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PREFACE 

The modern era of astronomy and astrophysics is primarily the era of 

extragalactic astronomy, which literally every year brings a lot of amazing 

discoveries in the world of galaxies and a lot of surprises in the large-scale 

structure and evolution of the Universe. For today's extragalactic astronomy and 

cosmology, where there is a clear uncertainty in the choice of one or another model 

of the Universe, it is extremely important to study the early stages of the evolution 

of galaxies located at distances of billions of light-years. Today, researchers of the 

Universe, using large telescopes and powerful computers, are moving to ever 

greater distances in search of precisely the early stages of the evolution of its 

building blocks – galaxies. Now the states of cold and hot proto-galaxies, 

collapsars in their nuclei, active phases of the evolution of galaxies, in particular, 

quasars, radio galaxies, etc. – all this is today's reality. All this is a very, very long 

chain of unique states with many branches and parallels. Today we clearly observe 

many traces of the early global unsteadiness of galaxies. For example, the bends of 

the optical and gas disks of S and separate SO galaxies, the regularity of the 

density profile of E - galaxies, well explained by the mechanism of collisionless 

relaxation, the presence of powerful corona, anomalous manifestations in the form 

of ring–shaped (with or without a central core) and -shaped shapes, the variable 

activity of quasars and radio galaxies etc. All these phenomena, despite their 

different nature, are the result of global non-stationary processes with significant 

nonlinearity. However, until now, galactic physics theorists have mainly solved 

evolutionary equations by linearizing them near the equilibrium state, that is, 

considering non-stationarity as a small correction to the stationary model. They 

intensively studied the above phenomena using numerical experiments on 

powerful computers. That is why there is a need to create an attempt at an 

analytical theory of some of these phenomena in order to identify patterns and 

identify nonlinear effects that cannot be detected in any way by direct numerical 

modeling. 

At working on the design of the text one of the authors (S.N.) was helped by 

PhD students A. Omonov and S. Turaev. We express our gratitude to professor V. 

A. Antonov for the discussion of some chapters of the book. 

The authors would be grateful to readers for comments and suggestions that will be 

useful in the next edition of the book. 

Authors 
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Introduction 

In recent decades, the problems of the unsteady stage of the evolution of 

collisionless self-gravitating systems and the formation of a large-scale structure of 

the Universe have been very intensively solved using numerical experiments on 

computers (see, for example, [1-4]), setting at the initial moment a different degree 

of non-stationarity. However, during numerical experiments, fundamental 

questions often remain unnoticed and unclear, for example: what nonlinear effects 

and phenomena “worked,” whether instability occurred, what is the dependence of 

evolution on the physical parameters of the nonstationary system and on the degree 

of nonlinearity, and others. It is clear that solving of such issues is impossible 

without an analytical approach to such essentially non-linear problems. Without 

building the foundations of a nonlinear theory, a numerical experiment by itself 

will not be able to lead to the required success. The author of the book, without 

denying the great role of numerical and experimental research, believes that each 

of these problems should be solved in the interaction of both approaches. 

In this book, we are primarily interested in the following questions: is it 

possible to construct analytically solvable models of collapsing galaxies; how to 

solve the problem of studying the stability of such nonlinear nonstationary 

configurations in order to identify new types of instability during collapse, and not 

under conditions close to it; what are the initial conditions necessary at the moment 

of the collapse to form different types of galaxies, etc. The direct construction of 

the models we need for one or another nonequilibrium state by solving the system 

of Boltzmann-Jeans and Poisson differential equations is complicated primarily by 

the mathematical complexity of the problem, where it is necessary to take into 

account both instability and nonlinearity. From the physical point of view, the 

problem is complicated by the real heterogeneity of the observed self-gravitating 

systems, the need to keep in mind the rotation, the dispersion of the velocities of 

the "particles" and the specific setting of the degree of non-uniformity. It should be 

noted that in the analytical formulation of the problem, it is still very difficult to 

create nonlinear nonequilibrium models of mixed systems of stars and gas (and yet 

we managed to construct analytically stationary mixed models [7]).  

For a comprehensive theoretical study of the problems of the origin of large-

scale structures, to clarify the possible stages of the evolution of a non-stationary 

system, to identify the corresponding types of instabilities under the background of 

a non-equilibrium state, we need exactly solvable nonlinear models of various 

states that are sufficiently far from equilibrium. Therefore, without fully 

considering the nonstationary evolution of a nonlinear nonequilibrium system, we 

identify typical, realizable states and, accordingly, build exactly solvable nonlinear 
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models of them in the phase description. At the early stage of the evolution of 

galaxies, one of these states is the collapsing, gravitationally compressed or 

nonlinear pulsating state of the system as a whole. We are talking about the states 

of non-dissipative and collisionless collapses. 

Note the following two important points: 

1) If we take only a model of continuous collapse as the initial state, then 

without any expansion, its instability is only power-law in nature, manifests itself 

weakly and occurs very slowly [6]. Considering this fact and also the fact that in 

reality the process of collapse of proto-galaxies containing dark matter or young 

stars and proto-stars is still forced to change to some kind of expansion (even if it 

is weak and for a short time), it is possible to come to the conclusion that it is 

necessary to consider in the initial state some pulsating models. 

2) Let this pulsating model be described by the phase density function 

 (𝑟
→
,  𝑣

→
,  t, 𝜆) , where r is the radius vector, v  is the velocity vector, t is the time, 

 is the nominal amplitude of the pulsation, which characterizes the physical state 

at the moment of the collapse. Note that this pulsating state cannot actually serve 

as an exact model of a collapsing galaxy, and a system with a distribution function 

0  , where   is some evolving small perturbation, should be considered as 

a real evolutionary model. In this book, a number of functions 0 are constructed 

and certain classes of perturbations  are studied, which are responsible for the 

formation of specific large-scale and small-scale structural formations under the 

background of a nonlinear nonequilibrium model. 

We also discuss the classical problem of logarithmic divergence arising 

during the calculations of the diffusion coefficients and give the solution of the 

problem based on the factor that effectively cuts of collective influence of distant 

field stars. 

This book represents only the first step towards solving the problem of 

analytical modeling of the early stage of the evolution of galaxies and spherical 

clusters, since only one of the possible research methods is indicated for the first 

time and the first theoretical results are obtained analytically. 

 

 

 

 

 

 


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Chapter I.  CONSTRUCTION OF NONLINEAR NONEQUILIBRIUM 

PHASE MODELS 

§1. General statement of the problem 

The following statement of the problem is common to all the models 

constructed in the Chapters I-V, because each time we deal with the phase 

density function of the system as the main function )t,v,r(



 . 

It has the meaning of the number of particles at time t- in the unit element of 

the volume of phase space in the vicinity of the point )v,r(



 and satisfies the 

system of Boltzmann-Poisson equations 

0

vrr

v
t





































,                                      (1.1) 

 

G4 ,                                                 (1.2) 

where  is the Laplace operator, 



 dv  is the density of the system in ordinary 

space, and the masses of the particles are considered to be the same and equal to 

one. 

If, when constructing purely stationary models, it is sufficient to find the 

corresponding integrals of the motion of equation (1.1), in the case of this 

0/  t  approach in direct application is not convenient. For example, the 

difficulty lies in the fact that the integral of the particle's energy 



 2/
2

vE  is not 

conserved if the gravitational potential also depends on time. Really, 

 

 td/zvdzvtd/yvdyvtd/xvdxvtd/Ed  

.0t/)z/zvy/yvx/xvt/(       (1.3) 

But, unlike (1,3), the conservation condition holds for the angular 

momentum vector of a particle










vrL , if the nonstationary system is 

spherically symmetric. For a rotationally symmetric system, only the value is 

preserved xvyyvxzL  , since in the value field )t,z,
2/1

)
2

y
2

x((   

                               .0x/yy/xtd/zdL                                      (1.4) 

Below we do not use the methods of motion integrals to construct nonlinear 

phase models and solve this problem in a different way. 
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As for global invariants, for an arbitrary system, regardless of its 

nonstationarity and symmetry, the complete energy of the system 

 

  zdydxd)
2

v(5.0                                              (1.5) 

and values 

 




,rdxL       


,rdyL       



,rdzL                                    (1.6) 

representing the components of the rotational moment of the system, remain 

constant. Obviously, the total mass of the system is also conserved. Note that, 

when considering nonstationary processes and studying the stability of 

nonequilibrium states, we further assume that the external source of oscillations is 

“switched off,” i.e., in other words, we are interested in fundamentally nonlinear 

models of isolated systems. 

Considering that at the initial stages of the development of gravitating 

systems, a special place is occupied by nonlinear pulsations, which inevitably arise 

and determine the beginning of the path of evolution (see Introduction), among the 

possible non-stationary models, we must be able to describe, first of all, pulsating 

states and build the corresponding exact models. And this question can be solved, 

based, in particular, on the available stationary models, making them pulsate. This 

idea comes to mind very simply, but, unfortunately, not all known stationary 

models lend themselves to this approach, especially if we want to achieve 

something in theoretical terms. 

Obviously, the analysis must begin with spatially homogeneous models with 

finite dimensions, for which the corresponding distribution functions in the 

stationary state are known 0 . There are few such models in the stationary case, 

but nevertheless, when generalizing them to the non-stationary variant and 

identifying the conditions of its instability, as will be seen from the following, a 

very wide front of work opens up with interesting prospects. 

Note that the corresponding objects observed now, if we do not take into 

account the model of the Universe itself, probably do not have a very large 

magnitude of the pulsation amplitude.. But it is not known what was at an early 

stage of their evolution. Now, after we have performed an extensive analysis of the 

process of formation of collapsing galaxies, we can confidently assert that, in 

principle, for individual objects, the value of this parameter can take on a fairly 

large value (see Chapter 2). Therefore, from the point of view of future 

applications in such problems, it is desirable not to put any restrictions on ʎ , but to 

consider it an arbitrary value. And this, in turn, greatly complicates a rigorous 

theoretical analysis. But at any pulsation amplitude, nonlinear oscillations can be 

studied by passing to Lagrangian coordinates, which has justified itself long ago in 

other problems [9–11]. 

In the method we use, in each case, the coordinates and velocities of an arbitrary 

particle of the perturbed system are represented in vector form:  
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,
0

v)t(
0

r)t(r











                                                   (1.7) 

                                       ,
0

)(
.

0
)(

. 






vtrtv                                                       (1.8) 

where 


0
r  and 



0
v  are, respectively, the radius vector and the velocity vector in the 

main stationary state, (t)  and (t) are unknown functions determined from the 

equation of motion, and the points above them mean the time derivative. 

The vectors 


0
r  and 



0
v can be expressed inversely in terms of 



r and 


v  . In 

this case, it is necessary to take into account the fact that the Jacobian of the 

transformation ,)
..

( k   where the k-dimension of the model does not depend 

on time according to the Liouville theorem. In what follows, we will consider it 

equal to unity, otherwise subjecting the stationary model used for comparison to 

some similarity transformation. 

Therefore, at 

1
..

                                                         (1.9) 

 

from (1.7) and (1.8) we obtain 

 ,v)t(r)t(

.

0
r











                                                 (1.10) 

.v)t(r)t(

.

0
v











                                              (1.11) 

Now let's start building specific models separately. 

 

 

 

§2. Nonlinearly pulsating generalizations of 

Einstein's equilibrium model 

 

 Let us take as a basis the stationary model of Einstein's sphere [12-14] with 

radius R0, where all particles move only in circular orbits. Obviously, they are kept 

in circular orbits if the exact equality of gravitational attraction and centrifugal 

force is satisfied. In this case , the value of the velocity vector 


0
v in the equilibrium 

state is equal to 

,0r00v      ,
2/1

]0G)3/4[(0                                (1.12) 

 

where 0
 is the angular velocity of rotation of the star, 0

 is the density. 

To build a nonlinear model, it is necessary to have a configuration that is 

completely stable in the linear approximation. Therefore, we consider the model in 
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the form of a homogeneous Einstein ball, since in an inhomogeneous system, 

under radial perturbations, generally speaking, intersections of layers can occur, 

which leads to instability already in the case of linear oscillation amplitude. 

Einstein's stationary model is extremely anisotropic in terms of velocities, 

since in it the radial component of the energy of motion is strictly zero. This model 

is stable with respect to small asymmetric perturbations [13]. But it is clear that 

when the pecular velocities are included in it, various instabilities may occur. To 

find out at what values this is possible, we first need to build a non-linearly 

pulsating model. 

Let the states of pulsation and stationarity depend on each other according to 

(1.7) and (1.8). Since there are no radial motions in the Einstein ball in the initial 

state, 0
0

v
0

r 







 then squaring (1.7), taking into account (1.12), we easily find  

,0r)t(r       .
2/1

)
22

0
2

()t(                                    (1.13) 

 

The latter means that we really have a stretching of the ball with the 

preservation of similarity at time t by a factor of П. 

In this case, the density changes, )(t  obviously, proportionally 3 , more 

precisely 

.
2/3

)
22

0
2

(0)t(


                                                  (1.14) 

 

Therefore, from the Poisson equation it is easy to determine the potential in the 

state of pulsation. Then the characteristic equations, compiled according to the 

Boltzmann equation, give 

.
2/3

)
22

0
2

/(r
2
0

..

r  







                                 (1.15) 

    Substituting expression (1.7) here, we obtain equations for two unknown 

functions  and :                                 

 

,3)](/[2
0

..
t    .3)](/[2

0

..
t                                (1.16) 

 

As expected, the integral of motion of these equations is the expression (1.9) 

Let's get the equation for the function )(t . To do this, having differentiated2  

from (1.13) once and squaring 2)
..

(2
0

  , we add and subtract from the result. 

Then we get 

.2)
2.

2
0

2.
(2

0

2.
2                                           (1.17) 

 

On the other hand, equations (1.16) have the energy integral 
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,)(/2
0

2/)
2.

2
0

2.
( Et                                           (1.18) 

 

which in combination with (1.17) gives 

.E]
12

)2/1[(
2
0

2.

)2/1( 





                                      (1.19) 

 

Obviously, in (1.19) the constant E<0, otherwise the function )(t  will grow 

with time, which is unacceptable for us. 

Differentiating (1.19) with respect to t once, we find the corresponding 

differential equation for )(t  in the form 

 

.0)32(2
0

..
                                   (1.20) 

 

 To find the pulsation law for a nonlinear model, it is necessary to solve 

(1.20). To this end, we first make a change of variable, more precisely, we move 

from t  to  : 




t
dtq

0
,1                                             (1.21) 

where q- is the proportionality factor associated with the energy integral E

)
2/1

)E2(q(  . 

Then instead of (1.20) we have 

 

.2/2
0

)()(" q                                        (1.22) 

 

Here and below, the prime denotes differentiation with respect to  (we will 

keep the dot as the sign of differentiation with respect to t). From (1.22), taking 

into account (1.19), we obtain the following solution 

 

),cos1)(
2

q/
2
0()(         

2/1
)]

2
0/

2
q(1[                    (1.23) 

 

which satisfies the condition t=0, 
.
 =0 (which corresponds to the moment of 

greatest expansion). Thus, we have found the expansion coefficient П of the 

Einstein ball during its pulsation. The value   plays the role of the pulsation 

amplitude and takes values in the interval [0,1]. 

In the system of differential equations (1.16), we also pass from t to  and 

solve it according to the usual rules for the functions  and , taking into account 

(1.23), which leads us to the expressions:  

 

),cos(12csin11c)(                                          (1.24) 
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)cos(22csin21c)(                                          (1.25) 

 

with unknown constants ijc . Note that we can always consider =0 when 0, 

since we have one trivial degree of freedom associated with the possibility of 

numbering particles differently. Then from (1.25) it follows that 
22
c 0. The 

remaining three coefficients can be easily found from the connection between  

and  in relation (1.13), substituting (1.23) - (1.25) there.  

We finally get that 

 

),cos()
2

q/
2
0()(      .sin

1
q)( 


                               (1.26) 

 

 Further, to construct a nonlinearly pulsating model, we must know the radial 

and transversal components of the star's velocity in a perturbed state. 

According to (1.7) - (1.9), we have .0v0rvr















 This implies, what 

2
0r00v0rrv   or  

.bv)(
2

/r0)(/0r0v                                      (1.27) 

Since rrv
2
0r)

.
2
0

.

(vr 







 , taking into account (1.13) and (1.26) we 

have 

 

.avr
2

)cos1(sin
2/3

)
2

1(0rv 





                         (1.28) 

 

Now we can write an expression for the phase density of a nonlinearly 

pulsating version of the Einstein model in the form 

 

),r0R()bvv()avrv(
1

)]t(bv2)[t()t,v,rv,r( 


              (1.29) 

 

where  is Heaviside function,  is the Delta Dirac function. 

 The non-stationary model (1.29) pulsates with the period 

 

.2/3)21()
0

/2(
2

0
)(1)(  


 dqP                           (1.30) 

 

In this case, the individual particles of the system describe, obviously, 

elliptical orbits with a focus at the center of the system (Fig. 1.1). It is easy to find 

out what angle the star has time to go through in azimuth  during the change of  

from 0 to  2. To do this, we integrate the equation 

 

)(
.

trv 


                                             (1.31) 
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having previously passed from t to . We get 2, i.e. all stellar orbits in model 

(1.29) are closed. It is also easy to find the velocity dispersion components of the 

nonlinear model: 0
2
r  , .2

bv
2
  

Finally, we calculate the components of the kinetic energy of the pulsating 

motion 

 

,
2
rv)2/M(rT         ,2

v)2/M(T                                   (1.32) 

 

where M is the total mass of the system, and the overline means averaging over the 

phase space. In particular, 

 

.2)cos1(2)sin
0

()5/3(212 


 qRvdrdrvMrv               (1.33) 

 

In a similar way, we calculate such a quantity from the transversal 

component 

 

.
2

)cos1(
2

)q0R()
2

1()5/3(
2

v


                                (1.34) 

 

In what follows, when comparing the results of the analysis of the stability 

of individual nonlinear models, the values of the ratio of the values averaged over 

the pulsation period in (1.32) will be of interest, i.e. an anisotropy parameter 

 

.
2/1

)
2

1(]
2/1

)
2

1(1[2T/rT2)(


                        (1.35) 

 

At the same time, the averages over the components themselves are equal 

 

,
2/1

)
2

1(
2

q
2
0MR)10/3(

2

0
dT)cos1(

1
)2(T 


  





               (1.36) 

 

].
2/1

)
2

1(1[
2

q
2
0MR)10/3(rT                                   (1.37) 

 

The sum of the last expressions exactly satisfies the virial theorem, which is 

already valid for the energy components averaged over the period (see (1.56) and 

(1.57)). At 745.03/5    parameter 1 and we have an average velocity 

isotropic nonlinear model. It is important to note that the pulsating model (1.29) 

can be made rotating by analogy with the stationary model [15]. Despite the fact 

that the phenomenon of rotation in spherical clusters of stars and galaxies is still 

considered debatable, the study of the problem of large-scale structure and the 

early stage of evolution requires non-equilibrium phase models of rotating 

subsystems with nonlinear pulsations. 
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Fig. 1.1. Orbits of particles in the pulsating model (1.29). 

The center of the system coincides with one of the foci of 

the ellipse. Dashed lines are circular orbits in equilibrium. 
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Expression (1.29) can be generalized to the case of solid rotation [16, 17] 

  

𝛹𝑟𝑜𝑡 = [1 + 𝜇(𝑥𝑣𝑦 − 𝑦𝑣𝑥)]𝛹  ,                       (1.38) 

 

where  𝜇  plays the role of the angular rotation velocity of the disk, and  1 , 

(when >1 (1.38) is physically unacceptable). Note that although the Einstein's 

equilibrium model is very unnatural, the pulsating rotating model (1.38) 

constructed by us on its basis is quite interesting and useful. In (1.38) 

                          𝐿𝑧 = 𝑥𝑣𝑦 − 𝑦𝑣𝑥 = 𝑣𝜙 ⋅ (𝑥2 + 𝑦2)1/2                                      

(1.39) 

is  the integral of motion. Obviously 

                                𝐿𝑧 = 𝑟 ⋅ 𝑣⊥ ⋅ 𝑠𝑖𝑛 𝜃 ⋅ 𝑠𝑖𝑛 𝜂,                                                   
(1.40) 

 

where ,r/
2/1

)
2

y
2

x(sin   ),v/v(arctg    v  and v are the azimuth and 

meridional components v .  

