well 
away from the centre of the star. 

However, although a relatively low flux F3 and a strong gravitational field g3 are necessary 
conditions at the base of the envelope for setting up an almost-singular envelope solution, they 
are not sufficient. As we have just discussed, the almost-singular solutions involve a delicate 
balance between strong opposing influences on | p' \. This balance is embodied in the require- 
ment that the base of the envelope falls in the slough with A3- 1/4 (± 15 per cent), B3-4 
( ± 15 per cent), and C3 - 14 ( ± 30 per cent say, although strictly there is no upper limit on C3). 
This is equivalent to requiring that the flux, gravitational field, and radius, all adopt rather 
specific values (in terms of local functions of state) at the base of the envelope, namely: 

F3 = 4jiA3{2Z?3 C3/3)1 /2[ZFbb/at¥¥] — 19.2[/Fbb/ö/ff] ± 40 per cent, (5-9) 

I £3! =(jr/2)(353C3/2)1/2[a//FF] ~ 14.4[fl/¿FF]±22 per cent (5.10) 

and 

R3 =(2/jr)(253/3C3)
1/2[ö/FF]-0.278[fliFF]±22 per cent. (5.11) 

Here /=(Xp)-1 is the mean-free-path for a representative energy-transporting photon, 
a={PlpY12 is the isothermal sound speed, ¿FF = (3jt/32Gyo)1/2 is the freefall time, and 
Fm = 0T4 is the equivalent blackbody flux. We reiterate that all the quantities on the righthand 
side of equations (5.9) to (5.11 ) (i.e. /, ß, ¿ff> ^bb) are local functions of state, whilst those on the 
lefthand side are not. Equations (5.9) to (5.11) are a quantitative and testable prediction of this 
paper. 

5.7 RÉSUMÉ 

Giant envelopes are extended because they have a precipitous density drop at their base. Giant 
envelopes are described by a family of almost-singular solutions. This family of almost-singular 
solutions is critically dependent on the opacity law in the lower envelope. Both the extent of 
the family of almost-singular solutions (i.e. the range of available giant envelope configurations), 
and the extent of the density drop which they entail are maximized by a constraint which 
embraces both Kramers and Thomson opacity, and a mixture of the two. To set up a giant 
envelope configuration, the base of the envelope must fall in a particular region of [A, 5, C)- 
space which we call the slough. 
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A. P. Whitworth 512 

6 Shell 

6.1 THE ROLE OF MOLECULAR WEIGHT AND LUMINOSITY GRADIENTS 

To see how massive cores fulfil the rather precise requirements of equations (5.9) to (5.11 ), we 
must first consider the hydrogen-burning shell and identify the critical roles played here by 
luminosity and molecular weight changes. Since the almost-singular solution paths based on 
equations (5.1) to (5.3) lead out of the slough with increasing ln[M], it follows that the base of 
the envelope cannot be deposited in the slough unless equations (5.1) to (5.3) do not apply in 
the shell. However, as long as ideal gas presssure dominates in the shell, the only modifications 
to equations (5.1) to (5.3) are the additional terms due to changing luminosity and composition, 
namely: 

A'\(llAI2-2)BC-l+ï + m-m[ (Kramers), 

~\(4A-l)BC-l+ll-mt (Thomson), 

B' =ABC — C+ \ + mr, (6.2) 

C' =(1 -A)BC — 3C +1 -m'. (6.3) 

Here L! = d\n[L]/d\n[M] = eM/L, m1 = d]n[m]/d\n[M], and = ö?ln[me]/i/ln[M]. These are 
the new terms which must act to transport the solution path into the slough against the col- 
lective opposition of all the other terms. 

We shall show later (in Section 7 and Appendix B) that to deposit the base of the envelope in 
the slough, starting from the core boundary, necessarily requires a change of B and/or C, and a 
large increase in A. From a comparison of equations (6.2) and (6.3) with (5.2) and (5.3) it 
follows that m' is the only term which can produce a change in B or C, and L' is the only term 
which can produce a large increase in A. Therefore m' and L' both play critical roles in making 
giants giant. 

L! and m' must be large if they are to overpower the other terms in equations (6.1) to (6.3). 
Large L! and m' means that the shell must be thin and convectively stable. We have already 
explained how a massive core promotes convective stability at its boundary. Massive cores also 
constrict the thickness of the shell, again basically by supplying a large gravitational field which 
in turn induces steep gradients in the density, the temperature, and hence the specific nuclear 
energy release rate. Typically in the shell A —1/8 and BC-56, so that \p!\-49 + \m'\ and 
ir|-7. 

6.2 JUMP CONDITIONS ACROSS A THIN SHELL 

In a sufficiently thin shell the terms (L!, m\ m't) dominate equations (6.1) to (6.3). We can then 
neglect the thickness of the shell and apply jump conditions between the boundary of the core 
(subscript 2) and the base of the envelope (subscript 3): 

Aln[A] = 
A ln[L] + A ln[m] - A ln[me 

A ln[L]~ A ln[me], 

A ln[B] = A ln[m] = - A ln[C]. 

6.3 THE IMAGE 

(Kramers), 

(Thomson), 
(6.4) 

(6.5) 

Most of a giant’s luminosity is generated in the shell, so A ln[L] is large; and in crossing the shell 
(outwards) the molecular weight decreases by a factor /— 2. Therefore, if the base of the 
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Why red giants are giant 513 

envelope is to fall in the slough with A3 - 1/4, B3 - 4, C3 ^11, the boundary of the core must 
fall in an image of the slough with A2<1IA, B2 — ^, C2^5 (see Fig. 2). 

6.4 RÉSUMÉ 

To set up a giant envelope configuration, the base of the envelope must fall in the slough, but 
the core boundary cannot reach the slough. To deposit the base of the envelope in the slough 
starting from the core boundary necessarily requires both a change in B and/or C (which can 
only be effected by the molecular weight gradient m! across the shell), and a large increase in A 
(which can only be effected by the luminosity gradient L! across the shell). The shell must be thin 
and convectively stable so that m' and L' are large enough to overpower the other terms in the 
equations, since these other terms act collectively to lead the solution path out of the slough. 
Given the roughly twofold decrease in the molecular weight, and the large increase in the 
luminosity across the shell, the base of the envelope will only be deposited in the slough if the 
core boundary falls in a particular region of {A, B, C)-space which we call the image. 

We must distinguish two strands in this argument. The fact that the equilibrium points based 
on equations (5.1) to (5.3) are unstable (see Appendix A) proves that solution paths based on 
these equations lead out of the slough with increasing path parameter \n[M]. This in turn 
proves that the solution path can only be transported into the slough by the additional terms 
which operate in the shell, i.e. the molecular weight gradient which changes B and C, and the 
luminosity gradient which changes A. However, this on its own does not prove that the 
molecular weight gradient is essential, because it might be that only a change in A is needed 
between the core boundary and the base of the envelope. Therefore the final step in proving 

that the molecular weight gradient is essential is to demonstrate that a change in B and/or C is 
required between the core boundary and the base of the envelope, i.e. that the core boundary 
cannot reach B — A and C ^ 11 with any value of A. We prove this in the next section. 

7 Core 

What we must do to answer question (II) (why can giant envelope configurations only sit on 
cores above a certain mass?) is to investigate the different types of structure the core might 

have, starting with the simplest, and to determine for each: 

(i) whether the core boundary is suitably disposed to deposit the base of the envelope in the 
slough, and 

(ii) whether the changes in luminosity and molecular weight across the shell are vital in this 
regard (i.e. whether the core boundary is in the slough or the image). 

7.1 GRAVOTHERMAL INSTABILITY AND THE SCHÖNBERG-CHANDRASEKHAR LIMIT 

In conducting this investigation of different core structures, we need to have regard, not simply 
for the existence of core solutions, but also for which core solutions actually arise in the natural 
course of stellar evolution. In this context it is important to appreciate the role of gravothermal 
instability. As a criterion for gravothermal instability we use the inequahty ^ = dP2ldR2)M2j2 > 
!?c = 0, where {P2,R2,T2) are the pressure, radius and temperature at the core boundary, and 
M2 is the core mass. Since the pressure exerted on the core by the overlying layers is likely to 

increase if the core shrinks, ^ = 0 is a rather conservative instability criterion. In other 
words, the gravothermal stability limit (hereafter GSL) probably occurs at < 0. This would 
make the core even more prone to instability, which would simply strengthen our conclusions. 
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514 A. P. Whitworth 

The most important consequence of gravothermal instability is that for stars with mass 
M* ^ Mq ; it pre-empts the Schönberg-Chandrasekhar Limit (SCL), and marks a significant 

change in the pattern and pace of core evolution. The early stages of post-main sequence 
evolution are essentially quasistatic. The rate of release of gravitational potential energy in the 

core is small, and so the core approximates to isothermality at the hydrogen-burning tempera- 
ture Th. The SCL represents the maximum core mass for which there exist isothermal equilib- 
rium states, stable or unstable; and it has frequently been inferred that the core only starts to 
contract rapidly enough to heat up once it has passed the SCL. However, in reality the core 

encounters the GSL before the SCL, and it is on passing the GSL that contraction becomes 
rapid enough for the core to heat up. 

There is a ‘Catch 22’ here. Even if gravothermal instability does not develop (i.e. the 
instability growth time-scale is too long) and the evolution tries to continue quasistatically 
through unstable equilibrium states beyond the GSL and up to the SCL, it cannot do so. 
For beyond the GSL the rate of release of gravitational energy in the core, {- dQ>2ldt)eq = 
( - dQ2ldM2)eq(dM2ldt\ becomes too large to neglect, and so the evolution can no longer be 
considered quasistatic. Recalling that for a hydrogen-burning shell {dM2ldt) - L*/0.005c2, and 
that during these early stages of post-main sequence evolution L* is roughly constant, the 
enormous increase in ( - dQ2/dt) on passing the GSL is essentially an enormous increase in 
(-^Q2/öfM2)eq, where 

The second term on the right represents work done on the core by the weight of the overlying 
layers. The enormous increase in (- dQ2/dM2) arises because beyond the GSL small 
increases in core mass start to involve very large changes in the equilibrium core structure (see 
Appendix B for details). 

The non-quasistatic contraction which ensues at the onset of gravothermal instability causes 
the core to heat up, particularly towards the centre, so that there is a temperature gradient to 
drive out some of the gravitational energy being released. We shall see later that, in the absence 
of electron degeneracy, this temperature gradient is a vital feature of the core of a giant. 

7.2 STRATEGY FOR INVESTIGATING POSSIBLE CORE STRUCTURES 

We now start our investigation of different types of core structure, concentrating first on those 
which are quasistatic. What we shall find is that most types of core structure must be rejected 
because they are unable to deliver the base of the envelope into the slough. In fact it will turn 
out that there is only one type of core structure which can deliver the base of the envelope into 
the slough. This critical core structure involves the core having a hard kernel (i.e. r] > 5/4 in the 
centre, typically rj-5/3) and a soft coating (i.e. r¡< 5/4 towards the boundary); and it puts the 

core boundary in the image, so that the molecular weight and luminosity changes across the 
shell are vital to deliver the base of the envelope into the slough. 

In discussing core solutions we shall make extensive use of the {B, C)-plane, but we shall 
abandon A in favour of rj because by using rj we can emphasize the similarity between iso- 
thermal inner cores supported by electron degeneracy pressure (rj-5/3, A-0) and convective 
ideal-gas inner cores (;/ - 5/3, A - 2/5). All core solutions start from B0 = 0, C0 = 1/3, at the 
centre. 

We shall refer to the projection of the slough on the (B, C)-plane simply as the slough, and 
similarly to the projection of the image on the (B, C)-plane simply as the image. This will 
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Why red giants are giant 515 

Figure 2. Solution paths on the (Æ, C)-plane for pure polytropic cores. Each path is labelled with the value of 
the polytropic exponent rj. Asterisks mark points of gravothermal instability. The hatched regions represent the 
slough and its image. The full three-dimensional slough in (A, B,C)-space is defined, analysed and illustrated in 
Appendix A. What is shown here is the projection of one contour of the slough on the {B, C )-plane. The image is 
obtained by transforming the slough according io B^2B and C-^ Cjl. 

enable us to focus our attention on the key question of whether changes in B and/or C are 
needed between the core boundary and the base of the envelope, and hence whether the 
molecular weight change across the shell is critical. (There is no problem with increasing A 
because the existence of a large luminosity gradient in the shell is not in dispute.) At the same 
time it must be borne in mind that for the core boundary to fall in the slough with A2- 1/4 
corresponds to rj2-^l3. Similarly for the core boundary to fall in the image with A2 < 1/4 

corresponds to 7/2 ~ 1- 

7.3 NON-DEGENERATE ISOTHERMAL QUASISTATIC CORES 

The simplest credible core structure is the isothermal ideal-gas sphere. This is a reasonable 
model for the core of a young post-main sequence star. The corresponding solution path is 
plotted on the (B, C)-plane in Fig. 2 and labelled T.0000’. Any point on this solution path, up 
to the GSL at 2?GSL=2.43, CGSL= 0.822, can represent the core boundary in a quasistatic 
solution. The solution path goes nowhere near the slough or its image (even if we neglect the 
GSL). Therefore isothermal ideal-gas cores cannot support giant envelopes (whether there is a 
molecular weight change across the shell or not). 

7.4 PURE POLYTROPIC QUASISTATIC CORES 

Now we consider pure polytropic cores, i.e. cores with uniform polytropic exponent rj. For a 
chemically homogeneous ideal gas, rj = (l- A)~l\ the isothermal ideal gas considered in the 

previous subsection is just a special case of this type with A = 0 and ?; = 1. Solution paths for 
polytropic cores are given by 

B' = (l-r]-l)BC-C + l, B0 = 0, (7.2) 

Cr = rj~1BC-3C +1, C0= 1/3. (7.3) 
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516 A. P. Whitworth 

Some paths for representative values of rj are plotted in Fig. 2. For rj > 4/3 the path extends to 
(Æ, C) = (°o, °o ) and is gravothermally stable all the way. For 0 < ?; <4/3 the path ends on an 

equilibrium point at Beq = 2tj/{2 - rj) and Ceq = (2 - ?;)/(4 - 3?;), but becomes gravothermally 
unstable before reaching the equilibrium point. Only points on the solution path up to the GSL 
can represent the core boundary in a quasistatic solution. From Fig. 2, we see that for gravo- 
thermally stable, pure polytropic cores (of whatever exponent) the core boundary never 
reaches the slough or its image. Therefore quasistatic giants cannot have pure polytropic cores. 

7.5 TWO-ZONE POLYTROPIC QUASISTATIC CORES 

Now we consider two-zone polytropic cores, i.e. cores with an inner zone having uniform 
rj = rj{ and an outer zone having uniform V = Vo Again we ask whether the core boundary 
can reach the slough or its image without encountering gravothermal instability. 

We first note from equations (7.2) and (7.3) that at any point on the (#>0, C> 0)-plane the 
slope of the solution path is a monotonically increasing function of for ?; > 0. Consequently 
there are two distinct possibilities for a two-zone polytropic core with its boundary in the 
image. In the first possibility the solution path lies below that for a pure polytropic core with 
i;- 5/4, so that < 5/4 < (see Fig. 3). This possibility is always gravothermally unstable and 
can therefore be rejected. In the second possibility the solution path lies above that for a pure 
polytropic core with ?;-5/4, so that ^i> 5/4>?;0 (again see Fig. 3). In this case the core 
boundary can indeed reach the image without encountering gravothermal instability, although 
rj\>5IA> rjo is only a necessary condition. Similarly rj{> 13/11 > rjo is a necessary condition 
for the core boundary to reach the slough without encountering gravothermal instability. 

We therefore have a general theorem: ‘for two-zone polytropic cores, only the hard-kernel/ 
soft-coating ones with ^ > 5/4 > ?70 (or ^ > 13/11 > ?;0) afford the possibility of the core boun- 

Figure 3. Solution paths on the (B, C)-plane for three representative polytropic cores which just deliver the 
core boundary into the image. One is a pure polytropic core with rj = 5/4; this core is gravothermally unstable. 
The other two are hybrid two-zone polytropic cores. Of these, one has a soft kernel and a hard coating and is 
also gravothermally unstable, whilst the other has a hard kernel and a soft coating and is gravothermally stable. 
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517 Why red giants are giant 

dary reaching the image (or the slough) without encountering gravothermal instability.’ The 
proof of this theorem is straightforward but tedious and so it is not reproduced here. It consists 
simply of choosing representative points in the image (or the slough) and then conducting 
sequences of numerical integrations to determine for each such point which combinations of 
rj{ and rj0 allow the solution path to reach that point without encountering gravothermal 
instability. 

7.6 PARTIALLY DEGENERATE ISOTHERMAL QUASISTATIC CORES 

Once an isothermal core becomes electron degenerate in its central regions, it approximates to 
a hard-kernel/soft-coating two-zone polytropic structure with ^-5/3 and ^;0-l. The 
properties of partially degenerate isothermal cores are discussed in Appendix B. Some 
solution paths are plotted on Fig. 4. Each curve is marked with the central density y0, where y is 
a dimensionless density defined so that for y > 1 degeneracy pressure dominates with rj-5/3, 
and for y < 1 ideal gas pressure dominates with rj-1. The line of asterisks marks the GSL. 

From Fig. 4 it appears that for y0^5 the core boundary can reach the slough without 
encountering gravothermal instability, but only just. We should treat this result with reserve in 
case, as we suspect, the gravothermal instability condition ^ = 0 is too conservative (i.e. in 
case ^c<0). In fact we show in Appendix B that these solutions cannot occur during the 
natural course of stellar evolution because they are pre-empted by gravothermal instability (i.e. 
to get to them the core would have to pass through gravothermally unstable states.) It follows 

that B and/or C must change between the core boundary and the base of the envelope, and 
hence that the steep molecular weight gradient across the shell is essential. We must therefore 
concentrate on solutions with the core boundary in the image. 

From Fig. 4 it is clear that for y0 ^ 10 the core boundary can reach the image without going 
anywhere near gravothermal instability. Thus we have at last found a family of gravothermally 
stable core solutions with a realistic equation of state which (given a twofold molecular weight 
decrease across the shell) can support giant envelope configurations. Indeed the M0 giant 
model tabulated by Novotny (1973) involves a core of precisely this type. However, there are 
two complications. 

Figure 4. Solution paths on the (Æ, C)-plane for isothermal cores. Each plot is labelled with the dimensionless 
central density y0. Asterisks mark points of marginal gravothermal instability. 
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518 A. P. Whitworth 

The first complication is that during the course of quasistatic post-main sequence evolution 
for stars with M* ^ MQ partially degenerate core solutions with their boundary in the image 
arise only as a rather transient phase (see Appendix B). As the evolution proceeds, B2 and C2 

increases monotonically so that the core boundary enters the image from below on the (B,C)- 
plane (see Fig. B3) and then re-emerges above the image. As the core boundary enters the 
image the star swells up to become a giant. However, if the core boundary re-emerges above the 

image, the base of the envelope will no longer be deposited in the slough, but above it where 
C' > 0, and so the solution path in the lower envelope will head off to enormous C-values. It 
seems likely that this will cause the star to lose mass; it is possible that mass loss will occur in a 
self-regulating manner so that the core boundary stays close to the image and the star remains 
a giant, but the evolution will clearly cease to be quasistatic. 

The second complication is that the cores of more massive stars do not become degenerate 
until long after they have become giant. Therefore partially degenerate isothermal cores cannot 
be the whole solution to our problem. 

7.7 THE CRITICAL CORE STRUCTURE 

However, we are now very close to the solution to our problem. For it follows that a non- 

degenerate non-isothermal core could also have its boundary in the image without succumbing 
to gravothermal instability if it were to adopt a hard-kernel/soft-coating structure similar to 
that identified in Section 7.5. This would require a temperature gradient in the core, and so 
could only arise if there were quasistatic luminosity generation in the core, i.e. helium burning. 
Ideally it would involve the kernel being convective with rj-5/3, and the coating being 
radiative with rj not much greater than unity at the boundary. But this is precisely what occurs 
in all the 5M© giant models tabulated by Novotny (1973). Thus the hard-kernel/soft-coating 
structure is a fundamental property of giant cores. 

7.8 NON-QUASISTATIC CORES 

We can now understand what happens to stars during the transient non-quasistatic evolu- 
tionary phase between the onset of gravothermal instability and the ignition of helium, as the 
core contracts and heats up, and the envelope swells to gianthood. This phase is non- 
quasistatic because the specific energy generation rate e is not a local function of state (in the 
sense of the Vogt-Russell Theorem), and so the structure is not governed exclusively by time- 
independent equilibrium equations. 