 The question arises: is it of interest to know the Ostriker-Peebles parameter 

[18] U/rotTОПt   to determine the instability criterion for the nonstationary 

model (1.38). The answer is no and here's why. In this case, the potential energy of  

the 

pulsating model (1.38) 

)],t(R5/[
2

GM3
0

ds
2/3

)s
2

R()10/
2

GM3(U 



                     (1.41) 

and the kinetic energy of rotation of the system 

,5/
2

R
2~M2/J

2~
rotT        .0R)(R                                    (1.42) 

Therefore, for the model (1.38) 

)].cos1(12/[)
2

1(
2

ОПt                                       (1.43) 

 

It is easy to see that during the pulsation period this parameter takes values 

from 12/)1(2     to 12/)1(2    and the Ostriker-Peebles criterion is not 

satisfied for the non-stationary model, since near the moment of greatest 

compression 14.0ОПt  , if 1)2/68.1(    . 

Thus, one can qualitatively establish the region of instability of model (1.38) 

with respect to ellipsoidal perturbations. In fact, this is very conditional and 

requires specific analysis (see Chapter 2). Note that although the value (1.43) 

averaged over the oscillation period satisfies the Ostriker-Peebles stability criterion 

 

,14.012/)21(2  
ОП
t  
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but the pulsating model at a certain value of , as will be seen below, is necessarily 

unstable. 

Obviously, the result of the nonlinear evolution of a nonequilibrium system 

primarily depends on the degree of its non-stationarity in the initial state. 

The latter can be characterized by the value of the virial ratio 
0

)/2( UT  at 

t=0, which, in turn, uniquely depends on . Indeed, from (1.32)-(1.34), taking into 

account (1.41), we have 

 

  10)cos1(
0

)/2( UT  ,                                   (1.44) 

 

where  TrTT  . Substituting here the critical value of the pulsation amplitude 

  for both the nonrotating model (1.29) and the rotating model (1.38), we can 

determine the corresponding instability criterion in the form 

 
 1

0
)/2(/2 UTUT .                                            (1.44’) 

 

 For the sake of interest, a curious inequality should be noted: the average 

value of the virial parameter for non-stationary models (1.29) and (1.38) is less 

than unity 

,12/21/2  UT  

 

which was not obvious beforehand, since the collisionless relaxation still leads  

UT /2  to tending to unity. 

 For the rotating model (1.38) its global characteristics (1.32) -(1.37) remain 

the same as for the model (1.29). 

 

 

§3. Non-stationary version of 

The Camm equilibrium model 
  

We are talking about the possibility of generalizing to the case of nonlinear 

pulsations the well-known equilibrium Camm model [19] with the phase density 

 

),0r0R(
2/1

]
2

r0v)
2
0R/

2
0r1(

2
0v)

2
0r

2
0R(

2
0[c0 


            (1.45) 

 

where c  is some constant, r0v  and 0v  are the radial and transversal components 

of the velocity vector 0v . In contrast to the Einstein equilibrium sphere , model 

(1.45) contains stellar orbits with arbitrary ellipticity, including circular ones, and 

the center of the system coincides with the center of these orbits. However, model 

(1.45), just like Einstein's equilibrium ball, is homogeneous and has a quadratic 

gravitational potential. 
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 For the considered fluctuations (1.7), the quadratic property of the potential 

is preserved, and the density function )(t  of the nonlinear model will be described 

by formula (1.14), according to (1.49). Consequently, the equation of motion of an 

individual star in a state of pulsation has the form (1.15). This means that model 

(1.45) has been generalized to the nonstationary case with the pulsation law (1.23). 

To this end, we substitute (1.7) and (1.8) into the equation of the phase boundary 

of the original model (1.45) 

2
0R

2
0

2
0R/

2
)

0
v

0
r(

2
0r

2
0

2
0v 







                                    (1.46) 

 

Then, taking into account (1.9), we have 

 

.
2
0R

2
0

2
0R)vr(

2
v)t(

2
vr)

.
2
0

.

(2
2

r)

2.
2
0

2.

( 


















   (1.47) 

 

In (1.47) we divide the speed into its components )v,rv(    and transform it 

into the form 

.0)2/2
0

2
0

2()2
0

/22(2]2)
.

2
0

([2 





 RvRrrrv          (1.48) 

 

This shows that the largest admissible value of r, at which 

0
2

/r)

.
2
0

.

(rv   , 

is 


0

max)( RrtR .                                        (1.49) 

Passing in (1.48) from t to , taking into account (1.23) and (1.26), one can 

easily write the phase density of the pulsating model 

 

),f(
2/1

f)
2
0

2
R

2
/(

4
)t,v,rv,r(  


                               (1.50) 

where 

 

.
2

]}
22/1

)
2

1/[(rsin0rv{)
2

v
4

/
2

R
2
0()

2
R/

2
r1(f    

  (1.51) 
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Function (1.50) satisfies the condition 



 vd . In model (1.50), the 

trajectory of each star, in contrast to (1.45), is only elliptical, if the energy of radial 

oscillations is less than the parabolic limit. In this case, the center of the system 

can be in the focus of an elliptical orbit, if the initial orbit (0) is not circular (Fig. 

1.2). Indeed, let the particle be in the initial state,  for example, in the plane ( 0y,0x

), i.e.       ),0,0y,0x(
0

r
0

r







  ).0,0v,0(
0

v
0

v







  

Then using the relations 

 

,
0

)cos(1)21(
0

xxx        0vsin
1

q0yy 


   

 

Fig. 1.2. In the pulsating model (1.50), the center of 

the system may not be at the focus of the ellipse (a), 

and for the original circular orbit it may coincide 

with the focus of the elliptical orbit (b). 

а) б) 
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we get the following orbit equation 

 

.1
2

)x
1

0x0yy()
2

1(
2

)0v/0(
2

]
1

0xx)
2

1[( 





               (1.52) 

 

This shows that at 0  the center of the orbit is displaced relative to the 

origin of coordinates. Further, passing in (1.52) from (x,y) to polar coordinates (r, 

), the quadratic equation for r, whose discriminant is equal to 

 

.
2
0v/

2
sin

2
0)

2
0v0x/(2sin0y

2
0

2
0x/

2
cos)1

2
0v/

2
0y

2
0(    

 

In the general case, it is impossible to extract the root from the last 

expression to derive the known dependence r() in the form of an equation of a 

conic section. In order to obtain such an equation, in (1.52) it is necessary to shift 

the focal point relative to the center of the system. However, this shift does not 

need to be performed for the pulsating state (1.29) of the Einstein ball, which in the 

equilibrium state in the plane ( 0y,0x ) contains only a circular orbit: v00 ∙ x0 and 

y00. 

 The existence of all possible elliptical orbits in model (1.50) is due to the 

fact that the transversal velocity component  v  at each point does not take a 

specific value, as in the case of the Einstein model, but fills the whole interval 

 
2
mv)t(

2
/

2
0R

2
0

2
v0      ).vmaxmv(                              (1.53) 

 

But the average value of the radial component of the particle velocity, as can 

be seen from (1.51), coincides with the corresponding value (1.28) for the previous 

model (1.29) and is equal to 

 

.
2

)cos1/(rsin
2/3

)
2

1(0av    

 

It is easy to calculate the velocity dispersion components for the constructed 

model 

),
2

R/
2

r1(
2
mv

4

12
r       .2/2

mv2 


                               (1.53’) 

 

 Let us find an expression for the anisotropy parameter (). It is convenient 

to first calculate the transversal component of the pulsation energy 

 

.2
mv)4/M(vdrvd3vrd)2/1(2v)2/M(T   







                         (1.54) 

 

and its average over the period, taking into account (1.53) 
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.2/3)21(2
0

R2
0

M)4/1(T 


                                 (1.55) 

 

And the radial component is  rT  easier to find using the virial theorem 

 

,TU)2/1(rT 


                                      (1.56) 

 

where the potential energy averaged over the oscillation period in accordance with 

(1.41), (1.30) and (1.49) is equal to 

 

).21(2
0

2
0

MR)5/3(
p

0
dt1)]t([1)P

0
R5(2GM3U 

                            (1.57) 

 

Substituting (1.55) and (1.57) into (1.56), we find 

 

].
2/1

)
2

1(56[)
2

1(
2
0R

2
0M)20/1(rT                              (1.58) 

 

The validity of (1.58) can be verified by preliminarily calculating rT  by 

analogy with (1.54), which gives 

 

)].
2

1/(
2

sin
2

61[
22

0R
2
0M)20/1(rT  


                       (1.58’) 

  

Therefore, the desired parameter 

 

.
2/1

)
2

1/(]
2/1

)
2

1(56[4,0T/rT2)(                           (1.59) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Coordinate systems 

used in calculations 
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If we consider the behavior of the components themselves  rT  and  

 T depending on the pulsation amplitude, then it is easy to see that for 35 

the nonlinear model (1.50) is isotropic on average in terms of velocities. 

Therefore, in the interval 0<<35, the non-stationary system with phase 

density (1.50) in terms of the parameter  occupies an intermediate position 

between the non-linear pulsating model (1.29) and the indicated isotropic model 

with the value 1. It should be noted that if the non-stationary model (1.29) can 

be divided, in principle, into synchronously pulsating spherical shells, then this 

cannot be done in (1.50) due to the existence of radial residual velocities. 

Nevertheless, relations (1.44) and (1.44') are also valid for model (1.50).  

By analogy with the pulsating version of Einstein's ball, one can generalize 

the nonlinear model (1.50) to the case of rotation. Let us write the phase density of 

the rotating model in the form 

 

𝛹𝑟𝑜𝑡 = 𝜌(𝑡)𝛱4(𝜋𝑅𝛺0)
−2𝑓−

1

2𝜒(𝑓) ⋅ [1 + 𝜇𝑟𝑣⊥ 𝑠𝑖𝑛 𝜃 ⋅
𝑠𝑖𝑛 𝜂

𝛺0𝑅0
2],               (1.60) 

 

where again 1 , 𝑟𝑣⊥ ≤ 𝑅(𝑡) ⋅ 𝑣𝑚 = 𝛺0𝑅0
2. It should be noted that it is not 

desirable to include the effect of rotation in the way indicated here in the case of 

the Einstein model, since there it leads to a differential rotation. The latter requires 

a completely different approach, and due to its complexity, we do not touch on it 

here. 

Let us calculate the rotation speed of the model (1.60), i.e. 

 

.
2/1

)
2

y
2

x(
2

0)4/1(ddvrdvrotsin
2

v
1

v 


 


                  (1.61) 

 

It follows from this that the angular velocity of solid-body rotation is equal to 

)
2

4/(0)t(~                                                    (1.62) 

 

As can be seen, the maximum value (1.62) is two times less than the 

corresponding value )t(~  in the model (1.38). Therefore, for model (1.60), the 

value of its moment of rotation is 10/M
2
0R0K   , and the Ostriker-Peebles 

parameter is equal to 

 

.
1

)cos1()
2

1(
2

)48/1(ОПt


                                  (1.63) 
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It is easy to see that the model (1.60) constructed by us, in contrast to (1.38), 

completely satisfies the Ostriker-Peebles stability criterion, since even at the 

moment of the greatest compression of the system  14.0)ОПtmax(  . Physically, 

this is due to the fact that the centrifugal force in model (1.60) is 4 times less than 

in model (1.38). However, the Ostriker-Peebles criterion does not take into account 

possible non-linear non-equilibrium and resonant phenomena, and therefore, as 

will be seen from what follows, it does not work here. Recall that another 

pulsating model is known in the literature, which was constructed in [20] on the 

basis of a generalization of the equilibrium rotating Freeman configuration to the 

case of pulsation, using our results [14, 21] with the pulsation law (1.23). 

Note that the mixed model is also of some interest (see Chapter 5) 

 

,
21

)1(        )10(                                   (1.64) 

 

composed using a superposition of nonlinear models (1.38) and (1.60) or the 

Freeman model just noted, taking different values of the rotation parameter 1 for 

each of them. Then the new model (1.64) depends in general on the following four 

parameters: , 
1

 , 
2

  and . 

 Finally, it should be emphasized that in the future it is necessary to take into 

account the presence of a corona [22] of galaxies. This is important for the 

subsequent stages of their nonstationary evolution. Unfortunately, it has not yet 

been possible to analytically construct a nonlinear nonstationary model of a 

collapsing galaxy with an exact nonequilibrium law in the presence of a corona. 

 

§4. Expanding or collapsing phase models with finite radius 
 

 In order to visualize the physical state of a singly expanding or contracting 

model, let us turn to the formula for the physical boundary of a pulsating system: 

).
2

1/()cos1(0RR    

 

From here we find the minimum and maximum values of the radius of the 

pulsating system for an arbitrary   

 

),1/(0RminR        ).1/(0RmaxR                                 (1.65) 

 

As can be seen, the value 0R  can be varied somewhat, since, generally 

speaking, it is arbitrary. Consider separately the possible options. 

 

1. If for the above considered pulsating models from the very beginning we take 

0
R  )1(  ; then for 1  , according to (1.65), the value  maxR  remains 

constant, and the value of 0
min

R  . 
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 Consequently, in this case we have a model shrinking from a finite size, 

which is the limiting state of non-rotating configurations (1.29) and (1.50). The 

latter at  1 coincide and can describe the process of compression to a point, and 

therefore cannot have a rotating analogue in this case. Let us construct the phase 

density of this model. 

 Let at the initial moment of time t0 we have a ball with radius 
0
R  and 

density 
0

 const, and all its particles are at rest. 

Then it shrinks under the influence of its own gravity (due to loss of 

equilibrium after global star formation or other processes). The equation of motion 

of a particle located on the surface of a contracting ball has the form 

),t(
2

R/MG)t(R 



     )
3
0R0)3/4(M(  .                      (1.66) 

 

Hence it follows that 

)
1

0R
1

R(MG2
2

)

.

R(





                                        (1.67) 

 

The solution of equation (1.67) can be found in the following parametric form 

 

),cos1(
0

R)2/1()t(R    ,sintg      2/1)3
0

R/MG8(g                    (1.68) 

The dependence of  on t , given in (1.68) corresponds to the case 1 in 

(1.21). Consequently, during the collapse, the similarity is preserved and the 

density remains uniform in space, but depends on time. More precisely, based on 

(1.68), we have the following density of the contracting system 

,6)]2/[cos(
0

)(   t       ).0(                                   (1.68’) 

 

Let us write the equation of motion of an arbitrary particle 

),t(
3

R/rMG

..

r







     .2/1
)

2
z

2
y

2
x(r 



                       (1.69) 

 

Passing here from t to the argument , we have 

 

.0rd/rdsin
2

d/r
2

d)cos1( 











                              (1.70) 

 

Note that the vector equation (1.70) turned out to be linear in itself, without 

special linearization, and it is applicable over the entire compression period. 

Particular solutions (1.70) are 

,2/
0

r)cos1(r







         .0rsinr







                             (1.71) 
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The first solution just corresponds to the above initial condition. Comparing 

it with (1.7), in particular, we find that 

,2/)cos1(       ).cos1/(sing5.0

.

                               (1.72) 

                                     

 In this model v 0, and in accordance with (1.28) 

,
2

)cos1/(sinrg/r

.

rv                                (1.73) 

 

which is zero at 0, and when    rv tends to (- ). Now it is possible to write 

the function of the phase density, constructed here contracting from the finite size 

of the model, in an explicit form 

 

,)rR(]
2

)cos1/(sinrgrv[)
2

v()/()t,v,rv,r(              (1.74) 

 

 where again is the Heaviside -function. Obviously, expression (1.74) cannot be 

generalized to the case of rotation, since this model completely lacks transversal 

motions and, in connection with this, it collapses to a point where a singularity 

takes place. However, if we consider a process, for example, inverse-expansion, 

but starting from a finite radius, a rotating model can also be built. 

 Note that until now the physical picture in pulsating models for the values of 

 from the intervals [0,1] and [-1,0] was exactly the same, i.e., a negative value did 

not change the pulsation pattern, but only shifted  by . Now, when constructing 

the limiting states of non-stationary models, these two intervals  can be physically 

distinguished and therefore we will further consider the case (-1). In this case, 

instead of (1.65) we have 

 

),1/(0RminR          ),1/(0RmaxR                             (1.75) 

 

 2. Let 0
R const. Then with (-1) we get 2/0RminR  , maxR , 

which corresponds to the mentioned case-extension from a finite size, when the 

rotation factor may initially exist. 

This means that on the basis of pulsating models with rotation (1.38) and 

(1.60), excluding the singularities present there, it is possible to construct the 

corresponding two rotating models. 

For this purpose, in all formulas of the indicated rotating models, we will replace 

 

.
2/1

)
2

1(                                                 (1.76) 

 

Revealing the singularities, we obtain in the limit 

 

)(
2/1

)
2

1/(sin   , 
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,12/)
2

1()(         .3
3

t06                              (1.77) 

 

At the same time, we assume that 2/
2

1
2/1

)
2

1(   , where .2/1
)

2
1(    

Therefore, 

 

,1R2/)
2

1(0R)(R      1
3

)
2

1(08)(  


                      (1.77’) 

 

and from (1.38) we obtain the corresponding model 

 

𝛹𝑟𝑜𝑡
(1)

= 𝜌1𝛿(𝑣𝑟 − 𝑣𝑎1)𝛿(𝑣⊥ − 𝑣𝑏1)𝜒(𝑅1 − 𝑟)(1 + 𝜇𝑟 ⋅ 𝑣⊥ 𝑠𝑖𝑛 𝜃 ⋅ 𝑠𝑖𝑛 𝜂)    (1.78) 

 

and  1bv1av   ,  
2
1/r01bv  . 

 With the same notation, based on the pulsating model (1.60), one can write a 

new model with rotation 

 

𝛹𝑟𝑜𝑡
(2)

= 𝜌1𝛱1
4𝑓−1/2𝜒(𝑓)[1 + 𝜇 ⋅ 𝑟 ⋅ 𝑣⊥ 𝑠𝑖𝑛 𝜃 ⋅ 𝑠𝑖𝑛 𝜂 /(𝑅0

2𝛺0)]/(𝜋𝑅1𝛺0)
2,                 

(1.79) 

where 

.
2

)
2
1/rrv()

2
v

4
1/

2
1R

2
0)(

2
1R/

2
r1(f     

 

 We note that here, by analogy with (1.64), it also makes sense to consider 

the case of a mixed model using the new models (1.78) and (1.79). 

 3.There is also a “cosmological variant” in the Newtonian approximation, 

when 0minR  , and maxR  . This is the case, assuming 
21

21
0

R 




   . In 

this case, we have the phenomenon of expanding the model from a singular state to 

infinity or vice versa. Consequently, the rotation factor here again has no physical 

meaning, just as in (1.74). But the corresponding phase model can be constructed 

exactly. 

The stated physical situation again requires the replacement (1.76), but, unlike the 

previous case, now 1
2/1

)
2

1(    . 

Then instead of (1.77) we have 

 

,2/
2

)(        .
3/1

)t06(                                   (1.80) 

 

Consequently, 

,2/
3/2

t
3/1

)MG36(2R       .
6

/082                               (1.81) 

 

Therefore, the phase density of such a nonlinear model is equal to 
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),r2R()
2

v()2avrv()/2(                                (1.82) 

 

where 
3

/r042av  . The models (1.73), (1.78), and (1.79) constructed by us in 

this section are new, and (1.82) is a Newtonian case of the Fridman model [103]. 

The stability of the latter model was studied in [107]. However, (1.82) is a special 

case of the more general model (1.74). 

 

 

§5. Method for constructing a multi-parameter 

non-stationary model 
 

 Above, we have constructed several nonlinear models that depend mainly on 

one or two physical parameters (this 0)U/T2(   and ) and therefore are necessary 

primarily for the development of a nonlinear theory. But from the point of view of 

direct application to real objects, it would be interesting to construct a nonlinear 

model taking into account the parameters responsible for the large-scale structure. 

It is clear that the more parameters, the more accurately we can determine the 

physical conditions at an early stage in the evolution of observed objects. Among 

the possible ways, we point out one of them, which can be implemented on the 

basis of the analytical results available in this book and is associated with a 

preliminary finding of the exact form of natural oscillations of a nonequilibrium 

model. 

 The idea of the method is as follows [23]. Obviously, any nonlinear model 

constructed by us, before its application to other problems, must necessarily be 

investigated for stability with respect to small perturbations of various types. Only 

then can the conditions for the emergence of individual observable large-scale or 

small-scale structures be revealed. In this case, the latter are characterized, for 

example, by the azimuthal wave number m, the number of the spherical harmonic 

n and the radial wave number N-n (N is the main index of the entire perturbation), 

since the small perturbation imposed on the non-stationary background expands 

into a specific harmonic series. 

As will be seen below from other chapters, in some cases it is possible to 

find the exact form of eigenoscillations mnN , performed in a free manner after 

the “switching off” of the source of small perturbations. 