At the onset of gravothermal instability, the core is approximately isothermal. The values of 

[B,C) at the core boundary fall near the line of asterisks on Fig. 4, Le. B2
>2, C2^ 1. The 

ensuing rapid contraction and heating leads to the development of a temperature gradient in 
the core, thereby increasing the polytropic exponent and displacing the core solution path 
upwards on the {B, C)-plane. The core starts to develop a hard-kernel/soft-coating structure of 
the type defined in Section 7.5. 

From equations (7.2) and (7.3) we see that it is the hard kernel which carries the solution 
path to larger 5-values; whilst the soft coating carries the solution path to larger C-values, 
particularly once 5 > 4. The simultaneous increase of B2 and C2 transports the core boundary 
ever deeper into the image and so the base of the envelope falls ever deeper into the slough. 
The result is a rapid growth in the precipitous density drop at the base of the envelope (see 
equation (5.6)), causing a sudden swelling of the envelope to giant proportions. 
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Why red giants are giant 519 

7.9 THERMOSTATIC CONTROL OF THE CORE STRUCTURE DUE TO HYDROGEN AND HELIUM 
BURNING 

The non-quasistatic contraction of the core, and the associated upward displacement of the 
solution path on the [B, C)-plane, halt once the central temperature becomes high enough to 
ignite helium. The reason why this occurs rather precisely at the stage when the core boundary 
is near the middle of the image (with £2^8), and why the core boundary then remains roughly 
locked in the middle of the image, has to do with the ratio between the helium- and hydrogen- 
burning temperatures. Core helium burning requires 100^ 7He/106K^ 160, and shell 
hydrogen burning requires 25 £ TH/106K^40, so that THe/TH — 4 (very approximately). Now 
for a complete rj-5/3 polytrope supported by ideal gas pressure the central temperature is 
given by T0— GM*m/2kR*. If we apply this result to the core (i.e. if we neglect the small 
competing corrections due to the soft coating and the finite pressure at the core boundary) and 
put T0 ^ GM2m/2kR2, it follows that 

B2 = GM2mlR2kT2~2T0/T2. (7.4) 

But T2 = Th, and TQ increases until T0 = THe. Thus B2 increases until B2^2TUJTH — 8 and then 
becomes stuck at this value, which corresponds rather precisely to the image. 

We note that if helium burnt at a much higher temperature, THe > 4 Tn, non-quasistatic core 
contraction and heating would have to proceed much further. The solution path would then be 
displaced even further upwards on the (B, C)-plane. The core boundary would fall above the 
image and the base of the envelope would fall above the slough. Since the solution paths here 
all involve rapidly increasing C (i.e. large positive C), the star would presumably experience 

mass loss. 
The reason why giants shrink somewhat when helium ignites, is that the core starts to make 

a larger contribution to the luminosity. The growth of the luminosity in the core increases the 
extent of its hard kernel at the expense of its soft coating, so that the solution path does not 
reach such large C-values. This reduces the density drop at the base of the envelope and so the 
envelope shrinks (whilst still remaining giant). 

7.10 RÉSUMÉ 

To set up a giant envelope configuration the base of the envelope must fall in the slough. This 
in turn necessitates a particular disposition of the core boundary, which depends on whether 

there is a molecular weight change across the shell or not. If there is no molecular weight 
change across the shell, the core boundary also has to fall in the slough, but the boundary of a 
quasistatic core cannot reach the slough because it cannot reach such large C-values (C^ 11) 
at such small 5-values (Z? — 4) without encountering the GSL. If there is a molecular weight 
change across the shell, the core boundary has to fall in the image', and the boundary of the 
core can reach the image because it can reach more modest C-values ( 5) at larger ^-values 

(£ = 8) without encountering the GSL. Hence the molecular weight change across the shell 
plays a critical role in setting up giant envelope configurations. 

In order for the core boundary to reach the image, the core must adopt a critical structure 
involving a hard kernel which increases Bio ~ 8, and a soft coating which increases C to >5. 
The soft coating ensures that the core boundary is truly in the image with rj2^ 1 and hence 
A2<l/4. In low-mass stars the critical core structure occurs initially because of electron 

degeneracy. Otherwise it occurs because of convection, following non-quasistatic contraction 
and heating. In the latter case, the ratio of the helium- and hydrogen-burning temperature acts 
to lock the core boundary into the image. 
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520 A. P. Whitworth 

If the core encounters the GSL, the evolution becomes non-quasistatic and the solution path 
is displaced to larger 5-values, so that the boundary of a non-quasistatic core is even less able 
to reach the s/owg/z. 

8 Anatomy of a giant 

Fig. 5 illustrates schematically the characteristic form of giant solution paths on the (5, C)- 
plane. Fig. 6 illustrates schematically the characteristic run of log10[M/M*], r¡. A, B and C 
against log10[5/5*] for a giant. Fig. 1 indicates how a giant can be divided into six subzones. 
Each of the following subsections describes one of these subzones. The subsection heading 
gives the name of the subzone plus the two subscript numbers used to identify its inner and 
outer boundaries. The centre of the giant has subscript 0. 

8.1 INNER CORE (SUBSCRIPTS 0 TO 1) 

The inner core has rj> 5/4, due to convection or electron degeneracy. This is the hard kernel. 
The density gradient is small (a general property of the inner regions of hard polytropes). B 
increases rapidly, whilst C increases slowly. The outer boundary (subscript 1) is where, as we 
scan outwards, rj falls below 5/4 for the last time interior to the shell. Typically B{ - 7, C] - 1. 

8.2 OUTER CORE (SUBSCRIPTS 1 TO 2) 

In the outer core the electrons are non-degenerate and the gas is robustly stable against 
convection, so that ?/ < 5/4. This is the soft coating. The density gradient steepens dramatically 
here, as if the surface of the star were approaching. B is roughly constant and C increases 
rapidly. The outer boundary (subscript 2) is the point where X= 0.001. It falls in the image 
with A2<1 /4, B2- 8, and C2^ 5. 

Figure 5. Schematic solution paths on the (B, C )-plane. The full curve is for a giant in which helium is about to 
ignite and there is a deep outer convection zone. The changes which result when the outer convection zone is 
either shallow or non-existent are represented by dashes and dots, respectively. [When helium ignites there is a 
small glitch around (5, C)-(2,1) (see, for example, Models 30 and 31 on Fig. Cl), but we have omitted this 
variant to avoid confusion.] Numbered tick marks show the location of the subzone boundaries as defined in 
Fig. 1. 
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Why red giants are giant 521 

B 

V 

Figure 6. Schematic profiles. The abscissa is \ogi0[R/R*\. Reading from the top, the ordinate is C, then B, A, rj, 
and lastly log10[M/M*]. Notation is as in Fig. 5. In addition, the dot-dashes indicate how A and r¡ are suppressed 
where there is helium burning; and the crosses indicate that A is approximately zero in an isothermal core. 

8.3 SHELL (SUBSCRIPTS 2 TO 3) 

The hydrogen-burning shell is thin and convectively stable. Consequently the molecular weight 

gradient m' in the shell is steep, which in turn makes the density gradient, pf = m' —(1 — A) BC, 
steep, with rj<\. However, because the shell is thin (small A ln[M]shell), the fractional density 
decrease across the shell, | A ln[p]shelI \ = \pf\ A ln[M]shell, is quite modest. 

The main influence of the shell is the changes it induces in {A ,B,C), for it is these changes 
which transport the solution path from the image into the slough. The almost discontinuous 

decrease in the molecular weight across the shell (by a factor 2) causes B to decrease by a 
factor /, and C to increase by a factor /. The enormous increase in the luminosity across the 
shell produces a proportional increase in A from its very low value at the core boundary. The 
rapid increase in A only stops when the solution path becomes trapped in the slough with 
A- 1/4. 

The outer boundary of the shell (subscript 3) is where A increases through 0.22, i.e. 
A3 = 0.22, A'3 > 0. Typically B3^4 and C3 ^ 14, so that the outer boundary of the shell, i.e. the 
base of the envelope, falls in the slough. 

8.4 LOWER ENVELOPE (SUBSCRIPTS 3 TO 4) 

This is the critical part of a giant’s envelope, where the precipitous density drop occurs, i.e. a 
very steep density gradient p’ is maintained over a large mass range A \n[M]slough. By definition, 
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A. P. Whitworth 522 

0.22<^4<0.27 (equivalently 1.28<?;< 1.37) so the gas is convectively stable. Typically 
2<B<A and 3 < C < 20.5 and C slowly decrease as the solution path crawls out of the slough. 
The outer boundary (subscript 4) is the point where A rises above 0.27, i.e. Aa = 0.27, ÄA > 0. 

8.5 MIDDLE ENVELOPE (SUBSCRIPTS 4 TO 5) 

The density gradient flattens out in the middle envelope. The outer boundary (subscript 5) is 
where the product BC has its last minimum, i.e. where the envelope has put enough distance 
between itself and the core and accumulated enough mass of its own to be shielded from the 
gravitational influence of the core. 

8.6 UPPER ENVELOPE (SUBSCRIPTS 5 TO *) 

The density gradient steepens again in the upper envelope as the star runs out of mass. The 
outer boundary (subscript *) is the star’s photosphere. 

8.7 VARIATIONS 

We note the following three variations on the above scheme. 

(i) If the core is non-isothermal and the inner core is convective, A decreases from A - 0.4 at 
the centre to A ^ 0.2 at the core boundary. Conversely, if the core is isothermal and the inner 
core is electron degenerate, it has A-0 throughout. 

(ii) If helium is burning, there is a second molecular weight change in the interior of the core, 
where the composition changes from mainly helium to mainly carbon. This causes a sharp 
local minimum in both rj and A, and a small loop on the {B, C)-plane, but it has no significant 
influence on the overall structure. 

(iii) The upper envelope is not necessarily convective. We include plots for the cases of a 
deep upper envelope convection zone, a shallow one, and none at all. 

9 The hierarchy of cause and effect which makes and keeps giants giant 

This section is a commentary on Fig. 7. Fig. 7 demonstrates formally the hierarchy of cause 
and effect which makes and keeps giants giant, and thereby identifies the four primary causes 
to which giantness is ultimately attributable. The subsection numbers correspond to the 
numbers in the righthand margin of Fig. 7. 

A note of qualification is in order here. Factors which are equally relevant to the structure of 
giant and pre-giant stars (e.g. the law of gravitation, local thermodynamic equilibrium, the ideal 
gas equation of state, and the diffusion approximation for radiative energy transport) are not 
perceived as primary causes of giantness, although the hierarchy of cause and effect is 
dependent on their vahdity. 

9.1 THE CRITICAL STRUCTURE OF CORES ABOVE A CERTAIN MASS; THE COMPLEMENTARY 
ROLES OF CONVECTION AND ELECTRON DEGENERACY 

Hydrogen-exhausted cores above a certain mass develop a critical structure, in which the 
polytropic exponent is high (^ > 5/4) in the inner core (the hard kernel), and low {rj0 < 5/4) in 

the outer core (the soft coating). This is critical because all other structures which might deliver 
the core boundary into the image (A2 ^ 1/4, B2 ~ 8, C2 ^ 5) are gravothermally unstable and 
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Figure 7. Flow diagram demonstrating the hierarchy of cause and effect which makes giants giant (and 
luminous). Primary causes are highlighted with hatching above, and final effects with hatching below. There are 
various levels of the hierarchy and these are distinguished by numbers in the righthand margin, which refer to 
the subsections in which they are discussed. Positive feedback loops are indicated by long dashes (level 9.3 only). 
The causes of high luminosity (as distinct from giantness) are connected by short dashes (level 9.6). 
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524 A. P. Whitworth 

cannot therefore be sustained. In low-mass stars the critical structure arises, even while the 
core is still isothermal, due to the development of electron degeneracy in the inner core, so that 

—5/3 and r]0~l. Otherwise the critical structure arises only after the core has become 
gravothermally unstable, undergone non-quasistatic contraction and heated up, so that the 
inner part is convective with r¡{ - 5/3, and the outer part is radiative with rj0 < 5/4. We stress 
that the gravothermal instability which drives non-quasistatic contraction and heating of the 
core is a transient phase; global gravothermal stability returns, at least in a relative sense, once 
helium ignites. 

9.2 LOCKING THE CORE BOUNDARY INTO THE IMAGE-, THE HYDROGEN- AND 
HELIUM-BURNING THERMOSTAT 

The critical structure is only a necessary condition for the core boundary to be in the image. 
As the core heats up due to non-quasistatic contraction, the core boundary advances to ever 
increasing values of B2. It is the ignition of helium at a temperature rHe - 4 Th which halts the 
steady increase of B2 and holds it near the value B2-2T0/T2-2 THe/TH - 8. This locks the core 
boundary into the image, thereby ensuring that the star remains giant for a while. 

9.3 CONVECTIVE STABILITY AND THINNESS OF THE SHELL 

Both the convective stability of the shell and its thinness are consequences of the critical core 

structure, so they are not primary causes. However, since they play key roles in marrying the 
critical core structure to the almost-singular envelope solutions, it is important to understand 
how they arise. 

Convective stability in the shell is promoted by two circumstances. First, the gravitational 
field is large, typically |g| = (4jtGPBC)1/2-27(GP)1/2, and so the pressure gradient is also 
large, typically |P'| = PC-56. Secondly, the main site of luminosity generation has been 
displaced from the centre of the star, giving a relatively small flux, F = L/4jzR2, and hence 
a relatively low temperature gradient, typically | P'| =ABC-7. The upshot is that d\n[T}/ 
d ln[P] = A = kF/mXr2Ld | g| - 1 /8, which ensures robust convective stabihty (A < 2/5). 

The thinness of the shell is due to several effects and includes two positive feedback loops. 
Because (as discussed in the preceding paragraph) the pressure gradient is large, the density 
and/or temperature gradients must also be large. Typically A —1/8, so that 
|/o'| = |m'|+(l-A)PC-|m'| + 49 and |P'|=APC-7. Shell hydrogen burning normally 
proceeds by the CN-cycle, so at a representative temperature P- 3 x H)7 K the energy 
generation rate gradient is e' = pf + 15T’ + X’ — - 154 + X'. This implies that the shell is very 
sharply bounded on the outer side where X- 0.7 (constant) and F < 0. 

Since convective stability means no mixing, the composition and molecular weight changes 
associated with hydrogen burning are confined to the shell. Thus, if the shell is thin, the 
composition gradient is steep (i.e. X' is large), and this makes the shell thin by ensuring that it is 
sharply bounded on its inner side where F > 0: this is the first feedback loop. Furthermore, if 

the shell is thin, the molecular weight gradient is steep (i.e. \m'\ is large), and this makes the 
shell thin by increasing the density gradient | p' | = | m' ¡ + ( 1 - A ) PC: this is the second 
feedback loop. 

9.4 JUMP CONDITIONS ACROSS THE SHELL DUE TO THE MOLECULAR WEIGHT AND 
LUMINOSITY CHANGES 

Because the shell is thin and convectively stable, the molecular weight and luminosity gradients 
in the shell are large and dominate the structure equations, which can therefore be approxi- 
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525 Why red giants are giant 

mated by jump conditions. The changes in B and C are mainly due to the molecular weight 
change giving - B2/2 and C3 - 2C2. This transports the solution path from the image into 
the slough on the (B, C)-plane. The change in ^4 is mainly due to the luminosity change, giving 

A3>A2. This brings the solution path up from the image at A2<1I4 to ^43 = 0.22 where it 
becomes stuck in the slough. The dominance of the molecular weight and luminosity gradients 
in the shell structure equations is crucial (and hence the thinness and convective stability of the 
shell are crucial) because all the other terms in the shell structure equations tend to lead the 
solution path out of the slough. 

9.5 THE PRECIPITOUS DENSITY DROP IN THE LOWER ENVELOPE; THE ROLE OF THE OPACITY 
LAW IN THE ALMOST-SINGULAR SOLUTIONS 

With the base of the envelope in the slough, the envelope is inescapably hooked up to an 
almost-singular solution with a large density drop in the lower envelope. The enormous size of 

this density drop is due to the opacity law, K = KQp
a T ~ß/rrie. If a and ß were to fall outside the 

narrow range 3.0a ^ß^3.2a + 0.3, the slough would be smaller so it would be harder to land 
in (i.e. there would be a narrower range of almost-singular solutions so it would be harder to set 
one up), and/or the slough would be much shallower (i.e. the almost-singular solutions would 
on average involve smaller density drops). 

9.6 MIDDLEAND UPPER ENVELOPE; HIGH LUMINOSITY 

Because the density in the middle and upper envelope is so low, the envelope is both very 
extended so that the star has a large surface area from which to radiate, and very leaky so that 
its internal energy diffuses out at a high rate. Because of the photospheric opacity law ( a - 3/2, 

ß - - 9/2) the surface temperature cannot fall below about 3000 K (the Hayashi Limit). The 
combination of these factors makes for a very high luminosity. Because the CN-cycle is very 
temperature sensitive, quite small internal adjustments will normally suffice to maintain 
nuclear generation of this high luminosity. Thus the high luminosities of giants are a conse- 
quence, and not a cause, of their being giant. 

10 Conclusions 

10.1 PRIMARY CAUSES OF GIANTNESS 

We have identified the four primary causes underlying giantness: 

[1] ‘The opacity law in the lower envelope (Kramers or Thomson or a mixture).’ If one 

adopts an opacity law of the form K=:K0p
aT~ß/mc, then for certain a and ß the envelope 

structure equations possess a family of almost-singular solutions in which the density falls 
precipitously through several orders of magnitude and then bottoms out. These are the 
solutions governing giant envelopes. They are due to a subtle balance between opposing influ- 
ences on the density gradient. Both the extent of the family of almost-singular solutions, and 
the extent of the density drop which they entail, are maximized by the constraint 
3.0a3.2a+ 0.3, which is satisfied by both Kramers and Thomson opacity, and by a 
mixture of the two. However, these almost-singular solutions require a very particular (and at 
first sight rather unlikely) disposition at the base of the envelope. This disposition involves the 
base of the envelope falling in the slough (A3 - 1/4, Z?3 - 4, C3 ^ 11 ). The other three primary 
causes are critical because without them the base of the envelope cannot fall in the slough. 
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526 A. P. Whitworth 

[2] ‘The abrupt molecular weight change across the shell’ The core boundary cannot reach 
the slough, but it can - given the critical core structure, see [3] - reach the image (A2 < 1/4, 

B2 ~ 8, C2 > 5). The roughly-twofold decrease in molecular weight across the shell is unique in 
being able to transport the solution path in (B, C)-space from the image to the slough. 
(Simultaneously, the large luminosity increase across the shell transports the solution path in 
^4-space from the image to the slough.) Without the molecular weight decrease across the shell 
it would be impossible to deposit the base of the envelope in the slough and so the almost- 
singular envelope solutions would be inaccessible. 

[3] ‘Convection (following gravothermal instability), or electron degeneracy, in hydrogen- 
exhausted cores above a certain mass.’ In order for a quasistatic core to have its boundary in 
the image, it must adopt a critical structure which comprises a hard {r¡> 5/4) kernel and a soft 
{y}<5¡A) coating. This critical structure arises naturally in cores above a certain mass as a 
consequence of convection (following a transient episode of gravothermal instability which 
normally ends in helium ignition) or electron degeneracy (low-mass stars only). Both effects 
engender a polytropic exponent rj —5¡3 in the inner core, and rj then falls towards unity in the 
outer core. 

One cannot make a precise distinction between giants whose cores have the critical struc- 
ture due to electron degeneracy and giants whose cores have the critical structure due to 
convection. For instance, an M0 star is already well on the way to gianthood with a partially 
degenerate essentially quasistatic core, before the rate of contraction becomes sufficiently non- 
quasistatic to heat up the core and render it convective. 

[4] ‘Thermostatic control of the core by simultaneous hydrogen and helium burning.’ Very 
approximately, the 5-value at the core boundary is given by B2-2T0/T2, where T0 is the 
central temperature and T2 is the boundary temperature. This means that as long as helium 
burns in the core ( T0 ~ Tne) and hydrogen burns in the shell ( T2 - TH), the core boundary has 
B2-2THe/Tu. But the core helium-burning temperature is roughly four times the shell 
hydrogen-burning temperature, so that B2 — S. Thus the core boundary is locked thermo- 
statically into the image. 

10.2 CAUTIONS 

We stress that the explanation of giantness cannot be made more simple. A complex interplay 
of many different physical effects is involved, and none of the four primary causes we have 
identified should be elevated above the others. Previous explanations of giantness are all at 
best highly incomplete, as we discuss further in Appendix D. 