If it is possible to find the corresponding responses of the densities  and 

 using the Boltzmann and Poisson equations, then we can consider that a new 

phase model of the type 

 

).N,n,m,,,t,v,r(),,t,v,r( 






                             (1.83) 
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It, in contrast to the previous one (when it was 0), in principle, can take 

into account density inhomogeneity and other observable features for which the 

meaning of one or another parameter is physically clear to us in advance. 

If the exact form of natural oscillations mnN    in general form is known, 

we find the corresponding expression for  from the Poisson equation 

 

.mnN
1

)G4( 


                                         (1.84) 

 

  The situation is much more complicated with the calculation of . Let us 

proceed to its definition in the case of the known  for a non-stationary spherical 

model with a gravitational potential 

 

),
2

r
2

R3()t(
2
*5.0)t,r(       ).t(

3
/

2
0)t(

2
*                             (1.85) 

 

Substituting in (1.1)  and Ф instead of  and Ф, respectively, we 

again obtain a linear equation for : 

 

,F],[]E,[t/                                        (1.86) 

 

where [...] are Poisson brackets, FF(t,x,y,z,vx ,vy ,vz ). In order not to clutter up 

the pages with long formulas, let's do a little calculation on the x coordinate, and 

then generalize the result to the spatial case. From (1.86) one can compose, in 

particular, the characteristic equation 

 

.F/d...xv/dx)x//(xdvdt                                  (1.87) 

 

Hence, taking into account (1.85), in particular, the equation follows 

 

.0)t(3/x2
0

)t(
..

x                                     (1.88) 

 As is known, if 1x (t) and 2x (t) are particular solutions of an equation of type 

(1.88), then ixxx
i

xixJ







  , will be invariants. Let's pass in (1.88) from t to  

according to the formula (1.21). Then, taking into account (1.23), equation (1.88) 

takes the form 

 

.0xxsinx)cos1(                                         (1.89) 

 

Since (1.89) has particular solutions (cos) and sin, then the expressions 

,xvsincosx
1

qx1J 


    xv)cos(sinx
1

qx2J 


              (1.90) 
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are the desired integrals of motion. 

The remaining four integrals of motion J y1 , y2J , z1J , z2J  have a similar 

form. 

Further, it is easy to find the coordinates and velocity components of the particle in 

the model . For example, 

                                     ],x1J)cos(x2J[sin
3

q
2
0x  


          

                           (1.91) 

 

Therefore, the final solution for  can be represented in the form 










t

0
),J(Cd))J,(zv);...;J,(y);J,(x;(F                            (1.92) 

Where )J(C



- is an arbitrary function of invariants, )z2J,...,x2J,x1J(J 



. 

Formula (1.92) is also applicable to two-dimensional models with the pulsation 

law (1.23). Obviously, the constructed multi-parameter model is not of the most 

general nature, since it is itself based on a certain law of nonlinear pulsations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

).cos1/()x2Jcosx1J(sinxv  
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CHAPTER II.  INSTABILITIES OF PULSITING MODELS BASED ON AN 

EINSTEIN SPHERE 

 

§ 6. Basic relations and equations 

  

It is physically clear that the non-stationary models constructed by us, under 

certain conditions, contain various kinds of instabilities. To study the nature of 

possible types of instabilities and determine the corresponding states, it is 

necessary to impose a small, in the general case, asymmetric perturbation on the 

nonstationary model. Then instead of the equation of motion (1.15) we have 

).(grad)t(3/r2
0

..

r 





                                           (2.1) 

Where  - is the perturbation of the potential, which is a function of the 

perturbed components of the vector 






rr  , where   is the perturbation of the 

potential as a function of perturbed components of 






rr   vector. Therefore,  , 

in (2.1) is a non-linear function of 


r . Linearizing (2.1), we find the equation of 

asymmetric oscillations for an individual particle 

),(grad)t(3/r2
0

..

r 





       z,y,xr  



                            (2.2) 

and now   it is taken at the unperturbed point (x, y, z). Let's pass from t to the 

argument  using formula (1.80). Then (2.2) takes the form 

      ,[
3

cos1
6

q/
4
0

r ]r/






                                  (2.3) 

where operator 

  .1d/dsin2d/2dcos1                                     (2.4) 

 Obviously, the deviation of the particle at the current moment depends on 

the state of the field at previous moments   ,
1

 , and, since our goal is to 

search for instability, at 
1

  we assume xyz0. 

 At each point at the current moment  there are particles with different 

velocities, therefore, to calculate the density perturbation or deformation of the 
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system boundary, one should proceed to the centroid displacement  z,y,x   , 

averaging Eq. (2.3) over the velocity space. Therefore, for 


r  one can write an 

integral representation 

      ,1d]r/)Ф([1,S
3

1cos1
6

q
4
0r 










              (2.5) 

where S(,1) is the Green's function and is compiled in the standard way from 

solutions of the homogeneous equation in (2.3) 

       .2
1

cos1/cos
1

sin
1

cossin)
1

,(S                (2.6) 

  Note that the limits of the integral in (2.5) can also be taken from 0 to , 

assuming the inclusion of a small perturbation only for a moment at the moment 

t=0. But then it is necessary to add to it some solution of the homogeneous 

equation corresponding to (2.3). Since in what follows we return to differential 

equations in the analysis of specific modes, it is convenient to use the notation in 

the form (2.5). Since under the integral in (2.5) the time associated with  is past, 

it is necessary to connect the current coordinates with the past ones included in 

(2.6) through  


 r/  . According to (1.10), the coordinates and velocities in the 

nominal state 

)(vα)(r

.

α
0

v),(vβ)(r

.

β
0

r 



















                      (2.7) 

On the other hand, it is clear that 










0
v)1(

0
r)1()1(r  . Substituting 

(2.7) here, we find the desired relation formula 

.H)](iv)(u[H)](iy)(x[)1(iy)1(x                         (2.8) 

Here u, v- are the velocity components in x and y, respectively, 

)()
1

()
1

()(H),(
.

)
1

()(
.

)
1

(H 


  , 

 where again the dot above means that the differentiation is done with respect to t. 

Substituting (1.26) here, taking into account (1.80), we have 

)].1cos1(sin)cos(1)[sin
3

q/
2
0(H

),cos1/(]1sinsin)1cos([cosH









                  (2.9) 
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 The spatial homogeneity of the nonlinear models constructed by us in 

Chapter I allows us to take  in the general form 

....)
2nN

r1a
nN

r0a(
n

)iyx( 





                            (2.10) 

 in the same way as in the case of stationary systems [13], but unlike the latter, the 

coefficients a a0 1, , ....  in (2.10) depend on the time t. Recall that in (2.10) N- is the 

main perturbation order, and n -is the main index of the spherical harmonic, which 

is equal to the azimuthal wave number m for sectorial perturbations. Although in 

the most general case  should contain three wave numbers, when deriving the 

dispersion relation of the model stability problem, it is quite sufficient to represent 

 in the form (2.10), as always when considering vibrations of spherically 

symmetric bodies. 

Further, by analogy with the theory of stability of stationary models [13], it 

is necessary to clearly distinguish between “surface” and “volumetric” types of 

perturbation, and to find the dispersion equations, it suffices to restrict ourselves to 

one leading term in (2.10). In the case of “surface” perturbations N=n and we 

proceed from the expression 

n
)iyx()(0a                                               (2.11) 

Consequently, 

,0z/)(],y/)([i
1n

)iyx()(0nax/)( 


                   (2.12) 

those 0z  . The latter means that the equation for the component z can only 

have a periodic solution, and the growing solution vanishes. From (2.12) for 

surface perturbations, the identity yix, also follows, which entails the equality 

to zero (see (2.14)) of the density perturbation , so that the effect of potential 

perturbation (2.11) is expressed only in the curvature of the outer surface of the 

pulsating models. In the case of “volumetric” perturbations Nn and  it is 

enough to take in the form [24]: 

n
)iyx(

nN
r)(0a 


                                     (2.13) 

  At the same time, it is noteworthy that deformations of the system boundary 

affect only the terms of the lowest degree in the expansion for  and are not 

essential in recognizing the exponential or periodic nature of oscillations 

superimposed on the main pulsation. The volume density perturbation value is now 

different from zero and is equal to 

].z/)z(y/)y(x/)x([)(                              (2.14) 
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 Thus, substituting separately (1.11) and (2.13) into (2.5) and introducing the 

notation 

)(0a)1,(S
3

)1cos1()
6

q/
4
0()1,(E                      (2.15) 

you can write the corresponding components of the displacement vector  r


  for 

each type of perturbation.  

I. For “surface” perturbations: 








 ,1d)1,(E

1n
)1iy1x(nyix                    (2.16) 

where  x1x(1) и y1y(1). 

 

II. For “volumetric” perturbations: 











 ,1d]

2k2
1r

1n
)1iy1x(1x)nN(

k2
1r

1n
)1iy1x(n)[1,(Ex  







 ,
1

d]2k2
1
rn)

1
iy

1
x(

1
y)nN(k2

1
r1n)

1
iy

1
x(ni)[

1
,(Ey  








 ,1d

2k2
1r

n
)1iy1x(1z)1,(E)nN(z                   (2.17) 

 

Here r1r(1), k(N-n)2. From (2.16) and (2.17) it can be seen that when 

calculating the components of the displacement vector  


r  averaging, for 

example, expressions of the form 


)1iy1x(  , according to (2.8), is reduced to 

averaging different members of the type 


)ivu(   over the velocity space for the 

current moment of pulsation, taking into account a specific expressions for the 

phase density function. 

 

 

§ 7. “Surface” perturbations against the background of nonlinear 

pulsations 

We begin our analysis of the stability of pulsating states with respect to 

surface perturbations with the case of a non-rotating model (1.29), and then in 

Section 9 we generalize the results to the case of a rotating model (1.38). We will 
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proceed similarly in the future, in the case of volume perturbations and analysis of 

other models. In this case, each time we will try to apply different, most 

appropriate methods to derive the appropriate dispersion relation in order to 

develop rigorous methods for analyzing the stability of nonequilibrium models. 

 

7a. Non-stationary  dispersion equation (NDR) 

 It can be seen from (2.16) that in the case of N=n the problem is reduced to 

averaging only one expression ( )x iy n
1 1

1  . Therefore, we expand it into Newton's 

binomial, taking into account the connection formula (2.8). Then we have 












1n

0
)ivu(H1n]H)iyx[(

)!1n(!

)!1n(1n)
1

iy
1

x(








                (2.18) 

Here for model (1.29) 

 


 .dudvdw)bvv()avrv()ivu(
1

)bv2()ivu( 





                 (2.19) 

 In (2.19), we turn to integration over  ,v,rv


 and take into account that in 

spherical coordinates (r,,) 




i
e)sinivcoscosvsinrv(ivu                   (2.20) 

Substituting (2.20) into (2.19) and calculating the integrals over rv  and 

v , we 

find 

 )iyx()(A)ivu(                                    (2.21) 

where 

,
2

0

d)cosiv
a

v(1)r2()(A  



                                (2.22) 

and the notation 

,cosisin/)sinicoscos(                                 (2.22’) 

and the value v in this case is determined by the formula (1.27). It is possible to 

prove even a slightly more general averaging formula than (2.21), namely 





)z

3
ey

2
ex

1
e()(A)w

3
ev

2
eu

1
e(                               (2.23) 

for any complex numbers e1, e2 and e3 satisfying the relation e e e1
2

2
2

3
2  . Indeed, in 

the particular case xy0, zr  we have 
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(ev)𝜏 = (2π)−1 ∫ [𝑣⊥(𝑒1
2 + 𝑒2

2)1 2⁄ cosξ + 𝑒3𝑣𝑟]
𝜏dξ

2𝜋

0

= 

.
2

0

dξτ)cosiv
r

(v/2πτ
3

e 












 . 

Hence, taking into account the equality avrv   , we are convinced of the 

validity of formula (2.23). The function A(), taking into account (1.27), (1.28) 

and (1.23), has the form 

 



2

0

d]cos
21

)21(isin[2)cos1()2/3q(1)2()(A      (2.24) 

Substituting (2.21) and (2.24) into (2.18), we have 





















2

0

d1n}
2)cos1(2

]cos
21

)21(isin[3q
HH{

2

1n)iyx(1n)
1

iy
1

x(     (2.25) 

  Taking into account the expressions for H  and H  in (2.9) and opening 

the square bracket in (2.25), we represent the result obtained as a Newton binomial 

in powers of sin1. Then 

1n
)iyx()1,(1nC

1n
)1iy1x(





                            (2.26) 

where 




 









1n

0
)(h

2n2)cos1(

1n)
1

cos(
1

sin

)!1n(!
)!1n(

)
1

,(
1n

C








                   (2.27) 

moreover 






d]cos)cos(21)12(sin)21[(

2

0

1n]cossin
21

)12(cos[1)2()(h






                   (2.28) 

 

According to (2.16), we find the desired 

,
1n

)iyx()(yix


                            (2.29) 

where 
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








1

d)
1

,(
1n

C)
1

,(En)(  .                          (2.30) 

Knowing (2.29), it is also easy to determine the displacement of a surface 

point along the radius and the corresponding perturbation of the potential 

).1n2/(rRG4,R/
n

)iyx)(()yyxx(r               (2.31) 

  Comparing the found expression for   with the theoretically given one 

(2.11), we obtain 

3
)]()[(

2
01n2

3)(0a





                                 (2.32) 

Substituting (2.30) into (2.32), taking into account (2.27) and by analogy 

with the connection between (2.3) and (2.5), we have 





 )(sin

1n
)cos(

3
)cos1)((0a)(l


                     (2.33) 

where =0, 1, 2, . . ., n-1 and the notation 

1d)1(sin
1n

)1cos)(1,(S
3

)1cos1()
1

(
0

a)(l 
















          (2.34) 

and now [14] 




 







1

0
).()(

)!1(!

)!1()12(
)cos1(

12
3)(

0

n
lh

n

nn
n
na




                      (2.35) 

Thus, (2.33)-(2.35) are a non-stationary analogue of the dispersion equation 

of the stability problem for the nonlinear model (1.29). In what follows, for brevity, 

such an equation will be called the nonstationary dispersion equation (NDE). 

In principle, this system of equations can be reduced to a single integral 

equation. To do this, (2.25) must be expressed in terms of the Legendre polynomial 

)(cosh
1


n

P  by introducing the notation 





 sinhWr/Hbv,coshWr/HavH                      (2.36) 

Then, substituting (2.36) into (2.25), after some transformations we find 

),(cosh1nP
1n

W)1,(1nC





   

.
)1cos)(cos1(

1sinsin)21()1cos)(cos(
cosh











                              (2.37) 
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Everything else remains the same and as a result we get the following 

equation 











1

d)
1

,(C)
1

,(S)
1

(
0

a)
1

(3
1n2

n3)(
0

a)(3           (2.38) 

However, this integral form of the NDE is difficult for practical analysis and 

it is easier to deal with its differential representation (2.33)-(2.35).The special case 

=0 corresponds to the imposition of asymmetric perturbations on the equilibrium 

model without pulsations. Wherein 0av  , r0bv  , W1, 1, 

.0/SH),1sin(S),1cos(H                           (2.39) 

and the system of equations (2.33)-(2.35) is easily reduced to the equation 

1d)]1([cos1nP)1sin()
1

(
0

a
1n2

n3)(0a 



 






                 (2.40) 

Being interested in the exponential solution of the form )
1

i(exp)
1

(
0

a   , 

we obtain the following dispersion relation 









0

.
1

,
n3

1n2d)(
1n

Psinie                           (2.41) 

This case =0 was first studied in [25]. Our calculation coincides with his 

result and shows the complete stability of the equilibrium model. The latter can be 

easily proved if we pass from (2.41) to the multiplicative notation. 

 

7b. Large -Scale Modes 

Let's pass to the analysis (2.33)-(2.35) with arbitrary . When n=1, we are 

dealing with a trivial displacement of the system as a whole, which does not cause 

any instability. Indeed, considering in (2.33) n=1, we have only one equation, the 

integration of which gives 

3
)cos1/()(0l)(0a,constsin)(0l                 (2.42) 

 Of great interest is the large-scale oscillation mode with a value of n=2, 

under the instability of which the pulsating ball takes an elliptical shape. In this 

case 

1lsin)
2

1(0l)cos()(,
5

)cos1/()(2.1)(0a            (2.43) 
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Substituting (2.43) into (2.33), we now have two equations 

      γ(ψ)
2

λcosψ1cos(6/5)ψ
0

Λl


                                     (2.44) 

  γ(ψ)2λcosψ)(1(6/5)sinψψ
1

Λl                                     (2.45) 

Hence, we note that for an arbitrary function l() we have the identity 

]Ml'M'l)cos1[(
d
d)(l)('M}l{U 


                                    (2.46) 

(0; 1), where the following designations are introduced 

)cos1/(cos)(1M),cos1/(sin)(0M                            (2.47) 

Composing the sum U0{l1}U1{l0} and using (2.44) and (2.45), we obtain 

the relation of the first derivatives 

0
lcos

1
lsin

1
'l)cos(

0
'lsin                                   (2.48) 

Further, forming a difference of the form U0{l0}-(1-
2
)U1{l1}, taking into 

account (2.44) and (2.45), we obtain 

2
)cos1/()()5/6()]cos1/()H2'[(

d
d 


                                (2.49) 

and Hsinl0()-(1-
2
)cosl1().Using relation (2.48), we can find the 

relationship between the functions () and H() in the form 

2
)cos1/(]'sin)cos2[()]cos1/()(H[

d
d 


                   (2.50) 

Then equation (2.49), taking into account (2.50), takes the following form: 

0)cos25/14('sin3")cos1(                         (2.51) 

Thus, instead of two equations (2.44) and (2.45), one equation was obtained, 

which is easier to analyze further by analytical methods. 

According to the theory of stability of motions [26] described by a second-

order differential equation, a periodic solution of equation (2.51) must exist at the 

critical point of loss of instability. An appropriate search for such a 2-periodic 

solution shows that it is equal to 

λ(15/14)cosψγ(ψ)  ,                                        (2.52) 

if only at the same time 




22
λ0.9165λ21/25,

2
λ .                                     (2.52’) 
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Since we analytically found only one critical value of the pulsation 

amplitude 


22
λ  , we must also prove that there are no other 2-periodic solutions 

for  


22
λ . This rigorous proof is given by us in the appendix of [24]. Therefore, 

ellipsoidal instability occurs if  > 
22

 , which is equivalent to the condition 

084.0
21

)25/21(10)U/T2(                                         (2.53) 

This result is in very good agreement with the numerical experimental 

conclusions of the authors [4, 27, 28] obtained much later without knowing about 

our publications [14, 21, 24]. 

 In accordance with the same well-known theory [26], equation (2.51) can 

also have 4-periodic solutions limiting on the scale  a certain instability zone of 

a different nature. Since the analytical search for exact solutions with a period of 

4 is a difficult task, we carried out a numerical solution of the differential 

equation (2.51) and, using the method of stability of periodic solutions, found an 

instability zone in the region < 
22

 , namely, it fills the interval [75]   (0.611; 

0.873). In this case, characteristic equations were solved, composed of solutions 

(2.51) at the point 2 for various   (0, 
22

 ). The values of the instability 

growth rate Inc and the characteristic time ( t2 ) of doubling the magnitude of the 

disturbance growth amplitude were calculated using the following formulas: 

,Inc/)2(ln
2

t),(P/)]maxk[ln(Inc                                (2.54) 

where maxk  - is the value of the largest modulus of the root of the characteristic 

equation. The table below shows the calculation results for Inc  and t2  , as well as 

the corresponding values of the anisotropy parameter  for the instability regions. 

Tab. 2.1 

 Inc[10
-2
0] t2 2 0

)/2( UT  

0.611 

0.66 

0.70 

0.78 

0.84 

0.92 

0.95 

0.98 

0 

3.172 

3.710 

3.359 

2.054 

82.276 

285.77 

495.49 

0 

21.852 

18.683 

20.365 

33.746 

0.842 

0.303 

0.140 

0.526 

0.662 

0.400 

0.598 

0.843 

1.551 

1.931 

4.025 

0.389 

0.34 

0.30 

0.22 

0.16 

0.08 

0.05 

0.02 
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 Calculations show that, under condition (2.53), an aperiodic instability sets 

in. It is clearly seen from the values of the instability increment that the detected 

second instability zone corresponds to the values 0)U/T2( (0.127; 0.389) and is 

not inferior to (2.53). The second zone of instability, on the one hand, according to 

the calculations, has an oscillatory nature, and on the other hand, it seems to be 

associated with the 2:3 resonance phenomenon between the oscillations of 

individual particles and the collective motions of the N=n=2 oscillation mode. 