It is also appropriate to note that one cannot construct a realistic model of a giant by simply 
appending a pure polytropic envelope to a pure polytropic core with a molecular weight 
discontinuity and a fixed ideal gas temperature at the interface. Such models can be made to 
mimic post-main sequence evolution in the sense that as the core mass grows, the core shrinks 
and the envelope expands. However, all such models are unacceptable as representations of 
real giants on at least two of the following fundamental counts: 

(i) They are gravothermally unstable and therefore unsustainable. 
(ii) The giant phase is too transient. 
(iii) There is no precipitous density drop at the base of the envelope. 
(iv) The implied opacity law is unreal. 

Since we have explained why giants are giant without explicitly including the physics of 
luminosity generation, it follows that a giant’s high luminosity is more a consequence than a 
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527 Why red giants are giant 

cause of its structure. A giant is luminous because it is extended and diffuse, being extended it 
has a large surface area from which to radiate, and being diffuse it is leaky and so has a rapid 
turnover of thermal internal energy. If the growth of the giant pushes it against the Hayashi 
Limit, then there is a back reaction on the luminosity through the development of a convection 
zone in the upper envelope, but this is a secondary effect. 

10.3 PREDICTIONS AND SPECULATIONS 

We can make a number of testable predictions and speculations. Firm predictions can be 
stated thus: giants should subscribe broadly to the structure we have delineated in Sections 8 
and 9 and Figs 1, 5 and 6; conditions at the base of the envelope should satisfy equations 

(5.9)-(5.11). These predictions can be tested against existing detailed models of giants; I have 
only had access to the Iben models tabulated by Novotny (1973). 

In addition, existing numerical codes could be used to test how giant evolution and structure 
responds to (artificial) changes in the basic physics, and hence to test how critical the real 
physics is. This might appeal to aficionados of the Anthropic Principle, since giants play key 
roles in the origin of both the carbon vital for life, and the grains vital for planet formation. 
With the caveat that, given the highly non-linear nature of giant structure and evolution they 
are tentative speculations rather than firm predictions, we offer the following. 

(i) If the opacity law is modified to fall well outside the range identified in inequality (5.7), we 
expect that on average giants will have a smaller density drop at the base of the envelope; the 
Giant Branch (hereafter GB) will be less extended on the HR Diagram. If /? < 3.0a, evolution 
to gianthood should be delayed until the core mass is a larger fraction of the total. If 

> 3.2 a + 0.3, evolution to gianthood should be advanced. 
(ii) If the molecular weight change/- 2 is reduced significantly, a star should swell up more 

slowly as it leaves the main sequence; the GB should be less extended and the star should 
ascend to the tip of the GB and then start losing mass (or possibly come some way back down 
the GB) before helium ignites. If/is increased, helium should ignite quite low down on the GB. 

(iii) If the helium-burning temperature ^He - 100-160 x 106 K is increased significantly, the 
star should ascend to the tip of the GB and then start losing mass (or possibly come some way 
back down the GB) before helium ignites. If ^He is reduced, helium should ignite before the star 
has ascended very far up the GB. 

(iv) The critical core structure becomes even more critical if ß < 3.0a and/or ^He is reduced 
and/or/is reduced. 

(v) To make giants even larger one should leave the opacity law alone and increase / and 

Tk, roughly in proportion. 

In conclusion, we note that the overall extent of a giant is very sensitive to conditions in the 
slough and hence very dependent on local functions of state and their derivatives near the base 
of the envelope. Once the base of the envelope starts to fall in the slough, the envelope 
becomes a long tapering tail, and the core becomes a capricious dog wagging this tail. A small 
increase in B3 at the base of the envelope can mean that the solution path suddenly finds itself 
above the C' = 0 null-surface so that it has to make an excursion to very large C-values and 
then loop back in order to escape from the slough (there is some evidence that this has just 
happened in Model 29; see Fig. Cl). This will result in a rapid increase in the extent of the 
envelope. If B3 increases still further, the solution path may run off to such large C-values that 
the star is driven to throw off some of its outer envelope. It is therefore of great importance that 
numerical codes should be as accurate as possible in the convectively stable regions at the 
base of a giant’s envelope. 
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Appendix A: The slough 

The slough is the region around an equilibrium point where solution paths advance slowly with 
increasing path parameter. Because in nature opacity does not obey a strict power law, the 
equilibrium points of equation (5.5) are blurred, and it is more appropriate to discuss solution 
paths with reference to the slough. We emphasize that the slough does not have a precise 
boundary. The solution path can be more or less deeply ensnared in the slough, depending on 
its position in (A,B,C )-space. 

Since we are interested in sloughs at large C, we delineate the slough with contours of 
constant 

C[A'2 + B’2 + C'2] ~1/2 = D, (Al) 

so that contours of larger D correspond to greater depth into the slough. Fig. Al illustrates 
contours for D = 2, 5, 11, and for various opacity laws. We see that for both Kramers and 
Thomson opacity, the slough has almost exactly the same position, extent and shape, being 
deepest for 11 and elongated parallel to the C-axis around the line A~l/4,B~4. 

Inspection of the null-surfaces, 

Ä = (yA-ö)BC-1 = 0 (A2) 

B' = ABC-C+l = 0, (A3) 

C' =(1 -A)BC — 3C+ 1=0, (A4) 

reveals why this is so. For (y, ó) = (17/2,2; Kramers) or (4,1; Thomson), and at large C-values, 
the intersection of any pair of null-surfaces lies very close to the line A= 1/4, B = 4. Conse- 
quently the two sloughs are elongated along this line and nearly co-extensive. This is important 
for the following reason. 

The base of a giant envelope is often close to the locus, where Kramers and Thomson make 

equal contributions to the opacity. This locus has the slope dhi[r]/dln|/)]-2/7-0.286. The 
slough and its associated almost-singular solutions will exist only for a mixed opacity law (i.e. 
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0.15 

D = 11.00 NO SURFACE 

0.15 

0 = 11.00 NO SURFACE 

Figure Al. Hidden-line illustration of the sloughs for different opacity laws. Each plot is labelled with the values 
of a and ß. The lefthand plots have a = 0 and, reading downwards, ß = - 1, ß = 0 (Thomson), and ß=\3. The 
righthand plots have a = 1 and, again reading downwards, ß = 2, ß = 3.5 (Kramers), and /? = 4.5. The surfaces 
are defined by equation (Al) with D = 2, 5 and 11. The lines delineating the surfaces are lines of constant 
integral C, plus a silhouette line. Surfaces which extend beyond C=20 are terminated at C=20. For each D- 
value there is a tabulation below the plot giving the extent of the surface in the C-direction. 
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Kramers and Thomson in comparable amounts) if the sloughs for the two individual opacity 
laws are extensively overlapping and the proportions in the mixture vary slowly with chang- 
ing path parameter. Since i/ln[r]/i/ln[p]eq = >leq/(l-yfeq)-0.313 (Kramers) and 0.333 
(Thomson), both conditions are satisfied. The balance tends to switch from Thomson to 
Kramers, moving radially outwards through the lower envelope. 

The topology of solution paths in the slough is established by making equations (5.1 ) to (5.3) 
linear in the vicinity of the equilibrium point. The first step is to construct the 3x3 matrix 

ídÁ/dA dA'/dB dÁ/dC\ 

a£V&4 dB’/dB dB’/dc] 

[dC’/dA dC'/dB dC /dcJ ’ 

where the derivatives are all evaluated at the equilibrium point. The eigenvalues of this matrix 
are plotted against a (assuming ß = 3.5 a, i.e. along the line connecting Kramers and Thomson 
opacity) on Fig. A2. For a < 0.653 there are three positive real eigenvalues, so the equilibrium 

1000. 

100. 

X 

10. 

1 

0.0 0.2 0.4 0.6 0.8 1.0 
a 

Figure A2. Eigenvalues A of the linearized equations of stellar structure in the vicinity of the equilibrium point, 
as a function of a, assuming ß = 3.5a (i.e. along the line connecting Thomson opacity on the left to Kramers 
opacity on the right). The circles represent positive real eigenvalues. The triangles and asterisks represent 
(respectively) the positive real and imaginary parts of complex conjugate eigenvalue pairs. 
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point is an unstable node. For a >0.653 there is one large positive real eigenvalue and a 
complex conjugate pair with a real part which is positive and at least a factor of two larger than 
the imaginary part. Thus these equilibrium points are unstable helices in which the solution 
path only makes multiple turns around the equilibrium point in its immediate vicinity. Since 
this region is blurred, the topology of solution paths is actually more like an inflected node. 

The hatched region labelled ‘SLOUGH’ on the (B, C)-plane in Figs 2-5, B2, and Cl is the 
projection of the common portion of the £> = 11 sloughs for Kramers and Thomson opacity. It 
therefore represents the deepest recesses of the slough. The hatched region labelled 
‘IMAGE’is obtained by translating ‘SLOUGH’ according ioB-+2B and C~* C/2. 
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Appendix B: Isothermal quasistatic cores and evolution to the SCL 

B1 CORE STRUCTURE 

The early stages of post-main sequence evolution are essentially quasistatic, with the core 
approximately isothermal at the hydrogen-burning temperature TH. As the core grows in mass, 
the central density increases and the electrons may eventually become degenerate. To investi- 
gate how this affects the structure of the core, we adopt the expression for the pressure of a 
completely degenerate non-relativistic electron gas, (3/jr)2/3(/î2/20me)(p/me)

5/3, and simply 
add this to the ideal gas pressure, pkTu/m. The two are equal at a characteristic density pc, 
which enables us to introduce dimensionless variables: 

R=xRc, Rc = (kTH/4nGpcm)1/2, (Bl) 

p = ypc, pc = (n/3)(20mekTHlmh2)3l2ml12, (B2) 

P=[y+ysl3]Po Pc = PckTH/m, (B3) 

M=zMc, Mc = 4jtRIpc. (B4) 

The above prescription for the equation of state, although inexact, is adequate for our 
purposes because it possesses the essential feature that, as the density increases above pc, the 
effective polytropic exponent changes from rj~ 1 to rj-5/3. 

The structure equations, 

dy   yz 

dx~ x2(l + 5y2/3/3) ’ 
3'U = 0) = >'o, (B5) 

z{x = 0) = 0, (B6) 

have been integrated numerically for different values of y0. Some solutions are shown in Fig. 
4, where J0=z/x(l +y2/3), C = z/yx3, and the line of asterisks marks theGSL. 

Fig. Bl shows the variation of zGSL with y0, where zGSL is the dimensionless mass at the GSL. 

The asymptote zGSL = 15.7yñ1/2 (y0^l), corresponds to the standard isothermal ideal-gas 
sphere truncated at the GSL (i.e. in the notation of Chandrasekhar (1939), at £-6.45 where 
^(rp'fe-^ has its first maximum). The other asymptote zGSL= 10.7yo/2 (^o ^ 1) corresponds to 
the rj = 5/3 polytrope untruncated (i.e. again in the notation of Chandrasekhar (1939), 
extending to £ = 3.6 5 where 0 = 0). 

B2 EARLY POST-MAIN SEQUENCE EVOLUTION 

Consider how conditions at the core boundary change as a star evolves off the main sequence. 
Since m and me are constant in the core, and Tu is also roughly constant, we can treat (pc, Rc, 
Pc, Mc) as roughly constant [see equations (Bl) to (B4)]. Thus, as the core mass (M2 = Z2MC) 
and the central density (Po^o/^c) increase, the point (^0^2) moves upwards and to the right 
on the (y, z)-plane, until eventually - at least for stars with total mass M* ^ M0 - it encounters 
the GSL (see Fig. Bl). 

We wish to establish that the GSL is always encountered before the SCL, and that the rate of 
release of gravitational potential energy in the core is increasing so rapidly at the GSL that the 
core evolution can no longer be treated as quasistatic. Our treatment will be much cruder than 
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that of Schönberg & Chandrasekhar (1942), but it will include both the possibility of electron 
degeneracy in the core (thereby enabling a distinction to be made between stars of different 
mass), and the possibility of a radiative or a convective envelope. 

Consider first an uncontained sphere of gas in hydrostatic balance. The Virial theorem 
requires 

-Q = 3 PdV=3 (P/p)dM = 3M*(P/p) (B7) 

where Q is the self-gravitational potential energy, and (P/p) is the mass-weighted mean- 
squared isothermal sound speed. Putting - Q = a>GMl/R*, equation (B7) reduces to 

s_ GM* _ 3 

~R*(P/p)~aj’ 
(B8) 

where B is an average 12-value for the whole sphere. For a polytropic gas with rj = 4/3, 
a)4/3 = 3/2 and B4/3 = 2; whilst for rj = 5/3, (o5/3 = 6/7 and 5 = 7/2. 

Suppose that the envelope of the star is a pure polytrope with polytropic constant Ke and 
polytropic exponent rje, so that the mean-squared isothermal sound speed and density in the 
envelope are related to those at the base (subscript 3) thus: 

(P/p)A' ~^ = Ke = (P/p)3p
{3 ~ H (B9) 

We can substitute for the mean-squared isothermal sound speed in the envelope {P/p)c = GM*/ 
5*Be, and for the mean density in the envelope pe = 3(M* - M2)/4jtRl; we neglect the volume 
of the core since R2 < R*- The values of B^ obtained in the preceding paragraph are not applic- 
able here because we are only assuming that the envelope (not the whole star) is a pure poly- 
trope, but they are representative of the trend in going from rj = 4/3 to rj = 5/3. The envelope 
on its own will have a larger value of B, and so we put 5e = 2BVe, i.e. 5e = 4 for rje = 4/3, and 
5e = 7 for rje = 5/3. This prescription for Be is guided by the fact that it brings Be into line with 
the values obtaining in the envelopes of detailed models. 

If the shell is vanishingly thin, we can substitute for the squared isothermal sound speed 
and density at the base of the envelope in terms of the same quantities at the core boundary: 
(P/p)3 = f(P/p)2 = fGM2/R2B2 and p3 = p2lf=M2/47zRlc2f. f-2 is the factor by which the 
molecular weight increases in crossing the shell from the base of the envelope to the boundary 

of the core. 
With the above substitutions, equation (B9) reduces to 

R* 

~R2 

(3j?e-4) 
ëï 
B2 

NI, 

M* 

Mo 

3C2(M* —M2 

(l->7e) 

/ 
Ve (BIO) 

Finally, we express the pressure at the base of the envelope, P3 = P2 = in 
terms of the weight of the envelope, W— G(M* — M2) M2I(R*I2)2: 

GM] W _G{M*-M2)M2 

3 47iR2B2C2 4jiR2 tiRIrI 

. R* 

" X 

4(M*-M2)B2C2 

M, 
(BID 
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533 Why red giants are giant 

Eliminating [R*IR2} between equations (BIO) and (Bl 1 ), and substituting for ( rjQ, /), gives 

Mi 

M* 

M* —M0 

Mu 

1/2 
0.21 for rje = 4/3 (B12) 

and 

M2 

M* 

M*-Mo 

M* 

1/5 
0.80 [3C2]-

1/5, for rje = 5/3. (B13) 

All other things (M2, R2, p2, P2, T2) being equal, a radiative envelope with rje - 4/3 is more 
extended (than a convective envelope with rje - 5/3) and therefore more massive so that itjias 
the same weight. For instance, a non-degenerate isothermal core has B2 ^ 2.43 and C2 ^ 0.822. 
These limits give (M2/M*)^0.066 for rje = 4/3, and (M2/M*):£0.103 for rje = 5/3. The close 
agreement with the result of Schönberg & Chandrasekhar (1942) for the case of a convective 
envelope on a non-degenerate isothermal core is somewhat fortuitous. However, our main 
concern here is not with absolute values but with the overall evolutionary pattern as the GSL 
and the SCL are approached. For this purpose the analysis developed above is adequate. 

B3 QUASISTATIC EVOLUTIONARY SEQUENCES 

For any y0, we obtain the run of (z, B, C) against x by integrating equations (B5) and (B6). Any 
point on this integration path up to the GSL is a prospective core boundary, i.e. x-x2, z-z2, 
B-*B2, C—C2. From equation (B12) or (B13) we obtain corresponding values of (M2/M*); 
and from equation (Bll) corresponding values of (R*/R2). Finally, given Tu, rh, and me, 
equations (B1)-(B4) enable us to compute R2 = x2Rc, M2 =z2Mc, and hence R* and M*. By 
this means we can isolate solutions corresponding to a particular value of M*. 

We consider stars with M* = M0 and M* = 5M0, for which we adopt TH = 2.3 ± 0.2 x 107 K 
and 3.3 ± 0.2 x 107 K, respectively. We put m - 1.34mP- 2.22 x 10-24 gm and me - 2.00mP- 
3.33 x 10 "24 gm, corresponding to the composition A= 0 and Z = 0.02. 

By treating many different values of y0, we map out evolutionary paths corresponding to the 

two different total masses (M0 and 5M0), the two different envelope polytropic exponents (4/3 
and 5/3), and the two extremes of TH (i.e. 2.1 x 107 K and 2.5 x 107 K for M0; 3.1 x 107 K and 
3.5 x 107 K for 5M0). Without treating in detail the generation and transport of luminosity we 
cannot distinguish between a radiative envelope with rje-4/3 and a convective envelope with 
rje —5/3, but the real situation is unlikely to lie outside these limits. 

The resulting evolutionary paths are plotted on Figs B1-B3. Fig. B1 gives the run of the 

dimensionless core mass z2 against the dimensionless central density y0. Fig. B3 gives the run 
of B2 against C2. Fig. B2 gives the run of (m/kTu)( - dQ2/dM2) against core mass M2, where 
( - dQ2/dM2) is the rate of release of gravitational energy in the core, per unit increase in the 
mass of the core, as defined in equation (7.1), and the coefficient is a convenient way of 
rendering it dimensionless. The paths are terminated at the SCL, and the GSL is marked by a 
line of asterisks. From these figures we draw the following conclusions. 

Consider Fig. Bl. The quasistatic post-main sequence evolution of an M0 star is influenced 
by electron degeneracy; the quasistatic post-main sequence evolution of a 5MQ star is not. As a 

consequence of electron degeneracy, a low-mass quasistatic post-main sequence star with a 
radiative envelope need not encounter either the GSL or the SCL; here ‘low mass’ appears to 
mean M*-&MQ, but in view of the crudity of our analysis and the conservativeness of our 
gravothermal instability condition, this is very approximate. 
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534 A. P. Whitworth 

Figure Bl. The (z2> where z2 is the dimensionless core mass and )>0 is the dimensionless central 
density. The string of asterisks shows the GSL for isothermal cores. The full curves are evolutionary tracks for 
giants with isothermal cores, showing how the central density increases with increasing core mass and where the 
GSL is encountered. The tracks are terminated at the SCL. Tracks for giants with M* = M0 and 5M0 are 
labelled T and ‘5’, respectively. Those with convective envelopes are labelled ‘C, and those with radiative 
envelopes ‘R\ Those with a high estimated hydrogen-burning temperature are labelled ‘ + and those with a low 
one ‘ - ’. Both axes are logarithmic. 

Figure B2. Evolutionary tracks on the (h, M2)-plane, where h is the dimensionless rate of release of gravi- 
tational potential energy in the core per unit increase in core mass, and M2 is the core mass. Notation is as in 
Fig. Bl. The Ä-axis is logarithmic. 
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535 Why red giants are giant 

All quasistatically evolving stars reaching the SCL have already passed the GSL (although 
for 5M0 stars with radiative envelopes this cannot be resolved on Fig. Bl). Obviously any 
tightening of the gravothermal instability condition would strengthen this conclusion. 

Consider Fig. B2. As a quasistatically evolving star passes the GSL, the rate of release of 
gravitational potential energy increases by several orders of magnitude. Consequently, 
evolution beyond the GSL cannot be quasistatic. Note that only the 5M0 stars pass the GSL 
once and for all. Quasistatically evolving M0 stars with convective envelopes pass into gravo- 
thermally unstable states and then out again; only in the gravothermally unstable states is the 
rate of release of gravitational energy a rapidly rising function of the core mass. Quasistatically 
evolving M0 stars with radiative envelopes do not encounter the GSL. 

Figure B3. The GSL and evolutionary tracks on the (B, C )-plane for giants with isothermal cores. Notation is as 
in Fig. Bl. Note that for 5M0 giants the different tracks cannot be resolved because they are all effectively non- 
degenerate. 

Consider Fig. B3. A quasistatically evolving 5M0 star cannot have its core boundary 
anywhere near the slough or its image (even if the evolution is continued beyond the GSL right 
up to the SCL). 

A quasistatically evolving M0 star with a predominantly convective envelope might have its 
core boundary close to the slough. However, long before the star reaches this stage it passes the 
GSL; the core will then start to contract non-quasistatically and heat up, so that the solution 
path is displaced away from the slough towards larger 5-values. In other words, although 
quasistatic solutions exist for which the core boundary is close to the slough (and therefore a 
giant envelope configuration could be supported without a molecular weight change), these 
solutions do not arise in the natural course of stellar evolution. 