Indeed, the frequency of collective oscillations of the ellipsoidal mode 14/5  is 

close to 3/2. For the corresponding equilibrium model [29], where stability 

analysis leads to differential equations with constant coefficients, this resonance 

obviously cannot manifest itself in any way, since there is no exact 

commensurability of frequencies. And for equilibrium systems, generally speaking, 

the conditions for the occurrence of resonance are somewhat weakened. In 

addition, it should be noted that, on average, the velocity-isotropic nonlinear model 

with 1 also belongs to the indicated zone of vibrational-resonant instability, 

which covers the segment (0.526; 2.100) on the scale of the anisotropy parameter. 

 Returning to the above critical value of the pulsation amplitude (2.52'), we 

note that it is not very close to the oscillatory-resonant zone of instability. In this 

case, the corresponding value of the anisotropy parameter ( 
22

 ) is exactly 3. It 

is clear that the instability physics in the region 0)U/T2( <0.084 is clearly related 

to the Newtonian collapse from an almost “cold” state and the presence of a sharp 

anisotropy in the radial and transversal energy components movement. 

Consequently, under such conditions, the instability of almost radial motions 

occurs, which is confirmed by numerical experiments. Among the numerical-

experimental works, the possibility of instability of radial orbits was first indicated 

in the article by V.L. Polyachenko 1981, but it did not set the task of determining 

the exact criterion for this instability. Analytical proof of the existence of instability 

of radial orbits for equilibrium systems was first strictly shown by V.A.Antonov  in 

1973, and here we study this instability for nonequilibrium systems. 

 Let us dwell briefly on the case of N=n=3 (“triangular perturbations”) (1,30), 

although it could equally well be attributed to small-scale and large-scale 

perturbations. In this case, the nonstationary dispersion equation (2.33) takes the 

following form 

},2l]
2

)cos(5.0
2

sin)
2

1)[(
2

1(

1l)cos(sin)
2

1(3

0l]
2

sin)
2

1(5.0
2

)cos{[(

4
)cos1(

2
)cos(sin)7/9(l





























                      (2.55) 
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(0,1,2). This system of differential equations of the 6th order is not amenable to 

theoretical analysis and therefore it was studied numerically on a computer. 

Calculations show that again there is an “island” of vibrational instability, and the 

corresponding region is five times narrower than in the case of the ellipsoidal 

vibration mode, and is located in the interval 0.762<<0.819,, i.e. 0.181<(2 / )T U 0

<0.238. The corresponding values of the anisotropy parameter  are in the interval 

1.088<<1.486. It turns out that, on average, the pulsating model with 1, 

isotropic in terms of speed, is in the stability region. Another zone of instability of 

the nonequilibrium model is located in the region of almost radial motions 

,166.0
0

)U/T2(,
33

834.0                                        (2.56) 

what do the values >1.624 correspond to. Interestingly, at n=3 in the zones of 

instability, literally all the roots of the characteristic equation are only complex 

conjugate, i.e. instabilities are of an oscillatory nature, and, unlike ellipsoidal 

instability, they arise in the region >1.   

 

§ 8. Volume types of perturbations 

Let us turn to the analysis of the behavior of such asymmetric perturbations 

against the background of pulsations, the instability of which gives rise to global 

density inhomogeneities in the system [24]. Now it is already nN and, in contrast 

to surface oscillations, where the volume density perturbation is strictly equal to 

zero, here the process of inhomogeneity generation is also accompanied by some 

curvature of the outer boundary of the system, which is less significant if it is 

required to obtain NDR for arbitrary n and N of the same parity. This equation 

makes it possible to consider limiting and any cases. 

 

 

8a. Output of the complete NDE 

 In this case, just as in the previous paragraph, we can use the method of 

binomial expansion and averaging over the velocity space. Then, according to 

(2.17), it is necessary to separately derive averaging formulas for the expressions 


)ivu(u  , 


)ivu(v  , 


)ivu(w  . The direct derivation of these formulas, which 

solve the problem posed and may also be useful in similar problems on the 

oscillations of other dynamical systems, is given in detail in the Appendix of [24]. 

Here we will show the possibility of another method, namely, we will use the well-

known fact - the spherical symmetry of the pulsating model, taking into account 
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the regular appearance of terms of the same degree in coordinates as before 

averaging over velocities. Then, as a result of averaging the corresponding 

expressions in (2.17), we must have 

,
n

)iyx(z
2k2

r2Bz

,
n

)iyx(y
2k2

r2B
1n

)iyx(
k2

r1iBy

,
n

)iyx(x
2k2

r2B
1n

)iyx(
k2

r1Bx




























                         (2.57) 

and knowledge of one formula (2.26) is sufficient. Indeed, we define the unknown 

coefficients B1 and B2, which are a function of , composing from (2.57) the 

following combinations 

,
1n

)iyx(
2k2

r2Byix





                                              (2.58) 

.
n

)iyx(
k2

r)2B1B(zzyyxx                                      (2.59) 

 On the other hand, from (2.17), taking into account relation (2.8), which can 

be represented in the form  

 H)(vH)(r)1(r











                                     (2.60) 

we get 

,

1

d1n)
1

iy
1

x()
1

,(E2k2
1
r)nN(yix 






                         (2.61) 

,
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dn)
1

iy
1

x(E)
r

rvH2rH(2k2
1
r)nN(

1
d1n)

1
iy

1
x(Ek2

1
r)iyx(nzzyiyxx



















                      (2.62) 

According to (2.60), in (2.61) and (2.62) the quantity 
k2

1r  is equal to 

k]2)r/vH(2)r/rvHH[(
k

H
~

,k2)](r[
k

H
~k2

1
r




                     (2.63) 

and it is taken out of the averaging sign, since in model (1.29) avrv   and 

bvv   , are fixed for the given r(). Using (2.26) and (2.63) in (2.61) and (2.62), 

we compare the obtained results with (2.58) and (2.59), respectively. We have 

    
 

 2B1dnC)r/rvHH(E1kH
~

)nN(1d1nCEkH
~

n1B     (2.64) 
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 









 ).

2
nNk(,

1
d

1n
CE

1k
H
~

)nN(
2

B                 (2.65) 

Note that the direct method of averaging over velocities, which we presented 

in the appendix of [24], gives the same results. 

Next, we calculate the volume density perturbation 

),z/zy/yx/x(                                (2.66) 

moreover, 3
2
(4GП

3
) - is the density of the non-linear pulsating 

configuration. Substituting (2.57) into (2.66), we obtain 

].2B)1nk2(1kB2[
n

)iyx(
2k2

r
3G4

23 







                           (2.67) 

 On the other hand, calculating the Laplace operator from expression (2.13), 

from the Poisson equation we find the corresponding theoretical relation 

).(0a
n

)iyx(
2k2

r)1n2k2(
G2

k 


 


                            (2.68) 

Comparing (2.68) with (2.67) and taking into account (2.64) and (2.65), we 

obtain the desired non-stationary dispersion equation for volume perturbations 

imposed on a nonlinearly pulsating spherical model (1.29) 

.1dE]nC)r/avHH(1kH
~

k21nC1kH
~

)1n(

1nCkH
~

n[
3)1n2k2(

23)(0a








  



                (2.69) 

 The integrand in (2.69) can be substantially simplified. For this, we note 

that, according to (2.36), (2.9), (1.28), and (1.27), the function 

.
k2

)]cos1/()1cos1[(
k2

W)1,(kH
~

                   (2.70) 

Using (2.37), (2.70) and the recurrent formula for the Legendre polynomials, 

from (2.69) we find that 

.
1

Edlcos)
1

,(
n

C1k2W
2

3)(0a)(
3








                   (2.71) 

 Finally, it is necessary to move from the integral form of writing to the 

differential. For this purpose, we use formula (2.27). Then, taking into account 

(2.36) and (2.70), we have 

),(
nN)]cos1(

3)(0a)(
3




 


                              (2.72) 

where 
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
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


             (2.73) 

and h() is expressed by formula (2.28) with n replaced by n+1, and functions 

)(
)(

Г 


  are equal to 



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1
cos1()(

)2(
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(2.75) 

This form of notation for integrals makes it possible to pass to differential 

equations in a similar way to the connection between (2.33) and (2.34). 

Consequently, 

)(Г
)1n(2

)cos1(

1n)cos()(sin3
)(

)1(
Г 




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


 ,                             (2.74’) 

 

)(Г
)1n(2

)cos1(

n)cos(1)(sin3
)(

)2(
Г 




 




  .                              (2.75’) 

As can be seen, in this case, the NDE in the differential notation contains the 

degeneracy property, which manifests itself in the independence of the stability 

analysis results from a specific value of N. Obviously, this property takes place for 

the corresponding stationary model [29], since for 0 we obtain T1. 

 When 0, counting )i(exp)(
0

a   , from (2.71) we find the following 

dispersion equation 






0

3/1dcos)(cos
n

Pie  .                                    (2.76) 

Substituting here the expansion of the Legendre polynomial in cosines of 

multiple arguments, we easily calculate the integral and obtain the previously 

known result on the complete stability of the equilibrium model [29, 13]. 
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8b. Analysis of individual oscillation modes: 

Dipole-odd perturbations 

 Let us consider the case of large-scale disturbances at 0. Since for volume 

perturbations the difference N-n>0 and is always even, we generally speaking must 

analyze the cases n=1, 3, ...; N=3, 5, ... and n=0, 2, ...; N=2, 4, .... But for n=0 and 

an arbitrary even N, the perturbations are symmetric and, therefore, individual 

spherical shells will pulsate synchronously, which usually does not cause 

instability [29–32]. Verification indeed shows the absence of instability. Therefore, 

of greatest interest is the large-scale type of oscillation with harmonics n=1, N=3, 

which displaces the kinematic center of the system and causes not only 

inhomogeneity, but also “ovoid” deformation (in Chandrasekhar’s book [33], only 

homogeneous states of a liquid medium in a perturbed state are considered , in 

accordance with which sometimes this type of oscillation is also called “pear-

shaped”). If we project the system onto the (x, y) plane (i.e., look at the model 

along the z axis), having previously divided the system conditionally into a set of 

spherical shells, then, upon the onset of egg-shaped instability, their projections 

will take on the shape that is obtained when a lying egg is projected onto plane 

z=const. Such a picture is also observed when considering the density isophotes of 

individual galaxies or clusters. Similarly, a number of edge-on galaxies are known 

to have significantly different thicknesses on both sides of the nucleus [34]. 

 Note that the instability condition obtained below also applies to the cases 

n=1; N=5.7, . . . , since the quantity N does not enter into equations (2.74') and 

(2.75') in any way. In general, such n and N can be called dipole-odd perturbations. 

Substituting n=1 into (2.74’) and (2.75’), we write each of them for 0 and 1. 

Noting that )(
2

F)(
)2(

0
Г)(

)1(
1

Г   , and introducing the notation )(
)1(

0Г)(1F    

and )(
)2(

1Г)(3F    , we have 

)31(,
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
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
 
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
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
               (2.77) 

where 

)(2sin)
2

1()(1)cos()(Г                                (2.78) 

if 

)2,1j(,1jFsin)
2

1(jF)cos()(j                           (2.79) 

 System (2.77) of three differential equations has a critical value , which 

separates the regions of stability and instability. Let's find this value analytically. 
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To do this, we lower the order of the system (2.77), eventually bringing it to one 

differential equation of the 2-nd order, which is more convenient and makes it 

possible to find the exact value of  in the critical state. 

First, we reduce the number of equations in (2.77) by one using identity 

(2.46). Considering in (2.46) the sum }jF{1U}1jF{0U   for j  1  and 2, we obtain 

the connection of the first derivatives 

).(j'Fcos)(1j'Fsin)(1j'F)cos()(j'Fsin              (2.80) 

 Compiling the difference }1jF{1U)
2

1(}jF{0U    and using (2.79), 

respectively, we find 
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where 1jFcos)
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1(jFsin)(jH   . It is easy to show that 
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                    (2.82) 

  Substituting (2.82) into (2.81), we have a system of two differential 

equations for 1() and 2() 

j2
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




 



     (2.83) 

 Analysis (2.83) shows that the system has the following particular solution for 

arbitrary : 

 sin)cos
2

21(2
~),

2
sincos)(

2
1(1

~             (2.84) 

 

  

Using this particular solution, a certain invariant relation can be deduced 

from (2.83) [75]. Indeed, multiplying the equations for 1  and 2  by 

1
~4

)cos1(  


   and
2

~4)cos1()21(   , respectively, and then adding 

them, we take the integral on both sides over an arbitrary interval (b, g). Repeating 

the same calculations with the roles reversed )
2

,
1

(   and )
2

~,
1

~(   , we subtract 

one equality from the other. Then all terms that are symmetrical with respect to the 

replacement )
2

~,
1

~()
2

,
1

(    drop out and remain 
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for any b and g. Consequently, 
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~
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~I                                   (2.86) 

is an invariant. Then we can exclude the found particular solution (2.84) from 

(2.83) by introducing a new function 

21
~

12
~                                            (2.87) 

and composing an expression like 

I
2

'
1

"   .                                            (2.88) 

Substituting (2.87) into (2.88) and getting rid of the second derivatives using 

(2.83), we select  j  so that the coefficients at  ' j  vanish.  

So we find that 

.
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                                (2.89) 

After that, in (2.88) some terms remain without derivatives of 1 and 2 . 

They can be expressed through () using (2.84). Then, taking into account 

(2.86), we have the desired equation 
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2

cos
2

12cos177(')cos75(sin")
2

cos
2

1(        (2.90) 

 According to the theory [26], a particular periodic solution of equation (2.90) 

must exist at the critical point with respect to . Analysis (2.90) shows that it has a 

periodic solution 

 28
13

cos14
52

cos
13

cos)(                                 (2.91) 

on condition 

.318366.010/7


                               (2.92) 

Therefore, the corresponding critical value of the anisotropy parameter 

6515.1]13/10[2)T/rT2(                             (2.93) 

and the critical value of the virial parameter (1.44) is equal to 

1634.010/710)U/T2(                                     (2.94) 
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The latter is approximately twice as large as the corresponding value for 

ellipsoidal perturbations if we consider the region of instability of radial motions. 

In our opinion, the question of which of these two types of oscillation modes is 

more dangerous for a non-stationary system cannot be answered unambiguously in 

the general case. We will discuss this issue later (see § 10). 

 It is interesting to know the values of the instability increment for various . 

This requires a numerical calculation (2.90). Below in Table 2.2 we present the 

dependence of the instability increment Inc, the anisotropy parameter  and the 

virial parameter on the pulsation amplitude )1,
31

(  . In this case,  rW  and  

 W  are given in units 
3
maxR/

2
0R

2
MG  , and the increment - in units 0 . 

As can be seen from this table, in the region of instability, the growth rate 

increases with increasing  to 0.89, and then begins to decrease and tend to zero. 

Consequently, at the point 1 there is no exponential solution, which can also be 

shown analytically: equation (2.90) with 1 has a particular periodic solution 

)cos1(
2

sin   . It is easy to find a corresponding one particular solution 

for :)(
1

F   )2/(tg
1

F  . The latter indicates that at 1 there is a power-law 

instability. Note that the limit 1 is special, since in this case the formula for the 

oscillation period in (1.30) and the principle of averaging over the period lose their 

meaning. Therefore, this case will be studied in detail in Chapter 4. It is also of 

interest to compare increments and egg-shaped types of instability. We discuss this 

issue in detail in Section 10. 

                                                                                                      Tab. 2.2 

  Inc   
W  rW  

0
)/2( UT  

0.836 

     0.84 

     0.85 

     0.86 

     0.87 

     0.88 

     0.89 

     0.90 

     0.95 

       0.975 

      0 

1.17 

2.40 

2.72 

3.00 

3.14 

3.81 

3.13 

1.89 

0.90 

    1.652 

1.686 

1.796 

1.920 

2.056 

2.210 

2.386 

2.588 

4.406 

7.000 

    0.301 

0.299 

0.292 

0.284 

0.277 

0.268 

0.258 

0.248 

0.182 

0.132 

   0.249 

0.252 

0.262 

0.273 

0.284 

0.296 

0.308 

0.321 

0.402 

0.461 

   0.164 

0.16 

0.15 

0.14 

0.13 

0.12 

0.11 

0.10 

0.05 

  0.025 
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§ 9. Instabilities of a rotating pulsating models 

 As is known, collisionless spherical systems, in principle, can also be 

rotating [35, 29]. Therefore, and, in addition, if one is interested in the issues of 

instabilities of nonequilibrium models, it is very interesting to elucidate the role of 

rotation in nonstationary stages of evolution, in particular, in the state of a 

protogalaxy, from which, for example, an elliptical galaxy is formed. Under what 

conditions does rotation have a stabilizing or destabilizing effect? To what extent 

will the marginal state change due to the effect of rotation E, and what will be the 

behavior of the detected instability zones in this case? These questions require 

finding the corresponding NADR for rotating models. 

 As long as model (1.29) was non-rotating, it could be rotated arbitrarily due 

to the presence of spherical symmetry. This circumstance, by analogy with the 

results of the analysis of the stability of stationary models, allowed us each time to 

take simplified perturbation potentials in the form (2.11) and (2.13). In the 

presence of rotation, obviously, the above degree of freedom is lost and therefore, 

for example, instead of sectorial forms (2.11) of the perturbation potential, one 

should take a more general form, for example, 

n
)z3ey2ex1e()(0a                                       (2.96) 

where the coefficients e j  satisfy the identity 0
3

1
.
j

2
je 



. 

However, it is quite difficult to carry out theoretical calculations with the 

potential (2.96), which can be seen even from the analysis of the stability of 

stationary systems [2]. Therefore, in order to move from partial forms to more 

general perturbations in calculations, we will use an analytical technique associated 

with the rotation of the studied nonlinear model by some arbitrary angle 0 , for 

example, around the x axis.  

Then in (1.38) 

0sinzv0cosyvyv,0sinz0cosyy                        (2.97) 

and to derive the non-stationary dispersion equation, we will deal with the rotated 

model 

)],0(C
bv

v
1[)bvv()avrv(

bv2

)t(



                         (2.98) 

where 

).cossinsincos(cos0sinsinsin0cos)0(C                 (2.99) 
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In this case, you can temporarily work with private forms   . And to 

eliminate the dependence of the dispersion equation on the coordinate system, later 

we will move on to the vector form of the system's response to a perturbation for 

an arbitrary orientation of the angular velocity vector 


  relative to the z axis 

associated with  . 

 

9a. “Surface” oscillations. Ellipsoidal  mode 

 Thus, for the model (2.98), one can still take the sectorial form of 

perturbation (2.11), i.e., in (2.96) we temporarily consider 11e  , i
2

e   and 03e   

.  

Then in (2.16) we calculate 

 









ddvrdvv1n)]sinicoscos(Hv

sin)HrvrH[(
)1n(ie1n

1
iy

1
x







 






                 (2.100) 

 where the integral takes into account (2.8) and (2.20). We perform integration 

over rv and v  and go from  to   according to the formula (2.22 '). Then, taking 

the number 
1n

)sinr(


  out of the integration, we get 

  1n
)iyx()1,(1nC

1n
1iy1x





 


,                           (2.101) 

where, taking into account (2.99) 

.d)]
i

ectg0sini0(coscos1[

2

0

1n
)cosH

r
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iH
r
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H(
2
1)1,(1nC



















               (2.102) 

The last integral can be expressed in terms of the Legendre polynomials 

using (2.36). Then after some transformations we have 

















sinh

(cosh)
1n

Pcosh(cosh)
n

P

)iectg
0

sini
0

(cosi(cosh)
1n

P
1n

W)1,(1nC 


           (2.103) 

For surface oscillations, as always, we calculate the centroid displacement 

r , first substituting (2.101) into (2.16), i.e. 
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









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1
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1n
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)iyx(
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)yyxx(

R

1
r              (2.104) 

Next, you need to move from ( )x iy n  back to  . But first, note that the 

scalar product of the angular velocity vector )
0

cos,
0

sin,0(  


 by the 

vector 

)n)iyx(
0

ain,1n)iyx(zn
0

a,1n)iyx(z
0

ain(gradr 


  

gives us the identity 

)gradr()
i

ectg
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

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
 


           (2.105) 

Therefore, (2.104), taking into account (2.103) and (2.105), can be rewritten 

in the form 

),(
2

0

)(
)(

1
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where 


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 It is known that the displacement value 


r  corresponds to a simple layer 

r)t(   and the response of the system's own potential 

r
1n2

RG4



 




                                          (2.108) 

Here we are talking about the internal potential, and the external potential in 

this case may not be used to derive the dispersion equation. Therefore, in the 

interior of the system 

)](
n2

Y)gradr(
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1
)(

n1
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)(
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a
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
 .               (2.108’) 

Now we can abandon the condition that   is proportional to the sectorial 

harmonic. Let   have a more general form, given by us in (2.96). This expression 
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can be expanded into a Fourier series (for example, in the parameter 

)
2

ih
1

h/()
2

ih
1

h(   and, in accordance with the theory of spherical functions, the 

terms can be distinguished 

)(cosm
nP

im
enr)(

0
a 


                                       (2.109) 

where )(cosm
nP   is the associated Legendre polynomial. Let us return again to the 

phase density in the form (1.38), i.e. let's move to the coordinate system associated 

with the axis of rotation of the model, after which we can use the expansion (2.96) 

into harmonics (2.109). Taking into account the invariance of the vector notation in 

(2.108'), we have 

.δΦμim
δΦ

μ)
x

δΦ
y

y

δΦ
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Thus, for each value of the azimuthal wave number m, the perturbation 

calculation will be self-consistent if the condition [23] 
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Yμim)(
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a  



                           (2.110) 

  When deriving (2.110), the relations 
3

0
   and 2

04 3  G /  are 

taken into account. This equation is the NADR of the problem of the stability of 

the rotating model (1.38) with respect to surface perturbations. Substituting into 

(2.110)   0  , we confirm the previously known result [111] on the complete 

stability of the corresponding equilibrium model with rotation. However, in the 

presence of pulsation, instability necessarily occurs. In the case   0, first of all, it 

is necessary to obtain a physical picture for ellipsoidal perturbations with n=2. 