A quasistatically evolving M0 star with a predominantly radiative envelope might have its 
boundary near the image. However, since B2 and C2 are steadily increasing functions of M2, 
this can only be a transient phase. Once the core boundary falls well above the image on the 
(5, C)-plane, the base of the envelope falls well above the slough. We speculate in the main text 
that under these circumstances the solution path will extend to such large C-values that the star 
loses mass. 

In summary, when evolutionary considerations are taken into account (in particular gravo- 
thermal instability), the boundary of an isothermal quasistatic core (a) cannot fall in the slough, 
(b) can only fall in the image temporarily and for low-mass stars. 
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536 A. P. Whitworth 

Appendix C: Iben’s detailed models 

In Figs Cl and C2 we plot detailed stellar models due to Iben (1965,1966,1967), as tabulated 
in Novotny (1973). Each model is referred to by a number N, where 1-N is the designation of 

the corresponding table in Novotny. Fig. Cl gives solution paths on the (Z?, C)-plane. We 
present a chronological sequence of Iben’s models for M0 (Models 12-18) and 5M0 (Models 
23-31) in order to emphasize the differences between giants and less-evolved stars. Fig. C2 
gives the run of log10[M/A/*], yj, A , B, and C against log10[i?//?*], for the giant models only 
(Models 18 and 28 -31). Global parameters of the models are assembled in Table C. Further 
details of the models, including their evolutionary status, can be obtained from Novotny and 
the original Iben papers. 

Figs Cl and C2 must be compared with Figs 5 and 6, respectively. On the giant models note 
the positions of the tick marks (1-5), which indicate the locations of the subzone boundaries 
according to the objective criteria given in Fig. 1. Also keep in mind the three variations listed 
in Section 8.7, namely: 

(i) The core always has a hard kernel with rj-5/3, but this may be due to convection, in 
which case A — 2/5 (e.g. Models 28-31 ), or electron degeneracy in an isothermal core in which 
case A - 0 (e.g. Model 18). 

(ii) If helium is burning, the inner core contains a molecular weight change which is manifest 
as a zig-zag on the (B, C)-plane near (B, C)-(2,1), and as a sharp local minimum in the rj- and 
A-profiles. This has no effect on the overall structure of the star. It is noteworthy because it 
demonstrates that a molecular weight change on its own is not necessarily effective in 
producing a large local density drop. 

(iii) The giant envelope may have a deep outer convection zone (e.g. Models 18 and 29), a 
shallow one (e.g. Model 28), or none at all (e.g. Models 30 and 31), as revealed by the rj- and 
A-profiles. 

Comparing Figs 5 and Cl, we see that the critical part of the solution path, i.e. the loop 
taking in very large C-values, is common to all giant models, and unaffected by the variations 
listed above. In all cases the molecular weight change across the shell (between tick marks 2 
and 3) is instrumental in transporting the solution path to large C-values and thereby 
depositing the base of the envelope in the slough. 

Comparing Figs 6 and C2, we again see that the following features in the profiles are 
common to all giant models: the core has a hard-kernel/soft-coating structure {rj> 5/A between 
the centre and tick mark 1, r¡ < 5/4 between tick marks 1 and 2). B has a maximum in the soft 
coating (between tick marks 1 and 2). rj and A have minima in the shell (between tick marks 2 

and 3; this is the Eggleton-Faulkner effect). C has a maximum Cmax <11, and A - 1/4, Z? - 4 at 
the base of the envelope (near tick mark 3). The lower envelope (between tick marks 3 and 4) 
is bogged down in the slough and makes the dominant contribution to stretching the star (as 
evidenced by a very small d\n[M]/d]n[R]). B has a minimum in the middle envelope (between 
tick marks 4 and 5). C has a minimum in the upper envelope (beyond tick mark 5). A is much 
better behaved than rj. 

From the entries in Table C, we see that for giants both the overall extent of the star R* and 
the stretching parameter 2 = log10[po/p] (where p() is the central density and p = 3M*/4jiRI is 

Figure C2. Profiles for some detailed models due to Iben. The abscissa is log10[Æ//? *] and, reading from the top, 
the ordinate is C, then B, A, r¡, and lastly log1()[M/M*]. Each plot is labelled with the model number m the 
bottom lefthand comer; only giant models are represented in this figure. Numbered tick marks indicate the 
subzone boundaries. 
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538 A. P. Whitworth 

Figure Cl. Solution paths on the (B, C)-plane for some detailed models due to Iben. Each plot is labelled with 
the model number in the bottom righthand comer. Models 12-18 (on the lefthand side) are for M* = M0 and 
Models 23-31 (righthand side) are for M* = 5M0. Black dots represent the tabulated points. For the true giants 
(Models 18 and 28-31), numbered tick marks indicate the subzone boundaries as defined in Fig. 1. Arrows 
demonstrate what part of the displacement between successive tabulated points is attributable to the changing 
molecular weight. These arrows are concentrated between tick marks 2 and 3, and are most easily resolved for 
Models 18 and 31. 
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540 A. P. Whitworth 

Table c. Parameters of detailed models due to Iben (1965, 1966, 1967), as tabulated in Novotny (1973). 
Column 1 gives MJMQ, where M* is the star’s total mass. Column 2 gives the model number TV, where 7 - TV is 
the designation of the corresponding table in Novotny. Columns 3-12 give (respectively) r = log10[/*/yr], where 
/* is the star’s age; M2IM*, where M2 is the core mass; R*/Re, where R* is the star’s radius; T*/K, where T* is 
the effective surface temperature; L*/L0, where L* is the star’s total luminosity; LG/L*, where LG is the rate of 
release of gravitational potential energy; </> = \ognhP()l& cm-3], where p() is the central density; the stretching 
parameter 2 = log1()[4jri?JyO0/3M*]; the mass-weighted mean polytropic exponent fj\ and the maximum C-value 
near the base of the envelope Cmax (for giants only). 

M*/Mg TV m2/m* R*!R0 t*/k u/L, Lq/L) Z ri ct 

1 12 3.630 
1 13 6.950 
1 14 7.699 
1 15 9.831 
1 16 9.996 
1 17 10.017 
1 18 10.037 

  8.095 3967 
  1.261 4297 
  0.865 5740 
0.003 1.076 6034 
0.100 1.626 5783 
0.135 2.350 4868 
0.199 6.178 4276 

14.51 1.0000 -1.736 
0.485 0.9983 0.959 
0.727 0.0143 1.930 
1.373 -0.0007 2.477 
2.644 -0.0024 3.443 
2.771 -0.0088 4.296 

11.41 0.0026 4.960 

0.840 1.678   
1.111 1.443   
1.600 1.383   
2.428 1.228   
3.931 1.223 1.011 
5.260 1.322 2.931 
7.185 1.536 17.13 

5 
5 
5 
5 
5 
5 
5 
5 
5 

23 2.933 
24 5.301 
25 6.394 
26 7.823 
27 7.843 
28 7.847 
29 7.850 
30 7.931 
31 7.944 

  35.23 
  6.450 
  2.422 
0.101 4.331 
0.116 5.819 
0.123 43.61 
0.128 73.80 
0.206 20.94 
0.219 44.14 

4261 365.9 
11190 583.1 
18588 626.0 
15664 1009.4 
14395 1299.3 
4502 698.5 
3988 1231.5 
8294 1854.6 
5775 1936.7 

1.0000 
0.9998 

-0.0035 
-0.0010 
-0.0350 
-0.3635 
-0.0040 
0.0004 
0.0679 

-2.101 
0.359 
1.319 
1.489 
3.116 
3.907 
4.103 
3.823 
4.334 

0.893 
1.940 
1.622 
2.550 
4.562 
7.977 
8.860 
6.938 
8.420 

1.597 
1.318 
1.449 
1.303 
1.282 
1.359 
1.542 
1.353 
1.302 

0.743 
1.427 
7.320 

14.18 
8.917 

12.02 

the mean density) are well correlated with one another and with Cmax. Since pure polytropes 
are only infinite for rj<6/5, one might anticipate a correlation between R* or 2 and the (mass- 
weighted) mean poly tropic exponent rj for the star as a whole, with the more extended 
configurations having lower rj. However, the correlation, such as it is, is in the opposite sense. 
For instance, the two most extended giants (Models 18 and 29) have the largest ^ ( - 1.5). In 

part this is due to the deep convection zones in their outer envelopes, but even if the outer 
convection zone is excluded from the mean, these models still have large rj ( -1.4). Indeed, 
even the lower envelopes of giants where most of the stretching actually occurs have quite large 
rj ( —1.32). 

Appendix D: Previous work 

In this appendix we consider previous explanations of giantness due to Hopper & Weigert 
(1973; hereafter HW), Eggleton & Faulkner (1981; EF), Iben & Renzini (1984; IR), Yahil & 
van den Horn (1985; YvdH), and Applegate (1988; A). We explain why they are all either 
incomplete or ill-considered. 

D1 THE ROLE OF A STRONG GRAVITATIONAL FIELD IN THE HYDROGEN-BURNING REGION 

HW conclude that the primary cause of giantness is the strong gravitational field in the 
hydrogen-burning region. They base this conclusion on models of chemically homogeneous 
stars (hereafter HW models), in which hydrogen burns at the centre and the gravitational field 
is doctored so as to be finite at the centre: 

*r = R 
p(r)4jtr2dr. 

r = 0 

HW choose M0 and R0 so that g(0) and ‘^(0)’ = - GM0/R0 match the corresponding quantities 
at the inner edge of the hydrogen-burning shell in undoctored models of giants. What HW find 
is that as they increase M0 their models become much more extended and so evolve away 

g(R)=- 
GM{R) 

(R+Rnf 
M(R) =M0 + 
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Why red giants are giant 541 

from the main sequence to become quasi-giants. Note that the detailed evolution of the HW 
models on the HR Diagram is not very significant in the present context. Once a star swells up 
to giant proportions (and unless its luminosity is very large), its evolution on the HR Diagram is 
controlled by its encountering the Hayashi Limit and the consequent adjustments in its upper 
envelope. All HW have shown is that HW models swell up with increasing M0. Weiss (1983) 
has recently performed similar calculations with much the same conclusions. 

What HW have done is to find a prescription for doctoring a central hydrogen-burning 
model so that it can support a giant envelope configuration. It remains the case that giant 
envelope configurations are a consequence of the opacity law in the lower envelope, and are 
dependent on convective stability in the lower envelope. In undoctored models this convec- 
tive stability is engendered not only by the strong gravitational field due to the dense core, but 
also by the displacement of luminosity generation from the centre of the star. In the HW 
models, central luminosity generation aggravates the flux bottleneck problem, but this is 
conveniently compensated by the fact that the luminosity is underestimated, typically by a 
factor of 3 or 4. 

It also remains the case that in undoctored models the critical core structure based on 
convection or electron degeneracy, and the abrupt molecular weight change across the shell, 
both play crucial roles in setting up giant envelope configurations. The strong gravitational 
field supplied by the critical core structure is instrumental in this regard, but the requirements 
of the critical core structure go beyond just supplying a strong gravitational field in the lower 
envelope, as we have emphasized in Section 5.6 [i.e. equations (5.9)-(5.11)]. 

D2 THE ROLE OF REGIONS OF LOW POLYTROPIC EXPONENT 

EF propose that the reason for giantness may have to do with the behaviour of polytropes, and 
in particular with the suppression of r¡ below the critical value 6/5 at the inner edge of the shell. 
We refer to this suppression of rj below 6/5 as the EF effect, and to the region in which it 
occurs as the EF region. The EF effect is manifest on the ^-profiles of all the giants in Fig. C2 
as a sharp minimum near tick mark 2. [In helium-burning giants (e.g. Models 30 and 31 ) there is 
a second similar sharp minimum associated with the boundary of the helium-burning region.] 
However, from Fig. C2 it is evident that the region where a giant is most stretched is its lower 

envelope, i.e. the extensive region above the shell where the solution path is stuck in the slough 
with 0.22 < A < 0.27 and 1.28 <?/ < 1.37 (tick marks 3 and 4), rather than the much smaller EF 

region where A<1/6 and rj<6/5. In Model 29, for instance, |A log10[yo]| -1.5 and 
A log10[R]-0.3 in the EF region, whereas | A log10[p]| - 5 and A log10[R]- 1.8 in the lower 
envelope. Giantness cannot be explained simply in terms of lowering the polytropic exponent. 

The EF effect actually plays a much more crucial role than the one which EF identify. The 
same circumstances which suppress rj at the inner edge of the shell also suppress A, and 
thereby ensure that as A subsequently rises through the shell it inevitably runs into the range 
0.22 < A < 0.27 corresponding to the slough. 

Taking EF’s lettered points one by one, we make the following observations: 

(a) The development of a convection zone in the outer envelope is an indication that the star 
has swollen so much that it has run into the Hayashi Limit, i.e. it is a consequence (rather than a 
cause) of the star’s swelling. On the basis of the arguments presented following equation (B13), 
one might argue that the development of convection in the upper envelope promotes giant- 
hood by setting an upper limit on rj; i.e. that stars pressed against the Hayashi Limit would tend 
to be less extended if the envelope gas had a higher adiabatic exponent. However, it is difficult 
to conceive of any physical effect which would increase the adiabatic exponent above 5/3. 
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542 A. P. Whitworth 

(b) Electron degeneracy in the cores of low-mass stars does help to make them giant, by 
increasing rj towards 5/3 at their centres and hence producing the critical core structure. 

(c) The Virial Theorem is obeyed by all stars in hydrostatic balance, so it cannot be a cause 
of giantness. 

(d) Giantness is not due to the Schönberg-Chandrasekhar Limit but rather to the GSL. 
High-mass stars only become giants when their cores have passed the GSL, undergone non- 
quasistatic contraction, heated up and become convective or close to convective with 77 > 5/4 
in their inner parts, thereby adopting the critical structure. 

(e) The molecular weight change plays a vital role in transporting the solution path from the 
image to the slough, without a molecular weight change the slough would be inaccessible and 
almost-singular solutions could not be sustained (i.e. giant envelope configurations could not 
be set up). The molecular weight change becomes increasingly effective as the giant evolves 
and C2 increases, because it has a multiplicative effect on C (i.e. C3 - 2C2) and so the larger C2 

is, the larger the increase in C. 
(f) The change from central- to shell-burning is important, first because it makes the 

molecular weight gradient m' steeper by reducing A ln[M] across the burning region, secondly 
because it relieves the flux bottleneck, thereby promoting convective stability in the lower 
envelope, and thirdly because as the shell eats its way out through the star and the core grows 
in mass, the core boundary advances towards and ever deeper into the image and the base of 
the envelope therefore falls ever deeper into the slough. 

(f) In pure helium stars the molecular weight change and hence the changes in B and C are 
small, /-1.28, so that the base of the envelope would only fall in the slough if the disposition at 
the boundary of the helium-exhausted core were B2~ 5 and C2^8. This disposition is 
extremely unlikely in view of the arguments presented in Section 7; and it would not be 
thermostatically locked because the ratio of helium- and carbon-burning temperatures gives 
#2 - 2 Tc/THe - 8 (see Section 7.9). 

D3 THE ROLE OF LUMINOSITY IN INFLATING GIANTS 

IR propose that the expansion of a giant’s envelope is due to the increase in the luminosity 
generated in the shell. They argue that given the temperature and density dependence of the 
opacity law, the envelope is obliged to swell in order to remain in radiative equilibrium. 
However, this argument presupposes without any explicit justification that when the core 
contracts the shell luminosity increases. The luminosity of the shell depends on its density, 
temperature, composition, and mass, and it cannot be presumed a priori that these quantities 
will vary in such a way as to increase the luminosity. In effect, IR have put the cart before the 
horse. What they have actually demonstrated is that as a giant swells the lower envelope 
becomes more leaky, and this in turn tends to push up the luminosity (although there are other 
factors influencing the luminosity). 

This is not a subtle distinction; it is fundamental. The essence of the problem is to identify in 
the known physics of giants a clear hierarchy of cause and effect. In this hierarchy giants are 
giant for the reasons outlined in the main text. Giants have high luminosities because being 
extended they have a large external radiating surface and are very diffuse and leaky; because 
the opacity law in the photosphere places a stringent lower limit on the surface temperature; 
and because being leaky they have a rapid turnover of thermal energy. By rather modest 
adjustments, particularly in its temperature, the shell can modify its luminosity to meet the 
turnover of internal thermal energy. 

We can justify these assertions from two angles. First, from a purely theoretical point of 
view, we have been able to explain why giants are giant almost without mentioning the detailed 
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Why red giants are giant 543 

physics of nuclear energy release. Mathematically this is because there is an extreme imbalance 
in the interdependence between on the one hand the variables (A,B,C) which we have investi- 
gated in detail, and on the other hand L' which we have largely ignored (except to mention its 
role in increasing A between the core boundary in the image and the base of the envelope in 
the slough). We have not demonstrated this imbalance, but it is trivial to do so. Ultimately it 
derives from the extreme temperature sensitivity of the CN-cycle hydrogen-burning rate. 

Secondly, and this is perhaps the more telling argument, evolutionary sequences computed 
by Iben and others predict that when a star first starts to swell its luminosity increases very 
little, and may even fall. The luminosity only increases significantly when the star runs into the 
Hay ashi Limit. 

Äs explanation of giantness is also based on the notion that the expansion is driven by the 
increasing luminosity, and so it too must be discarded. Moreover, whilst A recognizes the 
importance of the singular solutions for Kramers opacity, he identifies their role incorrectly. 
These solutions do not describe the bulk of the swelling envelope (as A suggests) but only the 
growing density drop immediately above the base of the envelope. This is an important point: a 
giant envelope is not extended because it goes on and on like a soft polytrope, but because it 
has a precipitous density drop at its base. Furthermore, A gives no indication of what happens 
when (as is often the case) Thomson opacity dominates in the lower envelope or there is a 
mixture of Kramers and Thomson opacity. Finally, he fails to recognize that the singular 
solutions can be sustained only if a very particular disposition obtains at the base of the enve- 
lope, and hence that there are other critical physical effects at work in achieving this 
disposition. 

D4 THE RELEVANCE OF BIFURCATING M-SOLUTIONS 

YvdH point out that the stretched region of a giant manifests itself as a loop on the ( t/, V)- 
plane, and they relate this to the loops made by polytropic M-solutions. In particular they draw 
attention to the cut on the (U, V)-plane which (for a given polytropic exponent r] <4/3) 
separates solutions which head straight off for the asymptote (£/, K)-*(0, °o ) from solutions 
which first make another loop around the equilibrium point. They suggest that what 

distinguishes giants from stars close to the main sequence is whether following the molecular 
weight change across the shell, the solution is above (main sequence) or below (giant) this cut 
on the ( U, V )-plane. However, there are three inconsistencies in this suggestion. 

First, there is no evidence for such a bifurcation. Rather, the loop appears soon after the star 
leaves the main sequence and as the evolution proceeds simply becomes larger and takes in 
smaller values of U (i.e. larger values of C=U~l). Moreover, during the transition from the 
main sequence to the Hayashi Limit, the F-value at the outer edge of the shell actually 

increases monotonically, contrary to what YvdH predict. 
Secondly, if the molecular weight change is to be treated as discontinuous and invoked to 

produce a finite jump from one polytropic solution to another, then the polytropic exponent 
?7eff controlling the solutions on either side of this jump must be defined so as not to include the 
effects of the molecular weight gradient, i.e. ?/eff = ( 1 - A )“ ^ Now the value of 77eff at the base of 
the envelope is typically -1.32 and so the cut on the (£/, F)-plane is a very short one con- 
necting a bifurcation point at ( Ü7, F ) - (0,3.9) with an equilibrium point at ( £7, F ) - (0.1,3.8). 
In early post-main sequence stars which are not giant, the molecular weight change does not 
deposit the base of the envelope above this cut as YvdH would require, but well below and to 
the right of it, i.e. F3 < 3.8 and £73 > 0.1, and in giants, although the molecular weight change 
does deposit the base of the envelope just below the cut, the significant thing about this is that 
being just below the cut the base of the envelope is right in the slough. 
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544 A. P. Whitworth 

Thirdly, the loops in Iben’s giant models contain 65-75 per cent of the total stellar mass, 
and of the remainder most is in the core. Thus if a post-main sequence star were to make a 
sudden switch from a loopless solution (i.e. one which following the molecular weight change 
was above the cut and so had no loop) to a looped solution (i.e. one which following the 
molecular weight change was below the cut etc.), then it would be the looped solution which 
would have the larger fraction of its mass outside the molecular weight change (i.e. outside the 
hydrogen-burning shell), and this would imply that it was less evolved. 

Finally it should be remarked that YvdH offer little by way of physical justification for the 
polytropic segments from which their model is assembled. 
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