Then from (2.110), taking into account (2.15) and (2.107), we have 
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here 

)
1

cos1()cos1(

)
1

(cossin
1

sin)(cos21
)21(sinh









                     (2.112) 

Therefore, introducing the notation 
2

Fsin
21

)21(
1

F)(cosF   , where 
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we have the following system of 4th order differential equations [23]: 
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From here, one third-order differential equation for the function F( )  can be 

obtained using the system order reduction method given in § 7b. Skipping 

intermediate calculations, we present the final equation 

0
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


       (2.115) 

As can be seen, for   0  we have NDR (2.51) for a non-rotating system. 

In (2.115), the azimuthal wavenumber m can take only three values: 0, 1, and 2. 

For m =0, the instability generates a biaxial ellipsoid with rotation that is flattened 

or extended along the z axis. The corresponding instability conditions for an 

arbitrary  1 are the same as in the case of   0  (see § 7b). When m =1, we have 

a precessing ellipsoid, and when m =2, we have a triaxle ellipsoid. The case m=2 

corresponds to an analog of a purely bar-like instability. 

Equation (2.115) was solved by us in order to determine the marginal state. 

Figures 3a and 3b show the dependences of the initial value of the virial ratio 

0
)U(2T/  on the rotation parameter    and on the instability increment. As can be 

seen from Figure 3, the rotation effect is destabilizing up to the value 0.922, and 

then only it starts to play a stabilizing role. The point )922.0,1
0

)U/T2((    is a 

branch point with the following properties: a) in the absence of pulsation (  0 ) it 

does not appear and therefore corresponds to a stable state, but in the presence of 

an infinitely small   0 it becomes unstable; b) the calculation shows at this point 

887.0d/
0

)U/T2(d  . 

 Note that the stability interval found above for    0  

127.0
0

)U/T2(084.0                                              (2.116) 
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narrows very quickly with growth   and disappears completely when 09.0 . 

This "island" of stability, as it were, separates the region of vibrational-resonant 

instability from the zone of instability of almost radial motions. These two types of 

instabilities already at small   quickly merge. So even the zone of instability of 

almost radial motions at 05.0  acquires an oscillatory character. 

The presence in Fig. 3 of the narrow island of stability can be explained by 

considering the role of the “restoring” gravitational force, which tends to return the 

deviation from the sphere to its previous state. This force is felt especially at the 

moment of the greatest contraction of the system, and at the moment of the greatest 

expansion it reacts least of all to the “impact”. So, if   is small, and the initial 

value of the virial ratio satisfies inequality (2.116), at the moment of the greatest 

compression, there is a minimum, almost zero, amplitude of the perturbation. 

We now present the corresponding NDE and the results of their solution for 

two more large-scale surface modes [34]. In the case of vibration mode N=3 
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Fig. 3a.   Dependences of the critical values of the initial virial parameter and 

dependences of the instability increments of the ellipsoidal mode; 

azimuth wave number m=1. 
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 Fig. 3b. Dependences for the critical values of the initial virial 

parameter on the rotation parameter and the instability 

increments of the ellipsoidal mode on the virial parameter at 

azimuth wave number m=2. 

  

where the notation is used с   cos , s  sin , e2 21   . 

Graphs are shown in Figure 4 for the values of the azimuthal wave number 

m=1,2,3, since the case m=0 is similar to the case   0 . One can clearly see the 

"island" of stability (especially in Fig. 4(a)) inside the unstable region (shaded), 

which exists at small values of the rotation parameter. At   0 , the "island" 

separates zones with different types of instability: in one region (( /| |) .*2 01660T U 
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) oscillatory instability prevails, in the other ( 0.181
*

0
|)U|(2T/   ) is aperiodic (in 

the case of an ellipsoidal mode, the reverse order takes place, but, like , the 

increments of the region of instability of an oscillatory nature are much greater 

than the increments of the aperiodic one). At   0 , only oscillatory instability is 

noted. Near ( /| |)*2 00T U   we have the instability of radial orbits. The "island" 

decreases in size as m increases. On the graphs, its position is indicated by an 

arrow. Rotation also has a destabilizing character: with increasing values,   the 

instability area becomes noticeably larger, reaching at  1 values 

( /| |) .*2 0 3460T U   (m=1); 0.551 (m=2) and () 0.795 (m=3). Accordingly, the 

increments also grow, which is clearly seen in the corresponding graphs. 

             For mode  N4  
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)cos1(3

1
)(a 490 


        1 4,  , 
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The results are illustrated in fig. 5 [34]. The first thing that catches your eye is the 

qualitative similarity of the dependences 
*

0
|)U|(2T/  on μ  and m, which allows us 

to formulate some regularities (which are also valid for modes up to the 10th order) 

[34, 23]: 

(1) All considered surface modes (N=3; 4; 5; 6; 8; 10) have an "island" of stability 

inside the unstable region. 

(2) With increasing values of the rotation parameter: 

       a) the region of instability grows in the sense of the onset of instability at large 

values of the virial parameter, 

b) "island" exists for small values of  .  

Thus, the rotation acts destabilizing everywhere, while for the N=m=2 mode, with 

values  , close to unity (0,922), the maximum value of the parameter 

0.999
*

0
|)U|T/(2   is observed, after which stabilizing factors begin to act. 
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(3) With an increase in the value of m within any one mode                                                     

a) the size of the "island" of stability decreases,                                                                            

b) the instability of the model for the same values   increases significantly. 

(4) With increasing mode order N: 

   a) the area (on the graphs) of the region occupied by the instability 

decreases, 

   b) the length of the "island" slightly increases (this is most noticeable 

for m=1). 

(5) When comparing the values of the instability increments (except for the 

ellipsoidal mode), they turn out to be the largest for the N=m=3 mode. Graphs of 

comparison of increments of different modes for some values of   are shown in 

Figures 6a and 6b (m1;   0 0 5 10; . ; . ) and 2.3 (mN;   01 0 5 10. ; . ; . ). For 

completeness, the mode increments N=m=2 have been added here. In the case of 

m=1, as can be seen from Fig. 6a, almost everywhere the maximum increments are 

achieved for the ellipsoidal mode, and its separation from the other modes is very 

significant. Some exception is the case   0 .1, when, due to the bifurcation of the 

unstable region, the ellipsoidal mode, for example, for   0  in the range of 

( /| |) [ ; .*2 0 0 06]0T U   values, N=2 mode increments prevail over all, then to 

( /| |) .*2 0150T U   the “triangular” mode N=3 dominates, and then with 

( /| |) .*2 0150T U   only the N=2 mode reigns supreme. The smaller the mode (that 

is, the larger N), the smaller and smaller the increments. The curves of mode 

increments are evenly spaced, that is, there is no significant separation of any mode 

from all the others. Only with an increase in rotation does the gap between the 

increments of the N=3 mode and the rest increase slightly. For m=n (Figure 6b), 

the separation of the increments of the N=2 mode from the rest is already more 

moderate, but at   close to 1.0, the N=3 mode only slightly “lags behind” the 

ellipsoidal mode. 

Some quantitative characteristics are given in Table 2.3. 

                                                                                                

Table 2.3 

 

N 

 

m 

 

island length in units      

Island Width 

in units ( /| |)2 0T U , 

  0  

3 1 

2 

0.15 

0.08 

0.015 
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3 0.05 

4 1 

2 

3 

4 

0.22 

0.11 

0.08 

0.06 

0.012 

5
(*)

 1 

5 

0.25 

0.06 

0.013 

6
(*)

 1 

6 

0.32 

0.06 

0.11 

8
(*)

 1 

8 

0.50 

0.07 

0.007 

10
(*)

 1 

10 

0.64 

0.07 

0.0058 

 

(*): These are the results for the extreme values of m. For 1<m<N, the values of 

the virial ratio correspond to m=1 and m=n. 

 

9b. Oscillations violating the density homogeneity 

 We could study volume oscillations against the background of a pulsating 

system similarly to the case 0, setting the initial form of the potential 

perturbation in the form of sectorial harmonics (2.13). However, as calculations 

show, then you have to deal with multiple amounts, which is cumbersome and 

takes up a lot of space. Therefore, we will show the possibility of deriving the 

NDE with a simplified form of the initial perturbation 
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from which it is always possible to single out individual zonal harmonics. 

 Then 
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Since, according to (2.60), 
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calculation of speed averaging from 
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 with distribution function (2.98) leads to 

the following: 
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where /r
β

HavαHa  , /r
β

H
b

vb  . Further, in principle, by analogy with 

(2.100), one can express (2.119) in terms of the Legendre polynomials, but this, 

unfortunately, does not make it possible to compose the NDE in an invariant form 

here. Therefore, we will have to use Newton's binomial in (2.119), and then only 

calculate the integral over . Therefore, we have 
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Fig. 4   Critical dependences of the initial virial parameter and 

dependences of the instability increments of the "triangular" 

mode; azimuth wave number a) m=1; b) m=2; c) m=3. The 

numbers next to the curved increments indicate the values of the 

rotation parameter. 
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Fig. 5   Critical dependences and dependences of mode increments 

N=4; azimuth wave number a) m=1; b) m=2; c) m=3; d) m=4. 
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Fig. 6.a   Comparison of increments of surface modes at the 

minimum azimuthal wavenumber m=1. The numbers 

next to the curves indicate the order of the mode.  
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Fig. 6.b   Comparison of increments of surface modes at the 

maximum azimuthal wavenumber m=N. The numbers 

next to the curves indicate the order of the mode.  
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We expand the functions of sin also in the Newton binomial according to 

the formula 
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and then, by combining powers cos as sν2k1N   and going all the way 

from θ
s

cos to 
s

(z/r) , we swap the order of summation. Substituting the result into 

(2.119), we have 
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Knowing δz , we calculate the density perturbation by the formula 
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  According to (2.121), on the right side of (2.123) under the sign of sums we 

obtain functions of the form 
1s

z


 and  
1s

z


 . From them, taking into account 

(2.117), it is necessary to go back to δΦ in order to obtain the NDE in an invariant 

form. To do this, together with even k, we apply the identity 
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  The validity of (2.124) and (2.125) can be easily shown by calculating the 

Laplace operator from (2.117)   times and substituting the quantities (N-s)/2 and 

(N-s-1)/2 instead of  . 

On the other hand, according to the Poisson equations πG4ΔδΦ/δρ  . 

Equating the latter with (2.123), taking into account (2.124) and (2.125), we obtain 

an expression for ΔδΦ in terms of double sums in (2.121).  

 Now we can abandon the original form of the potential perturbation in the 

form (2.117) and set it as follows 
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Such terms, in principle, can be extracted from (2.117) by means of special 

transformations [36]. Applying to (2.126) the Laplace operator  times, we obtain 
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Let the direction of the vector 


μ  coincide with the z-axis, i.e. 0
0

β  . Then, 

using (2.127) in (2.125) and calculations of the right side in the expression we just 

found for ΔδΦ , we obtain the following required NDE (see also [23])  
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In principle, individual sums can be expressed in terms of integrals or the 

result of comparing (2.128) with (2.71) can be used, i.e. with case 0μ   . But all 

this does not significantly simplify the resulting NDE as a whole. 

In the particular case when N=3, n=1, from (2.128) we have 
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Substituting our own expressions for a, b and E, we get 
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where the functions νF  satisfy the following system of differential equations 
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In this case, the value m can take two values: 0 and 1. Solution (2.130) for 

m=0 coincides with the result of the corresponding case for 0μ   (see § 8b). The 

case m=1 is shown in Figure 7(a). The critical dependence shows the presence of 

two separate areas of instability, one of which, the main one, is larger and the 

critical values 
0

|)U|T/(2 increase little by little with the growth of ; the other is 

much smaller and starts at about 0.562μ   , reaching to 0.899
0

|)U|T/(2  . In 

the absence of rotation, there are aperiodic solutions of the characteristic equation 

throughout the entire unstable region. 

The same figure shows the results for the N=4, n=2 mode, the NDE of which 

looks like this: 
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9ψ)λcos2(1

2
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  4γ)2s2e22cs(4e  2γ)2s2e22c(c1sγ2e{c1imμ  

                           }4γ)2cs4e3γ)2s2e2cs(22e  . 

The picture here is much simpler. Only one area of instability is observed, 

which increases with both  and m. The mode is on a smaller scale, but Figures 4 

and 8 show that some of its increments exceed those of the ovoid mode. 

Figure 8 compares modes for some  . 
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m=1 (Fig. 8.a, 1.00.5;0;μ   ): mode (4,2) leads in terms of maximum values of 

increments, mode (3,1) takes second place already with 0.1μ  , which in the end 

still yields slightly a little fashion (2,2). 

m=N  (Fig. 8.b) the maximum values are taken for all values of the rotation 

parameter also for the mode (4,2). But the ellipsoidal mode, being in the 

penultimate place, gradually shifts to the second place at moderate , and with an 

increase in rotation to 1, it again finds itself in the penultimate one. On the whole, 

comparison of the growth rates of bulk modes with each other shows a more 

complex picture than in the case of surface modes. 

 



69 

 

 

Fig. 7.   Critical dependences and dependences of increments of a) 

ovoid and b) ring-shaped modes. The numbers next to the 

curves indicate the values of the rotation parameter.  
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Fig. 8a.   Comparison of volumetric mode increments at the 

minimum azimuthal wavenumber m=1. The numbers 

next to the curves indicate the order of the mode (N,n).  
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Fig. 8b.   Comparison of increments of bulk modes at the minimum 

azimuthal wavenumber m=N. The numbers next to the 

curves indicate the order of the mode (N,n).  
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§ 10. Some remarks 

 So, we have obtained the exact integral and differential forms of the NDR 

for both non-rotating (1.29) and rotating (1.38) pulsating models separately in 

cases of surface deformations of volume disturbances for an arbitrary value of their 

oscillation index. Above, up to numerical values, the NDR of large-scale 

disturbances have been studied so far, although it is possible to study with the same 

success individual small-scale oscillations, when N and n take large values up to . 

Note that surface deformations of the spherical model under consideration are 

characterized by the presence of vibrationally resonant zones of instability and 

islands of stability, while this is not the case for volume disturbances. The 

discovered islands of stability (in particular, for n=2) quickly disappear when small 

rotation is turned on. For example, in the case of ellipsoidal perturbations in a non-

rotating model on the scale   there is a narrow stability zone (0.873, 0.916), 

which, when rotation appears, tries to become an “island”, but is very 

imperceptible. In this case, the growth of the perturbation in the region 5/21λ   

is obviously due to the Jeans instability of purely radial motions. 

 The instability on the average of an isotropic model with the value 3/5λ   

is apparently associated with resonances between oscillations of individual 

particles and collective motions. It is interesting that as  grows, the vibrational-

resonance zone of instability quickly merges with the region of instability of radial 

motions. At small , but large , the region of instability is reduced due to the 

increasing role of Coriolis forces. 

  

 Further, we should dwell on at least the following two questions in 

somewhat more detail: a) on the application of the analysis of ellipsoidal 

perturbations; b) by comparing different types of instabilities occurring at different 

values of the oscillation indices. 

 

10 a. On the question of the origin of elliptical galaxies 

 Although our main goal is to build accurate nonlinear nonstationary models 

of the early stages of the evolution of collisionless self-gravitating systems and to 

reveal instabilities against the background of collapse, but here we must also 

indicate possible applications of the results obtained. In particular, the cases of 

large-scale oscillation modes considered by us in § 7b and § 9a are related to the 

problem of the origin, for example, of elliptical galaxies, since the perturbation 
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itself can be considered switched on at the moment the collapse begins (

0ψ0,t  ).  

As is known [1, 2, 37], for a long time it was believed that the origin and 

external shape of elliptical non-spherical galaxies are due to their rapid rotation, 

and the observed regular distribution of luminosity and density was associated, 

starting with the work of Linden-Bell [38], with violent relaxation. At the same 

time, most authors believe (see reviews of references in [39-41] and [26]) that not 

far from the state of the maximum expansion of the protogalaxy (which can lead to 

the formation of an elliptical rather than a spiral galaxy), the process of star 

formation is mainly fast ends and then there is a free fall of particles - stars, leading 

to collapse and violent relaxation. Our nonlinear model, firstly, can describe the 

collapse of a collisionless system purely from dark matter, and secondly, in the 

case of a collapsing almost stellar system, it can start working immediately as soon 

as the collisionless approximation with self-gravity taken into account becomes 

acceptable. Such a scenario is called the non-dissipative collapse theory. Among a 

number of papers in this direction, the article by Gott [42] stands out, where the 

phenomenon of the collapse of a rotating spherical system with axial symmetry 

was studied in detail. As a result of the rotation effect, he obtained ellipsoidal 

configurations E1-E5 with isophotes and rotation curves close to some of the 

observed ones. However, it soon became clear that the rotation rates of the 

observed elliptical galaxies are very small and far from sufficient to cause the 

corresponding oblateness [43-45]. Then they began to carefully study the rotation 

curves, the laws of distribution of brightness and density, the problems of their 

modeling, etc. But no one had any doubts that it was the process of violent 

relaxation that took place at an early stage. Lynden-Bell believed that due to this 

collisionless relaxation, the traces of the initial non-stationary state and the 

“memory” of it are completely erased as equilibrium is approached, and a certain 

velocity distribution close to the Fermi-Dirac distribution is achieved. However, a 

detailed analysis shows that a lot depends on the initial state, and in the final state a 

distribution [46-48] is achieved that is completely different from the Lynden-Bell 

function, and the “memory” of strong non-stationarity does not disappear [27, 39, 

48-50 ]. In particular, under certain conditions, a large-scale bar-like instability 

arises, which can significantly accelerate violent relaxation and, at the same time, 

give the system an ellipsoidal shape. 

The condition for the onset of aperiodic instability 5/21λ  , (i.e.  

0.084
0

)UT/(2  ) was found by us long ago [14, 21] in the framework of two 

nonlinear models without rotation ((1.29) and (1.50)). As noted above, this 

instability arises due to the instability of purely radial motions. Interestingly, 

ellipsoidal instability also occurs in stationary systems. As was discovered by 
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Polyachenko and Shukhman [51], then the instability condition is determined by 

the ratio of the kinetic energies of motion in the radial and transversal directions, 

more precisely, by the condition 61.2/σ2
rσ2 


. But this criterion is suitable for 

stationary models, where 1UT/2  . 

During the last two decades, various computer numerical experiments have 

also been carried out on the subject under discussion. Among them, it is important 

to note the result of van Albada [52] and McGleen [53], which states that the 

observed density distributions in elliptical galaxies are obtained only in those cases 

if UT2  , i.e., when the initial state of the collisionless collapsing system is 

sufficiently “cold”. Merritt and Aguilar [54] performed extensive numerical 

experiments in 1985 for three families of collapsing system models with a fairly 

wide set of initial conditions. In this case, the brightness profile satisfied the de 

Vaucouleurs law. The limiting condition of instability found by them then was 

expressed very approximately as 0.20)UT/(2  . The authors of [54] only 

experimentally confirmed that only in the case of the predominance of purely 

radial motions of particles, a triaxial galaxy arises, and in some cases the mass 

distribution shows fluctuations between the states of oblate and prolate spheroids, 

i.e. oscillatory instability. 

  Ming and Choi [28] also considered an N-body experiment with the 

collapse of a cold system that initially has an isotropic velocity distribution and 

refined the result of Merritt and Aguilar [54]. By the way, we noted earlier in [24] 

that, on average, an isotropic analytical model (case 3/5λ   ) is unstable with 

respect to ellipsoidal perturbations. Later, Aguilar and Merritt [4] also came to the 

conclusion that a more correct condition for ellipsoidal instability is expressed in 

the form 10.0)UT/(2  . On fig. Figure 9 shows the results of their numerical 

experiment for one particular case. 

 The criterion (2.53) we have found means that for the occurrence of 

ellipsoidal instability it is necessary that at , the total kinetic energy is less than 

4.2% of the potential energy. This criterion is quite well confirmed by the above 

numerical-experimental results, where 5% was obtained (see, for example, [4]). 

And there should not be an exact match, since in numerical experiments it is 

impossible to consider too many particles, there is also a machine accumulation of 

errors, and, in addition, the existing differences in the models, in particular, our 

neglect of the initial inhomogeneities in theoretical calculations densities, the role 

of which, on average, probably consists in destabilization. But the main thing is in 

determining the corresponding instability criterion at least with an accuracy of 

0.02 in terms of the virial parameter, and not with an accuracy of 0.1, as was the 
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case in [54, 28, 4] in the direction of numerical experiments. Unfortunately, so far 

the authors of numerical experiments have not been able to reveal the zone of 

vibrational-resonant instability 0.389)(0.127;
0

)UT/(2  . Obviously, it should also 

exist in numerical experiments, if the model is not strongly inhomogeneous. In 

addition, these numerical experiments are still very approximate and require 

further improvement. Therefore, one can only regret that the results of our earlier 

works [14, 21, 24] were previously ignored by the authors of papers [4, 28]. 

 The extent to which the above picture of the instability of ellipsoidal 

perturbations changes taking into account the effect of rotation can be seen from 

Fig. 3. It is noteworthy that the rotation acts in a destabilizing way up to a certain 

finite value , if we are talking about a purely bar-like instability (m=2), and then a 

fast rotation can just have a stabilizing effect with an increase in . The latter, 

probably, can still be associated with the effects of non-stationarity or nonlinear 

resonant phenomena. Thus, we can conclude that the evolution of a nonlinear 

system strongly depends on the relationship between the degree of its 

nonstationarity and rotation. 

In numerical experiments, it is difficult to detect a narrow region in the form 

of an “island” of stability or instability, although it is also preserved in the 

nonlinear regime. The presence of a tiny “island” in Fig. 3 says that the instability 

of radial orbits acts up to a certain value . In this case, the island conditionally 

subdivides the regions of instability of different nature. It should be emphasized 

that already at small  the “island” of stability begins to disappear and the regions 

of instability of radial motions merge with the region of vibrational-resonant 

instability. Unfortunately, in numerical experiments, the role of rotation in 

determining the criterion for the occurrence of ellipsoidal instability in the period 

of non-dissipative collapse has not been fully studied in order to find the marginal 

dependence of the virial parameter on . 

We note that we have indicated only a possible application of some results of 

the previous sections, without asserting the indispensable validity of only the 

concept of a non-dissipative theory of collapse. Those interested in the dissipative 

theory of evolution can familiarize themselves with the problems there, for 

example, in [40, 55]. The role of dissipative processes in the form of “second 

viscosity” in the evolution of elliptical galaxies was studied by us for a mixed 

stellar-gas model [7]. We believe that the dissipative and non-dissipative concepts 

should in fact complement each other and cannot be opposed in order to choose 

one of them. 
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Fig.9  Collapse starting from a spherical state (2T/U)0=0.01 [4]. 
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 Note that we considered the behavior of small asymmetric perturbations 

against the background of a nonlinear model. In numerical experiments, although it 

is possible to study the problem immediately in the nonlinear case, the task of 

identifying the role of individual types of oscillation modes against the background 

of collapsing galaxies is very difficult and has not yet been completed by anyone. 

In particular, the predominance of the ovoid instability over the ellipsoidal one, at 

least at the earliest stages of evolution, has not yet been noticed. We will discuss 

this fact below. 

 

10b. Which instability is more dangerous? 

 Probably, this question cannot be answered unequivocally when studying the 

stability of non-stationary models, since in the general case everything depends 

mainly on the initial conditions in the protogalaxy (or proto-cluster). 

 To be convincing, let us compare the increments of large-scale surface and 

bulk oscillations. On fig. 7 and 8 we present a comparison of the increments of the 

main types of large-scale instabilities. As can be seen, in the interval 

0.16
0

)UT/(20.01   the increments of the ovoid instability are clearly larger 

than those of the ellipsoidal one. Therefore, if the evolution starts from the value of 

the virial parameter from this interval, then in the initial period before the 

appearance of ellipticity, a weak core arises in the system, with respect to which 

the spherical symmetry is lost, and the picture resembles an ovoid shape. By the 

way, in numerical experiments, this picture can be taken as an elliptical galaxy E1, 

and maybe even E2, although the ellipsoidal mode has not yet fully manifested 

itself. If in a purely nonlinear regime also the ovoid perturbation prevailed over the 

ellipsoidal one, then further, nonlinear development of the instability would lead to 

the birth of a satellite near the main system. However, this does not occur in 

numerical experiments; in the nonlinear regime, the ellipsoidal instability still 

becomes stronger if 1.0
0

)/2( UT . The fact indicated here, in particular, shows 

that in a numerical experiment one cannot limit oneself, for example, to 

calculations of only a positive value of x, conditionally assuming symmetry about 

the y or z axis. This kind of artificial requirements just “freeze” the egg-shaped and 

other types of instability that give rise to an irregular shape. 

 Note that in the interval 0.389
0

)UT/(20.16   the ellipsoidal instability is 

oscillatory, but it has increments, on average, twice as large as the maximum value 

of the instability increment of almost radial motions. And in the area 

0.01
0

)UT/(2   the curves in Fig. 6 merge and therefore their analysis requires 

separate consideration. 
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It is clear that in reality the evolution of a non-linear self-gravitating system 

depends on the entire spectrum of oscillation types, and the latter interact with each 

other in a complex way. But until now, everyone believes that the main type of 

perturbation is always the bar mode, i.e. in this case, the ellipsoidal type of 

oscillation. This opinion remained based on the results of studying the stability of 

stationary models. If they take into account at least a little non-stationarity in the 

initial state and then study the evolution of even a small perturbation against its 

background, the results can change significantly. A complete analogy with the 

theory of stationary systems and the assumption of the largest value of the growth 

rate for the bar mode were recently made, for example, by the authors of [56], who 

calculated on a computer the critical value of the Hamiltonian for the problem of 

the stability of a pulsating spherical system. The critical value they found, these 

authors automatically attributed to the bar fashion. Since their model actually 

coincides with ours (1.29) (which they did not notice), it was very interesting for 

the author of the book to check the above-noted property of non-stationarity. Our 

exact calculation has shown that their main incremental instability and the value of 

the Hamiltonian correspond to the critical pulsation amplitude 𝜆𝑐𝑟 = √7/10, 

which has nothing to do with the bar mode, but is related to the oscillations m=1, 

N=3. 

 It is also necessary to give an answer to the question: is it possible to express 

in a concrete form the general criterion of instability for a nonstationary one. 

pulsating spherical model and what exactly its parameters are the main ones. In 

order to find a more or less exhaustive answer, it is advisable to first carry out the 

same calculations for at least one more nonlinear model. 
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CHAPTER III. ANALYSIS OF THE PROPERTIES AND STABILITY OF 

PULSING GENERALIZATIONS OF THE CAMM MODEL 

 

§ 11. On the properties of the perturbation of the  

potential and separability, simplifying the derivation of the NDE 

 

Now that, using the example of the simplest nonlinear model, we have 

revealed the essence and degree of complexity of the problem of the stability of 

pulsating models in general, it is necessary to draw some conclusions also 

regarding the method of studying physically admissible states of non-stationary 

spherical configurations and highlight useful properties. Starting to analyze the 

pulsating versions of the Camm models, we note that they are inherently more 

complex than the non-stationary models considered in the previous chapter. 

Therefore, it will be useful for us to note the following properties. 

 

11 a. Four properties of the pulsating model 

 

1. General property of the perturbation potential. It should be 

emphasized that, just as for the corresponding stationary models, the choice of the 

initial form of the perturbation potential in the form of sectorial or zonal harmonics 

is indifferent to the nonstationary analogs constructed by us when deriving the 

NDE. 

Obviously, this property is associated with the presence of spherical 

symmetry in the non-stationary models under study. However, the latter is violated 

when the rotation phenomenon is included in the model, which requires a special 

approach in the problem of finding the NDE. 

2. Response property. For all the models considered in this paper, in 

particular, for models of the type (1.29) and (1.50), the response to an additional 

small gravitational field nδΦ  in the form of a polynomial of degree n creates a 

perturbation of the density or displacement of the boundary, which correspond to a 

potential nδΦ  with a polynomial of the same degree n.  

3. Property of rotation. In the presence of rotation in a nonlinearly 

pulsating model, each value of the azimuthal wave number corresponds to a certain 

type of potential perturbation, and the latter for surface and volume fluctuations, 

respectively, have the form 
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When analyzing non-rotating models, the azimuthal index m of the functions 

 cosθ
m
nP does not affect the growth rate and can be omitted when considering the 

functions  cosθ
m
nP . Note that the selection of individual harmonics is completely 

possible for all the models we are considering, and in the general case we would 

have to take the sum over m.  

 Properties 1-3 also took place for a number of stationary [13, 29] spherical 

models and are proved in a similar way. But the following remarkable property 

necessarily requires proof. 

 4. Separability property of the model (1.50). For a given coordinate, for 

example, z, the distribution of velocities over the corresponding velocity vz 

component does not depend on the other two coordinates x and y of the point 

where the velocity diagram is constructed, namely, for model (1.50), the formula 
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where   212
λ1λsinψ/c   and, without loss of generality, it is assumed that 

1
0

Ω  , 1
0

R  . This separability property of phase coordinates is satisfied by 

symmetry for any pair from )zv,yv,x(v . Based on (3.1), it is not difficult to show, 

for example, the following 
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Formula (3.2) can be called the weak separability property of model (1.50). 

Obviously, if we take the double integral of Ψyv , then on the right side of (3.2) 

instead of x there will be y. 
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In order to prove (3.1), we first write the model (1.50) in rectangular 

coordinates, and then, taking derivatives with respect to yv,xv  of the radical 

expression and equating the results to zero, we obtain 
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It follows that the center of the velocity diagram for a given value zv  corresponds 

to the case when 
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are equal to zero, therefore 
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From here we obtain (3.1), which was required to be shown. For 0 , (3.1) 

implies the formula for the corresponding equilibrium model (1.50) in the case of 

surface perturbations. Let us show the possibility of using two methods. 

 

11b. Methods for deriving NDE of surface perturbations 

1. The method of one-dimensional functions. In contrast to the method of 

analysis of surface perturbations used by us for model (1.29) and in accordance 

with property I, we take as the initial perturbation potential a one-dimensional 

function of the coordinate, for example, z, i.e., nzδΦ  . Above in §9b, with the 

help of just such an approach, it was possible to obtain in a general form the NDE 

of a rotating model, for which other methods did not give the required result. If the 

model is non-rotating and also possesses the property of separability, then 

consideration Φδ  in the form (2.117), as will be seen below, greatly simplifies the 

solution of the problem. This way of deriving the NDE, in view of its simplicity 

and elegance, can be conditionally called the method of one-dimensional functions 

of coordinates. In this case, two components of the displacement vector 


rδ  are 

always equal to zero 0δyδx  , and only one component must be calculated 
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that 
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Applying Newton's binomial formula here gives the following: 
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Where                          2ΠβHc
α

H
0

H,4Π2Z2Π2b 





  . 

The last integral is 
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With this in mind, you can collect the entire amount back and present the result in 

the form 
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As mentioned above, we always follow the leading term in the perturbation 

expansion. Therefore, in (3.7) we can neglect the term 2z2Π  under the root. 

Further, substituting here the expression for and using (2.36), we have 
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which brings us to the result 
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Substituting (3.9) into (3.5), we pass to the calculation of the displacement 
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Now in (3.10) from nz  back to  ψ
0

aδΦ  or, which is the same, from it we select 

the harmonics of the surface perturbation in the form 
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     cosθnPimexpψ0aδΦ    by the necessary rotations and transformations 

[117]. Calculating the response of the perturbation of the potential according to 

formula (2.108) and reducing both parts of the equation by δΦ , we obtain the 

connection condition, which we call NDE  
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It is possible to convert this equation into a differential form by first dividing into 

 cosθ/dndP  functions with arguments ψ  and 
1

ψ . We perform a similar operation in 

the next section. And now we will show the possibility of deriving the NDE in 

another way. 

2. Method of averaging. Let us use formula (2.21) obtained by us in the 

problem of stability of model (1.29), but taking into account the differences in the 

models under consideration. We know from Chapter I that the difference between 

models (1.29) and (1.50) is that in the second model the transversal velocity 

component 


v  does not have a specific value at each point, but fills the interval 

 mv0, , where 
2

R/ΠΩmv  . However, the average value of the radial component 

of the centroid velocity coincides with the corresponding value for the model 

(1.29) and is equal to av . Therefore, to analyze the stability of surface 

perturbations in model (1.50), it is necessary to first average (2.21) over 


v . To 

this end, we integrate the right-hand side of (2.21) with (2.22) taken into account, 

multiplying it first by the number of particles 


dvπv2  in the interval 

] dv+v,[v


 and dividing by the total number of particles mπv . Having made 

the change of variables pmvv 


, we finally have  
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Here, generally speaking, one can get rid of integration over p, but as the analysis 

shows, this leads to some uncertainties in the subsequent basic equations. On the 

other hand, the integral over  can be expressed in terms of the Legendre 

polynomial, but it is easiest to leave the NDE  ψτK  in the form (3.13) until the 

end of the derivation, and use only the expression under the sign of the integral 

over  in the calculations. 

The further course of reasoning is the same as in §7a. Therefore, without 

giving the intermediate stages of the calculation, we write the result itself [21]: 
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and the function  ψτl  again satisfies equation (2.33) and is related to  ψ
0

a  by 

(2.34). 

 Consequently, we managed to write the NDE in such a way that its structure 

basically has the same form as in the case of model (1.29). This makes it easier to 

analyze the frequency types of fluctuations and compare the results with the case 

of a nonlinear model in the form (1.29). 

If we consider the largest-scale mode with n=2, which corresponds to the 

ellipsoidal type of perturbations, we find that the function  ψ
0

a  coincides exactly 

with (2.43). 

  

Hence it follows that the same critical values of the pulsation amplitude 

5/21λ  , 0.873 and 0.611 determine the regions of stability and instability for 
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model (1.50). The coincidence of the results for two different models at n=2 means 

that in this case the evolution of ellipsoid disturbances is controlled by changing 

only the centroid velocity, and the difference in the velocity diagrams of the 

models has no effect. This was not obvious from the very beginning and is 

somewhat of a surprise. It turns out that the case n=2 could also be studied in a 

hydrodynamic way. But, obviously, starting from n=3, the NDE of these models 

and the results for the critical values of the pulsation amplitude will clearly differ 

from each other. 

 

§ 12. Analysis of volume fluctuations 

 

The evolution of volumetric fluctuations superimposed on pulsating models 

(1.29) and (1.50) proceeds in completely different ways. Therefore, their analysis 

is also necessary for model (1.50). In order to show explicitly the validity of the 

assertions of properties 1 and 2 given in the previous section, and also to have 

control over the results, we consider below two cases with different forms of the 

initial perturbation of the potential. This is also important from the point of view of 

the methodology and its application in similar problems. 

 

I. Method of sectorial harmonics 

 Let the initial form of the perturbation potential have the form (2.13), i.e. 
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Then, to calculate the response for other characteristics, we use the formulas in 

(2.17) and (2.57), where now, in contrast to model (1.29), the function 
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1
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be taken outside the averaging sign. Therefore, you must first calculate 
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according to the following formulas: 
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 The calculation of the averaged expressions in (3.17) will be carried out by 

expanding each function into a binomial series, then averaging over the space of 

velocities and presenting the results again in the form of finite sums. Here we use 

formulas (2.60) and (2.63). Therefore, in contrast to (2.18), the problem is reduced 

to calculating the averages of 
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where /rav
β

HαH
0

H,avrvrv  . In [23,62], we presented a method for 

deriving the general averaging formula. Counting in formula (A. 1) in [62] 
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in which connection 
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Based on (3.18) - (3.20), after some algebraic transformations, we obtain 
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Here the function 
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and it is surprising that it depends only on the index N, while the dependence on 

the number of the spherical harmonic n disappears. 

By analogy, one can get 
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Knowing (3.23), it is easy to derive the following formula 
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Interestingly, (3.24) has a similar form to (3.21). Using (3.21) and (3.24) in (3.17), 

we find 
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Next, we calculate the volume density perturbation 
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On the other hand, the Poisson equation for the initial perturbation of the potential 

gives the following expression 
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Equating (3.26) and (3.27), taking into account (3.25), we obtain the desired NDE 
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We note that this NDE of volume fluctuations, in contrast to the analogous 

equation for model (1.29), on the contrary, does not depend on the index n in any 

way. 

In the study of special cases, the integral form of the NDE may turn out to be 

inconvenient. Therefore, (3.28) should be written in differential form, which 

requires, first of all, the separation of variables in the expression for the function 

 
1

ψψ,
1N

K


. To do this, we first express  
1

ψψ,
1N

K


 in terms of the Legendre 

polynomials, considering sine
2

ΠW
β

HWcose,
0

H  . Then from (3.22), taking 

into account (3.20), we find 

 

    
 

 

 cosed

cose
N

dP

1NN

1N
W2

cose
1N

Pcose
N

Pcose

e
2

Nsin

1N
T2

1N
K















.     (3.29) 

If we introduce the designation 

      ,cos
λcosψ1

λcosψ





    




sin

cos1

sin
21

)
2

λ1(





,   cos1  ,       (3.30) 

 

then cosη
1

sinεsinε
1

cosεcosεcose   and we have the opportunity to use the 

addition theorem [57] for the polynomial  coseNP . Therefore, we easily find 
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 

 

 

   

 

 

   

1sinεsinε

1cosεν
N

Pcosεν
N

P
2ν

N

1ν !νN

!νN
2

0η
cosηd

NdP

cosed

cosηd

cosed

coseNdP



 












   .  (3.31) 

 

Substituting (3.29) into (3.28), taking into account (3.31), we find 

 

 
 

 

 

 

 
 ψνL

sinε

cosεν
N

P
2ν

N

1ν !νN

!νN

3Π1NN

N1
λcosψ112

ψ0a 
 








 .          (3.32) 

Here 

       
 

1dψ

1sinε

1cosεν
N

P
S1ψ0a1ψ

3Π
ψ

1N
1λcosψ1ψνL 




 .         (3.33) 

 

Only now, when the variables   and 
1

  are completely separated, can we write 

down the differential form of the NDE, which follows from (3.33) and is a system 

of ordinary differential equations of order 2N: 

 

 
 

   
 

 cosεν
N

P
ν

L
N

1ν !kN

!kN2ν

ε2sin

cosεν
N

P

1NN

12
ψΛL 

 








.          (3.34) 

 

Note that (3.34) has a special advantage over (3.28) if N>>1. 

 

 

II. Method of one-dimensional functions 

 

II.I. We are talking about the method (see § 11b), where the initial form   was 

taken in a form proportional to the power function of the z coordinate. In the case 

of volume perturbations, we also try to take 

 

 
N

zψ
0

aδΦ  .                                (3.35) 
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Then by analogy with calculations (3.5) - (3.9) we have 

 

 

  1
dψ

ψ

cosed

cose
N

dP

E
1N

W

1N

1N
z2

δz 











  .                    (3.36) 

 

Let us replace 
1N

z


 in (3.36) by 
1N

z


, and from (3.35) select 

   cosθnP
N

rψ
0

aδΦ  . Then the corresponding density perturbation, taking 

into account formula (3.29), 

 

  1
dψ

1N
KE

ψ
1N

W

ψ
0

a

ΔδΦ

3
Π

0
ρ

δρ






  .                 (3.37) 

 

Equating the latter and   πG4δΦΔδρ  , taking into account 3πGρ4  , we 

obtain the NDE exactly in the form (3.28). 

II. 2. The obtained identical forms of the NDE of volume perturbations give 

us, as it were, a hint that, in principle, the initial form of the potential could be 

taken as 

 

   Rz
Ν

Ρψ
0

aδΦ   .                          (3.38) 

 

Then it makes sense to pose the problem of the possibility of finding the 

corresponding point of the form of natural fluctuations for the nonlinear model 

(1.50). But first we show the usefulness of considering (3.38). 

Perturbation (3.38) corresponds to the displacement 

 

 
 

 1ψψR

βΗzvαzΗ

1R

1z
,1dψ1ψψ,E

ψ

1dz

1R1zΝdΡ
δz







 








 .       (3.39) 
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Using the separability property (3.1), we have 

 

 
zdw

2/1

2

0
Π

2
zw

1
0

Π

0
Π

1
dz

1
/R

1
z

Ν
dP

0
πΠ

2

1
z

Ν
dP





























  ,        (3.40) 

 

where ,
2

22
0






  z

2
z/Πczvzw  . Taking into account the possibility 

of substitution z/dw
N

dP1
β

H
1

/dz
N

dP  , let us perform integration by parts in 

(3.40). Then, introducing the notation 
0

/cos  zw , we have 

 

 











 π

0
dξ)

1
/R

1
(z

N
Pcosξ

0
Π

β
πH

2

1
dz

N
dP

 .              (3.41) 

 

It is easy to show that cossinsincoscos
1

/
1

 eeRz , where 

W)2/(Π
β

Hsine,
0

ΠΠsin   (see (2.36)). Therefore, in (3.41) one can apply the 

well-known addition theorem for the Legendre polynomial. Then it is easy to make 

sure that when integrating over , all the terms of the sum, except for one (terms 

with 1
N

P ), make a zero contribution. As a result, we get 

d(cose)

(cose)
N

dP

dz

(z/R)
N

dP

1)N(N

1
W2

1
dz

N
dP




















 .               (3.42) 

 

Therefore, substituting (3.24) into (3.39), taking into account (3.38), we find 

 

 













ψ

1dψ
d(cose)

(cose)NdP
E1W

3Π0a

Δ(δΦ)

1)N(N

0ρ2
δρ


.            (3.43) 
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Further, we assume that it has the general form (2.126). Then, comparing (3.43) 

with the Poisson equation for  , we obtain 

 

   






ψ

1
dψ

d(cose)

(cose)
N

dP
S)

1
(ψ3Π

0
a1W

1)N(N

63Π
0

a  .       (3.44) 

 

As can be seen, (3.44) coincides with (3.28), but there is an insignificant 

difference in the degree of the function T. To eliminate it, in (3.28) and (3.44) one 

should substitute )(
0

a   instead of  
0

aNλcosψ)(1 . The nature of the function 

 
1

,T   is such that it does not play any role in compiling the NDE in differential 

form. 

Let us check the special case   0 , which corresponds to the problem of 

stability of the equilibrium Camm model with respect to volume perturbations with 

an arbitrary value of N. 

Then in our notation T=П=1,     iexp
0

a),
1

ψsin(ψS  . Substituting all 

this into (3.44) and integrating by parts, 


 





0 6

N)N)(3(2
d

iω
e)(cos

N
Piω  .                 (3.45) 

This equation was obtained for the first time by us long ago [58] as a particular 

case of the NDE of the pulsating model (1.50), and then in [59] by searching for 

the exact form of natural fluctuations of the equilibrium model. Analysis (3.45) 

gives the complete stability of the equilibrium model. In doing so, we use 

multiplicative formulas for the representation of integrals (3.45) given in [57] for 

even and odd N separately. In this way, we easily notice that for even N the roots 

(3.45) are in the intervals (0;2), (2;4)..., (N-2;N), and for odd N they are in the 

intervals (0; 1), (1;3),..., (N-2;N). The same number of roots are located 

symmetrically with respect to the point =0. Note that Polyachenko [60] also 

derives (3.45) with mention of our result (3.45), and he uses a reduction procedure. 

Finally, let us return to the question of determining the exact form of natural 

fluctuations for the pulsating model (1.50). Finding it is very important in the 

application of the results and the construction of new models for the observed 

specific real objects. True, all this may require delicate calculations on powerful 

computers. Nevertheless, this is a very interesting problem with a clear future 

perspective. Therefore, we indicate here our corresponding result. Namely, in 
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(3.38) the function (z/R)
N

P , which is not proportional to any spherical harmonic, 

can be expanded into a Fourier series as follows 

 


n

)(cosnP(r/N)
nN

χ(z/R)
N

P  .                           (3.46) 

 

because Π(ψ)R,ζrcosθrz  . Here, in accordance with the rules of expansion 

in Legendre polynomials, 

 










1

1
ζ)dζ

Π

r
(

N
P) (ζnP

2

12n

nN
χ  .                        (3.47) 

 

An integral of this type could not be found in any literary source. To find the exact 

form of natural fluctuations, it is sufficient to expand PN in powers of (r/П). Then 

we get some decomposition for nN(r/), where there are no terms with 
1n

r
0

r


 . 

Therefore, it is possible to take out the bracket  nΠr . Since with 1r/Π   we 

have 0
nN

χ  , we can also take out   1
2

Πr  . Thus, we get 

)(r
nN

1)
2

(r
n

r
nN

χ








  , where r/Πr 
 , 

nN
  is a polynomial of degree N-n-2. 

Then it can be proved that 

0dr
1

1
)(r

nN
1)

2
(r

kn
r 




 








  .                      (3.48) 

 

if n k N  1 . It is easy to compare (3.48) with the definition of the Jacobi 

polynomial. As a result, it is possible to represent the sought-for exact form of 

eigenfluctuations in terms of the Jacobi polynomial. More precisely, after selecting 

one spherical harmonic, it has the form 

 

 


















 nN

η)2(r
1)0.5,(n

1
2

nN
P1)2(rcosnPnrε   ,             (3.49) 
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where 
nN

η  is a constant determined from the condition of continuity of the 

potential at the boundary. Knowing (3.49), in principle, it can be calculated from 

the Poisson equation. Then, in particular, it is easy to find the corresponding nodes 

on the r-axis. The problem of the number of nodes is also relevant in the theory of 

pulsating stars [61]. Based on (3.49), we can also formulate a theorem on the 

number of nodes of the fluctuational mode: the function Ф vanishes (N-n-2)/2 

times in the interval 0 r/П 1 and one more time at the boundaries r=0 and r= П. 

 

§ 13. Egg-shaped and toroidal modes 

 

Let us proceed to finding criteria for the instability of large-scale modes of 

volume fluctuations. Based on the comparison of (3.34) and (3.44), we make the 

following remark: in order for the right-hand sides of (3.44) to have a relatively 

simple and symmetric form, it is necessary to compose an equation for the 

functions 

   






ψ

1)dψ1(ψ0a
1

ψψ,S
3

)1λcosψ(1
1ν

)1(sinψ
νN

)1cosψ(λψνγ
.      (3.50) 

 

where =1, 2, ....., N. Then, in the general case, the system of N equations has the 

form 

 

   ψ0a
3

)1λcosψ(1
1ν

)1(sinψ
νN

)1cosψ(λψνΛγ 


  .        (3.51) 

 

It remains to substitute here each time only the expression for )(
0
a . 

II. 1. Analysis of individual fluctuation modes, generally speaking, should 

be started with N=2. In this case, we are dealing with the case of small radial 

perturbations against the background of nonlinear pulsations. Therefore, stability 

must be preserved at 0   1. Indeed, when N=2 

 

   
2

γ)2λ(1
1
γcosγγ(ψ),5λcosψ)3(1

0
a   .            (3.52) 

By investigating the corresponding two equations for 
1
γ () and 

2
γ () 
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 
γ(ψ)

2λcosψ)(1

sinψ3
2

Λγγ(ψ),
2λcosψ)(1

cosψλ3
1

Λγ 






              (3.53) 

 

instead of them, one equation for  ( )  can be obtained in the form 

 

0γ(ψ)λcosψ)2(1
'

γλsinψ3
"
γλcosψ)(1   ,          (3.54) 

 

if we use formulas (2.46) and (2.48). One of the particular solutions (3.54) is sin . 

So, the general solution is 

 ψ)
2

sin(1
3

λψsinψ)(cosψ
2

λ3λ3cosψ
2

csinψ
1

cγ(ψ)   .      (3.55) 

 

As can be seen, the fluctuation mode under consideration does not lead to 

instability. The presence in (3.55) of a term with the coefficient  is associated 

with a small perturbation of the pulsation period itself, which entails only a 

progressive shift of their phase. Stability takes place at  20 =1. If =1, the 

pulsations are replaced by a single expansion or contraction, which, of course, 

creates the possibility of a qualitative change in the behavior of the system from 

the initial small perturbation. In this case, a power-law instability arises, which is 

not described by solution (3.35) (see the corresponding general solution in Chapter 

4). 

II. 2. In the case of N=3, obviously, the wave number n must be equal to 

one. Then volume perturbations, violating the density homogeneity and rotational 

symmetry of the system, at some  lead to the formation of a core (see § 8b), but 

slightly shifted from the former center, with a self-consistent change in the shape 

of the entire system towards “egg-shaped”. From (3.44) for N=3 it follows that 

 

    ,7λcosψ)(1ψF
4

3
0

a                                    (3.56) 

           
2

γλcosψsinψ
2

λ110
1
γψ

2
sin

2
λ1

2
λcosψ4ψF  

      
3

γ
2

λcosψsinψ
2

λ14
2

λ1   . 
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Consequently, for     the system of equations  

 

          ψF
4

λcosψ1
1ν

sinψ
ν3

λcosψ43ψνΛγ





  .         (3.57) 

 

moreover, it takes the form (3.34) if 

 

10
3

L
1

L
1
γ  ,      

2
L

212
λ1

5

2

2
γ 


 ,      

3
L

12
λ1

5

2

3
γ


 . 

 

Despite its relatively symmetric form, nevertheless, system (3.57) cannot be 

solved purely analytically in order to determine the critical value of the pulsation 

amplitude 
31

λ . Therefore, we integrated it numerically on a computer using the 

well-known method of the theory of stability of periodic solutions. It is found that 

31
λ = 0.554 and, if  >0.554, there are exponentially increasing solutions. The 

corresponding instability criterion in the language of global parameters U/T2  and 

  for the model under consideration has the following form  

  0.882,0.445;
0

UT/2                                  (3.58) 

 

 Note that these conditions are weaker than the condition of ellipsoidal 

instability. 

We also calculated the values of the instability increment for the region 

>0.554. In [62], we presented the results of calculating these increments and the 

characteristic doubling time   ln/λP2n
2

t    of the disturbance rise 

amplitude in units of the pulsation period, as well as the corresponding values of 

the ratio of the maximum radius to its nominal and global parameters. Asterisks 

mark those values that correspond to the complex conjugate roots of the 

characteristic equation and are associated with oscillatory overstability. It follows 

from our calculations that, as  0U/T2  decreases, the “egg-shaped” instability 

initially has the character of an oscillatory increase and then, starting from the 

value of  0 35. , an aperiodic, purely exponential instability sets in. Note that, on 
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average, a velocity isotropic model, which corresponds to   and 1 , falls into 

the region of oscillatory instability with an asymmetric perturbation amplitude that 

doubles its value in 1.35
.
P years. Obviously, with an increase in the degree of 

nonstationarity of the initial state, the value of the characteristic time 
2
t  decreases, 

while the values of   and 
0

RmaxR  increase. Note that for the section 

 70.0;
3

  we give the maximum value of the increment. In fact, there are two 

oscillatory solutions here, which gradually merge with increasing  , and at a 

certain value of  , an aperiodic instability arises. In other words, if the evolution 

of a real system due to collisionless relaxation occurs in the direction of decreasing 

 , then the aperiodic instability that has arisen at an early stage of development 

can give rise, at some time, to two independent branches with an oscillatory nature 

of the instability. The further fate of the system and the question of choosing 

between these branches is decided only by nonlinearity.  

II. 3. Consider the case N=4, which can probably also be attributed to the 

class of large-scale fluctuations. Since the wave number n is not included in the 

dispersion equations (3.34) and (3.44), the instability criterion found below for 

N=4 is the same for the values n=0 and n=2, i.e., the directions of evolution along 

the ''branch'' (4;0) and (4;2) turn out to be equally probable as long as we resort to a 

nonlinear analysis of the perturbation. 

Recall that when N=4, n=0, in the unstable region  1;
40

 , a ring structure is 

formed either with a core or without a core. If N=4, m=2, then there is no 

rotational symmetry in the perturbed state, which, together with a violation of the 

density uniformity, leads to the following: in one meridional plane, the pattern is 

elongated along the equator, and in the plane perpendicular to it, elongation occurs 

near the polar regions, and, which is important, a ring structure of individual 

segments and a nucleus in the center, slightly elongated in the polar direction, are 

noticeable. 

 For N=4 the function 

    9λcosψ)(1F
4

3
0

a   , 

where 
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       

     

     
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2
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213
1
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cos4cos)(F
~
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












 






 






 

 

 

The corresponding NDE has the form 

 

 
 

 
   

1ν
sinψ

ν4
λcosψ

6
λcosψ4

ψF
~

3
ψνΛγ






 .              (3.59) 

 

  

 

This system of differential equations of the 8th order was solved on a 

computer. It was found that instability occurs if 6985.0
40

 . Therefore, the 

corresponding criterion for annular instability for model (1.50) has the form: 

 

   353.1,3015.00U/T2                                   (3.60) 

 

We note that here and in (3.58), as a criterion, we deliberately present two 

inequalities at once, since if we slightly modify the original nonlinear model (more 

precisely, consider the mixed model (1.64)), then the inequality may correspond to 

a completely different inequality in the virial parameter (see (discussed in §19). 

In [62], the behavior of the growth rate, the value of the characteristic time, 

etc., is presented. The instability starts from the value 40
  and up to the point 

78.0  is aperiodic, and then passes into the oscillatory mode of instability, at 

least in the interval  9.0;78.0 . At 9.0 , the instability is again aperiodic. It can 

be seen that the increments of the annular instability are much smaller than the 

increments of “egg-shaped” perturbations. Note that in all the cases considered 

above, when 1 , the value of the increment explicitly tends to zero if it is 

calculated taking into account  P  in units 0
  (see Fig. 7). 
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§ 14. Accounting for the effect of rotation 

 

In order to elucidate the relationship between nonstationarity and rotation for 

the considered nonlinear model, it is necessary to investigate the stability of a 

rotating pulsating system with distribution function (1.60), to which we proceed 

further. In doing so, we need to use the separability properties (3.1) and (3.2). 

Therefore, we will carry out the analysis below, mainly in rectangular coordinates. 

Taking into account the above units 1
00
R , we rewrite (1.60) in a form 

convenient for what follows 

 

   Ψ*xyvyxvμ1
rot

Ψ  ,                                  (3.61) 

 

where *  conventionally denotes the phase density of the nonrotating model 

(1.50). Just like (2.98), in order to be able to work temporarily with particular 

forms   and then only generalize the result to more general types of 

perturbations, we are forced to use again the analytical method of rotating the 

model by an arbitrary angle 
0

  according to (2.97). Substituting (2.97) into (3.61) 

gives 

 

Ψ*]}
0

sinβ)xzvz(xv
0

cosβ)xyvyμ(xv{[1
rot

Ψ  .            (3.62) 

 

Let us start studying the behavior of the perturbation against a pulsating 

background (3.62) 

14a. Calculation of the response by the method of one-dimensional functions 

 

Let's try to calculate the response of an arbitrary particle to a perturbation with a 

potential in the form (3.38). Then, according to (3.39), we calculate 

 

 






















vdΨ

1
dz

Ν
dP

xzvzxv
0

μsinβ

ρ

1
vdΨ

1
dz

Ν
dP

ρ

1

1
dz

Ν
dP

 ,     (3.63) 
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since, using (3.1) and (3.2), we have 

 

 



 vdΨ*

1
dz

Ν
dP

xzvzxv  = 0. 

We have already encountered the first multiple integral in (3.63) (see 3.42), 

and we will calculate the second integral in exactly the same way, and when 

integrating the terms with xzv  we use the weak separability property (3.2). Then 

we integrate by parts and pass to   2/12
z

2
Π

2
Πzwarccosξ   (see 3.40). Then 

 
π

0
dξnPξ2cos  appears. Here we use the formula of the addition theorem for the 

Legendre polynomial. Now only the second term of the sum in this formula makes 

a non-zero contribution. As a result, we have 

 

 

 






































d(cose)

cose
N

dP

1NN

/dz

R

z

Ν
dΡ

1
W2

1
dz

Ν
dP

 
















d(cose)

(cose)
N

P
2

d

2
dz

)

R

z
(

N
P

2
d

sinex

2)!(N

2)!(N

0
μsinβ .       (3.64) 

Substituting (3.64) into formula (3.39), we can very easily find the displacement of 

the particle at an arbitrary point z . 

Further, it is convenient to continue the calculation for volume perturbations. 

Knowing δz , we can easily calculate the density response 

 


 ψN1S
2

dz

)
R

z
(NP

2
d

3
Π1)N(N

0ρ2
δρ  
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 ψ2NS
3

dz

)
R

z
(NP

3
d

x
3

Π

0sinβ0μρ

2)!(N

2)!2(N





  ,             (3.65) 

where 

  



ψ

1
dψ

d(cose)

(cose)
N

dP
E1W

N1
S  , 

  .
ψ

1
dψ

2d(cose)

(cose)
N

P2d
Esine1W

N2
S 


              (3.66) 

In (3.65) we pass from the function (z/R)
N

P  back to   and, comparing the results 

with the Poisson equation for   in general form, we obtain 

 

 
  ,gradrμψ

2N
S

2)!(N

2)!(N
ΔδΦ

1)N(N

ψ
1N

S
3Π

0
a

6

1







































         (3.67) 

 

Further, it suffices to know that  ime  and we can ignore the dependence of   

on Πr , since it turns out to be common for all moments of time. Then canceling 

both parts of (3.67) by  , we find (see, for example, [23]) 

 

   
 

 
 

 
 ψ

N2
S

!2N

!2N
imμψ

N1
S

1NN

1
ψ

3
Πψ

0
a

6

1








  .            (3.68) 

The latter obtained by us is comparatively simpler than the analogous NDE for 

model (1.38). We owe this, first of all, to the properties of separability noted above. 

The performed calculations show that the exact form of eigenfluctuations (3.49), 

found by us for a non-rotating nonlinear model, remains valid also in the case of 

rotation. 

Need to check case   0 . Moreover, from (3.68), taking into account (3.66), we 

find 

   
   






 




d

cosd

N
dP

sin
0

iω
e

1NN

1
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 

    6

1
d

2
cosd

N
dP

2
sin

0

iω
e

!2N

!2N
iμμ 




 




 ,   (3.69) 

 

where 
1

ψψ . Applying (3.69) we integrate by parts; we reduce the integral in 

(3.69) to 

    


 dcos
Ν

Ρ
0

iωexp  . 

Using further multiplicative representations [57] for the last integral, one can easily 

show that the equation has as many real roots as its degree. 

 

 

 

 

 

 

14b. Analysis of the case of “surface” perturbations 

 

For “surface” fluctuations, it is impossible to compose the NDE using the 

function  RznΡ , since this procedure is associated with the exact form of natural 

fluctuations, as we have already seen in the previous paragraph. Here, it is easier to 

compose the NDE in an invariant form if, immediately after calculating the 

response z , we expand the function  Rzn  in powers of the argument and, as 

usual, restrict ourselves to the highest term. In other words, we pass to a 

perturbation of the potential of the form (3.4), assuming N=n in formula (3.64) and 

setting    
n

z/Πψ
0

aδΦ  . Then, according to (3.64), 

 
 

  
 

2n

Π

z
ψ

n2
S

Π2n1n

x

0
μsinβ2ψ

n1
S

1n

Π

z

Π1n

2
δz















 















. 

     (3.70) 



104 

 

Here it is easy to pass to   after multiplying both sides by z. And further we 

consider that   has a more general form (2.109). Therefore, the radial 

displacement 

 

   
 

 

    

















 dgrarμ

Rψ
0

a2n1n

ψ
n2

S2
ψ

n1
S

Rψ
0

a1n

δΦ2
δr  .    (3.71) 

 

Substituting (3.71) into (2.108) and returning to the previous coordinate system, 

taking into account (2.109), we obtain the desired NDE (see also [23]) 

   
  

 
 

 














 ψ
n2

S

2n

imμ
ψ

n1
S

1n21n

6
ψ

3
Πψ

0
a .      (3.72) 

 

This result for 0  exactly coincides with (3.11) if in the original form the 

perturbation of the potential  
0
a  is replaced by    ψ

0
a

n
λcosψ1  , which does 

not play any role in the NDE. 

When 0  from the point of view of application of results the most important 

case is n=2. In this case, from (3.72) we obtain the NDE of the ellipsoidal 

fluctuation mode 

 

    



 






ψ

1
Edψ

1
Wμsine

4

im
cose

5

6
ψ

3
Πψ

0
a .             (3.73) 

 

The last equation coincides with the NDE of a similar case for the previous 

nonlinear model with rotation (2.111), which we have already studied in full. Thus, 

it turns out that the behavior of ellipsoidal perturbations is the same in both non-

stationary models even in the presence of their axial rotation. 

For 0  we have the problem of the stability of a variant of the well-known 

equilibrium Camm model with respect to surface perturbations. For this case 

   ψωiexpψ
0

a   and (3.72) will give us 
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   

  
,

6

2n1n

d
2

cosd

nP
2

d2
sin

0

iω
e

2n

imμ

0
d

cosd

ndP
sin

iω
e


























 

 

what can be brought to mind 

 

 
 










 









0
dcosnP

iω
eωμ

2n

2
ω2n

2
nm

i  

 

  
1.ω

2n

mμ2

6

1n21n







                   (3.74)  

 

Then we can proceed in the usual way, using multiplicative formulas for the known 

integral, and prove stability. 

Next, we consider two more surface modes [68]. 

Mode N=3: 

),τ(ξ3K
7λcosψ)28(1

9
0a



      1 3, ,  

K c e s cse e c e s3
2 2 2

1
2

2
2 2 2 2

34 10 4( ) ( ) ( )            

+ 2 12
2

1
2 2 2

2
2

3im cs c e s cse       { ( ) } . 

Mode N=4: 

),(K
)cos1(3

1
a 490 


    1 4, ,  

K c c e s se c e s ce c e s se c e s4
2 2 2

1
2 2 2 2

2
2 2 2 2

3
4 2 2 2

44 3 3 6 3 6 3 4( ) ( ) ( ) ( ) ( )                 
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0 5 1 6 6 15 15 6 62
2 2 2 2

1
2 2 2

2
2 2 2 2

3
2 2 2 2

4. { ( ) ( ) ( ) ( ) }im s c e s c c e s se c e s ce c e s              . 

 

The critical dependences of the initial virial ratio on and increments for these 

modes are shown in Fig. 10. The role of the parameter   and the wavenumber m 

affects the behavior of the critical dependences of surface modes in a similar way 

to model (1.38), with the exception of: there is only one region of instability, which 

has aperiodic solutions for =0. Figures 11a and 11b compare the increments of 

different. Here, too, the maximum values are reached for the N=m=3 mode (if, 

again, the ellipsoidal mode is not taken into account). In the case of m=1 (Figure 

11a), everywhere (except for small   01. ) the N=2 mode increments prevail over 

all. The mode increments also decrease as N increases, but, in contrast to model 

(1.38), the larger  , the stronger the separation of N=2 from the other modes. In 

addition, the increments of the N=3 mode are always more distant from the other 

modes, as if separating themselves from them. In the case of m=N (Fig. 11b), the 

detachment of the N=2 mode is not as strong as for m=1, but closer to  10. , the 

maximum values of the N=3 mode increments are almost equal to the values of the 

ellipsoidal mode increments. 

Figure 12 compares the increments of both models (1.38) and (1.60). Graphs 

for   0 0 5 10, . .и  values are given. The solid lines indicate the increments of the 

model (1.38), the dotted line is the model (1.60). For m<n, model (1.38) is always 

more unstable than model (1.60). But for m=n, somewhere for   0 8.  and more, 

model (1.60) overtakes and surpasses model (1.38). This is best seen when looking 

at the composite model (Chapter 5). 
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Fig. 10. Critical dependences of the values of the initial virial ratio and dependences 

of the instability increments for the N=3 (a) and N=4 (b) modes. 
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Fig.  11а. Comparison of increments of surface modes at the 

minimum azimuthal wavenumber m=1. The numbers next 

to the curves indicate the order of the mode. 
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Fig.11b.   Comparison of increments of surface modes at the 

maximum azimuthal wavenumber m=N. The numbers next 

to the curves indicate the order of the mode. 
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Fig.12.   Comparison of increments of surface modes of nonequilibrium 

versions of Einstein balls (solid lines) and Camm balls (dashed 

line). The numbers next to the curves indicate the order of the 

mode N (Nm). 
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Fig. 12.    Continuation 

 

 

14 c. Analysis of the case of “volume” pertubations 

Let us write down the NDE of the “egg-shaped” mode n=1, N=3: 

),(K
)cos1(4

3
)(a 1370 


     1 3, ,      

                                       

K c e s sce e s e c13
2 2 2

1
2

2
2 2 2 2

34 10 4( ) ( ) ( )           

im e sc c e s sce   2 1
2 2 2

2
2

3{ ( ) }    
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and toroidal mode n=2, N=4: 

 

),(K
)cos1(4

3
a 2490 


      1 4, ,  

K c c e s se c e s24
2 2 2

1
2 2 2 2

24 3 3 6( ) ( ) ( )         

3 62 2 2 2
3ce c e s( )   se c e s4 2 2 2

43 4( )    

+ 


2
222

1
2222 )se15c6(c)sec6(s{

6

eim5
 

    se c e s ce c e s2 2 2 2
3

2 2 2 2
415 6 6( ) ( ) }  . 

 

The results of studying the stability of equations are shown in Figure 13 

[Gainullina, 2000]. In the case of an egg-shaped model, it has one region of 

instability, but bifurcating, starting from the value   0 552. , its increments, 

despite the bifurcation, continuously increase with  . The picture for the toroidal 

mode already resembles model (1.38) in the case of surface fluctuation modes, but 

the stability “island” is longer and reaches   0 58.   (m=1) and   0 32.   (m=2). In 

contrast to model (1.38), the instability region grows with much more slowly, and 

the increments are, on average, 3 times smaller than the increments of the egg-

shaped mode. 

Figures 14a and 14b compare the increments of volume modes. m=1 (Fig. 

14a,   0 0 5 10; . ; . ) - starting from   0 , the increments of the mode (3,1) are 

noticeably higher than the increments of the mode (2,2), although to  10. modes 

(2.2) and (3.1) seem to divide the area of influence: up to ( /| |) .2 0 340T U   

“dominates” the egg-shaped mode, after - the mode (2,2). The rest of the modes are 

noticeably smaller. m=N (Fig. 14b,   01 0 5 10. ; . ; . ) - the mode (3,1) exceeds the 

mode (2,2) for   0 5.  on all ( /| |)2 0T U , but starting from   0 5. , the maximum 

increments of the mode (2,2) exceed the maximum mode increments (3,1), and the 

further, the more noticeable, although not on the entire interval ( /| |)2 0T U . Figure 

15 compares the model increments of both models (1.38) and (1.60). Here, for 

small and moderate values of the rotation parameter, only large modes (2.2), (3.1), 

(4.2) are shown, and for the maximum value of rotation -  and smaller modes 

(5.3), (6.4) to clearly illustrate that the increments of small-scale modes with large 

azimuth numbers during strong rotation are greater than the increments of 

individual large-scale modes. Graphs are given for three values of the rotation 
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parameter   0 0 5 10; . ; . . The dotted line again denotes the model (1.60). The 

curves are labeled with numbers denoting N,n,m. The graphs clearly show that the 

mode (3,1) of the model (1.38) begins to lead, and with   0 3.  it yields to the 

mode (N,n,m)=(4,2,2) of the model (1.60), which retains its leadership to end. It 

can also be seen that there is no such property as that of surface modes (Fig. 17): 

for any m, for all  , model (1.38) is more unstable than model (1.60) (with the 

exception of only mode (3.1)). On the other hand, smaller-scale modes, in 

particular, modes (5.3) and (6.4) of model (1.38), compete with larger-scale modes, 

in particular (3.1) and (4.2). As a result, it turns out that at large rotations, among 

volume modes, the N=4 n=m=2 and N=5 n=m=3 modes of model (1.38) have the 

advantage in increments, only then do all the other modes go along with the 

ellipsoidal one. 
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Fig. 13 Critical dependences of the initial virial ratio and dependences of 

the instability increments for a) egg-shaped and b, c) annular 

modes (m=1, m=2). 
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Fig. 14а.   Comparison of volumetric mode increments at the 

minimum azimuthal wavenumber m=1. The numbers next 

to the curves indicate the order of the mode. 
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Fig. 14b.   Comparison of volumetric mode increments at the 

maximum azimuthal wavenumber m=N. The numbers 

next to the curves indicate the order of the mode. 
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Fig.15.   Comparison of increments of volume modes of nonequilibrium 

versions of Einstein balls (solid lines) and Camm balls (dashed 

line). The numbers next to the curves indicate the order of the 

mode Nn (Nnm). 
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Fig.  15.    Continuation 
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CHAPTER IV. INSTABILITY OF PURE RADIAL MOTIONS IN NON-

STATIONARY MODELS 

 

§ 15. On the problem and the perturbation nature  

 

From the analysis of the problems and results of the previous chapters, it 

follows that the considered nonlinear models with a pulsation amplitude =1 are a 

special case, since then the system consists of purely radially moving particles and 

lose their meaning, at least, concepts like the pulsation period Р() and averaging 

over it. This is on the one hand, and on the other hand, at 1, the virial parameter 

 
0

UT2  characterizing the initial state tends to zero and, accordingly, the 

increments of various instabilities (see Fig. 5) almost merge with each other and 

behave in a somewhat complicated way, which does not allow a clear preference 

for any of them. Finally, this case is also of particular interest for Newtonian 

cosmology and may find its application in questions of evolution, for example, of 

dust clouds, clusters of galaxies, and some subsystems of the galaxies themselves. 

Note that in theoretical terms, if we are limited to the Newtonian approximation, 

most authors were interested mainly in either stationary models from radially 

moving orbits [63], or collapsing ones, but mainly with infinite dimensions [41, 8], 

not counting some works on numerical experiment for interstellar clouds, which 

are only similar in nature to the topic discussed here. Thus, the instability of purely 

radial motions, which has long been known in cosmology, also becomes important 

for systems with a finite size. As noted above, for the first time the existence of 

such an instability in the theory of stability of stationary systems was partially 

indicated in [64], and it was proved exactly for the first time by Antonov [63], then 

by Polyachenko [65]. It should be emphasized that if the original collisionless 

model consists of only radial orbits and does not change its size in time, then it is 

Jeans unstable with exponential behavior. An example is the Agekyan model [66]. 

If, on the other hand, a system consisting only of radially moving particles expands 

or collapses due to non-observance of the virial theorem, then such a collisionless 

model takes a completely opposite position compared to the previous one. As will 

be seen from the results of this chapter, in the latter case there is also instability, 

but it is always of a power-law nature. In this case, the exponent certainly depends 

on the initial model and perturbation parameters, and therefore it can differ greatly 

from the classical case studied by Bonnor [67]. 

Let us begin our analysis of the problem by studying the stability of a non-

stationary model with phase density (1.74). Let Ф again mean the perturbation of 

the potential, and x, y, z are the displacements of the particle that occupied the 
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position (x, y, z) at =0 (t=0). Obviously, these displacements depend not only on 

, but also on the position of this point. Taking into account the potential  Ф of a 

small perturbation on the right side of equation (1.69) and the transition from t to  

leads us to the equation  

 

   







































21

3
0

R

GM8
g,

r

δΦ3
cosψ1

2g

1
rδ

2ψ

rδ2
sinψ

2ψ

rδ2
cosψ1












 . 

(4.1)   

Note that equation (4.1) is similar in form to (2.3) for =1, but the right side of 

(2.3) contains a singularity in the denominator. Here we have eliminated this 

feature by deriving (4.1) independently on the basis of § 4. 

Before proceeding to the solution (4.1) for a given form Ф, let's pay 

attention to the trivial, so-called ''permutation'' type of perturbation. For this, let, in 

particular, the displacements 


rδ  be such that the density distribution does not 

change, i.e.,   0rδdiv 



. We also require that the boundaries be preserved, 

namely, when 
2

0
R

2
r   

 

0zzδyyδxxδ  . 

 

Then the solution of equation (4.1) has the form 

 

  ,r
2

sinr
1
δ2ψ2cosrδ








                        (4.2) 

 

where the vectors 


r
1
δ  and 



r
2

δ  describe the contribution from the perturbation 

and are constant in time. When the above two conditions for (4.2) are satisfied, we 

can assume that self-consistency of the type is achieved when the particles are 

displaced, but the total field does not change. The two conditions specified for this 

can be written in terms of 


r
1
δ  and 



r
2

δ  as follows 
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.
0

Rr0,r
1
δrr

1
δr0,r

2
δrdivr

1
δrdiv 



























     (4.2’) 

 

 

We note that permutation perturbations have no physical meaning in reality, but 

they must be able to isolate them when analyzing solutions of equations for 

perturbations in individual problems. 

Let us pass to perturbations of a general form. We represent the initial vector 


r
1
δ  as the sum of  

0
r

1
δ



 satisfying (4.2) and another vector 


r
1
δ
~  that is the 

gradient of some function  z,y,x,θ , i.e., gradθr
1
δ
~





. Substituting 

  









r
1
δ
~

r
1
δ

0
r

1
δ  in (4.2) gives 

      ,
z

r
1
δz

y
r

1
δy

x
r

1
δx

r

θ

0
R,r

1
δrgradΔθ




















          (4.3) 

where  is the Laplace operator. Therefore, the definition of the function  is the 

well-known Neumann problem, and the condition for its solvability, by virtue of 

(4.3), is automatically satisfied. 

We perform a completely similar construction for the vector 


r
2

δ . As a result, an 

arbitrary perturbation (at t=0) splits into two parts: 1) the “trivial” or “permutable” 

part, which does not violate the density and therefore splits into perturbations of 

individual particles; 2) the “potential” part, for which, in particular, 






rθr
1
δ  . For the second part, due to self-gravity, the laws of evolution will 

already be different, 


r
1
δ  and 



r
2

δ  now depend on ψ , but retain the meaning of 

the initial conditions, i.e.,  =0, according to (4.2). 

 

  .0ψψrδr
2

δ,rδr
1
δ 







 






                 (4.4) 
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Consideration of the general evolution equation (4.1) shows that conditions (4.2) 

and (4.4) will be satisfied all the time, and not only for 0ψ  , if 

2
ψθ

2
r

2
δ 



. Then the evolution equation for small perturbations (4.1) takes 

the form 

 

 
 

δΦ
2

g

2
cosψ1

2θ

ψ

θ
sinψ

2
ψ

θ
2

cosψ1 











 .             (4.5) 

 

Since the system is limited and homogeneous, then, as in the previous chapters, it 

is necessary to further distinguish again two types of perturbations: “surface” and 

“volumetric”. 

 

§ 16. Instability of purely radial motions in 

non-stationary model 

 

II.1. We begin our consideration with surface perturbations. Due to spherical 

symmetry, it is sufficient to describe them in the form 

 

     1,2,...n,
n

iyxψ0Aθ   .                  (4.6) 

 

In this case, the density perturbation proportional to  vanishes and only the 

perturbation of the outer surface remains. Since 






rθrδ  , then the offset 

value 

 

θ

0
R

n
z

0
R

z
δy

0
R

y
δx

0
R

x
rδ 


  .                 (4.7) 

 

taking into account (4.6). It is easy to show that a layer with surface density 
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      ψ
0

A
n

iyxtρ

0
R

n
δrtρ   .                             (4.8) 

 

corresponds to the internal potential 

 

   ψ0A
n

iyx
2

R0R

GM

1n2

n3
δΦ 


  .                           (4.9) 

 

Substituting (4.6) and (4.9) into (4.5), we obtain 

 

    0ψ0A
1n2

1n

dψ

0dA
sinψ

2
dψ

0A
2

d
cosψ1 




 .           (4.10) 

 

Passing from   to a new variable  2ψtgψ~  , we have 

 

  00A
1n2

1n

ψ~d

0dA
ψ~

ψ~d

0dA2
ψ~1

dψ

d

2

1





 








 .            (4.11) 

 

Further, counting ψ~d
0

A
~

d
0

A   and integrating equation (4.11) once, we reduce it 

to the following form: 

 

  0
0

A
~

1n2

n6

ψ~d

0
dA

2
ψ~1

ψ~d

d




 







 .                 (4.12) 

 

Finally, if we pass from ψ~  to ψ~i , then (4.12) takes the form of an equation 

for the Legendre function. In this case, except for the case of a trivial displacement 

of the system as a whole (n=1), for other n>1 the index of the Legendre function is 

non-integer. Then the solution of equation (4.12) in the form of Legendre functions 
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of the 1st and 2nd kind on the real axis ~  has a singularity ψ~ =, which 

corresponds to the value and πψ   can lead to power-law instability, i.e., it is 

necessary to check the asymptotics. 

First, it is important to note the following. Earlier, in [75], we obtained, in 

particular, equation (4.12) and the result on power-law instability by direct analysis 

of the NDE of surface fluctuations of pulsating models (1.29) and (1.50) at =1, 

since in this particular case both nonlinear models behave in exactly the same way. 

Indeed, for example, substituting =+1 into (2.37) and (2.38), we have 1cosh  , 

  1cosh
1


n

P , 

 

   









ψ

1
dψ

4n
WS

1
ψ

0
a

1n2

n3
ψ

0
a  .                (4.13) 

 

what does the differential equation correspond to 

 

   ψ
0

a

12n

3n
ψ

0
Λa 



  .                         (4.14) 

 

Hence, taking into account the form of the operator  for =1, we arrive at the 

equation for  
0
a  in the form (4.10). This means that the results for the model 

(1.29) coincide. And for the model (1.38) one should consider the NDE (3.11). 

Since for 1cosh   we have    1nncoshdndP  , (3.11) for =1 takes the form 

(4.13), which was required to be shown. 

On the basis of the results obtained, it is not difficult to find an asymptotic 

law for the growth of the perturbation near the collapse moment 0
t . To do this, we 

will carry out a linearization everywhere, considering δψπψ  , where 1δψ  . 

Then we have 

 

      32
t

0
ttR,

31
t

0
tδψ   .                    (4.15) 

 

If we accept that in (4.12) 
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  0ν,1νν

1n2

n6




 .                        (4.16) 

 

then, according to (4.6), (4.7), (4.12) and (4.15), the growth law of surface 

perturbations near the moment has the form 

 

  31ν
t

0
tδr

R

1 




 

  .                          (4.17) 

 

For example, ellipsoidal fluctuations with n=2 correspond to 1.128, and the 

exponent in (4.17) is -0.709. From (4.16) it also follows that for n the value is 

1.303. Result (4.17) is not found in the literature, although it may be of 

some interest, for example, for dust clouds or clusters of galaxies. 

 

II.2. We now turn to a discussion of volumetric fluctuations. To consider 

perturbations violating spatial homogeneity, it suffices to generalize (4.6) as 

follows: 

 

=(х+iy)
n
А0()+(х

2
+у

2
+z

2
)

k
k () .             (4.18) 

 

 (к=1,2,…). Then the radial displacement of the particle 

 

  ψ
k

Ak2rk)2(n)(
0

nA

0
R

niy)(x
δr 


   .            (4.19) 

 

while the volume density perturbation 

 

 ψ
k

A
n

iy)(x1)k2n(2

cosψ1

kρ4
δρ 



  .           (4.20)  
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The equation for the perturbation of the potential has the form 

 

Ф=-2G(1+cos) .                  (4.21) 

 

Internal and external potentials, respectively, are equal 

 

Фi=-2G(1+cos)+ 
~
k i R

-n
(х+iу)

n
 ,            (4.22) 

 

Фе=
~
ke R

n+1
(х+iy)

 n  
r

  -(2n+1)
 ,                 (4.23) 

 

where ek
~  and 

i
k
~  are some functions of . The continuity condition for the 

potential at the boundary gives 

 

   ]ψ
k

A
2k

0
Rψ

0
[Aψ)cos(1

n

0
2ππGρR

i
k
~

ek
~

 .           (4.24) 

 

Therefore, the internal perturbation potential is equal to 

 

  n
iy)(x

k
A

k2
r

k2

0
R

1n2

1n
ψ

0
A

1n2

n2
ψ)cos(1

2
g

2

3

i
δΦ 











 













. (4.25)       

 

Substituting (4.18) and (4.25) into (4.5), we find the following two equations:  

 

k
A

k2

0
R

1n2

1)3(n

0
A

1n2

1n

dψ

0
dA

ψsin
2

dψ

0
A

2
d

ψ)cos(1 









  .     (4.26) 
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0
k

A2

dψ

k
dA

ψsin
2

dψ

k
A

2
d

ψ)cos(1   .                 (4.27) 

The first of them confirms that in (4.18) it was impossible to ignore the term with 

А0(). Equation (4.27) has the following general solution (see, for example, [23]): 

 

Ак()=c1кtg(/2)+с2к  [3tg(/2)-соs+5] ,        (4.28) 

 

where c1k and c2k are arbitrary constants. Analysis of (4.26) with allowance for 

(4.28) shows that 

 

А0() = -R k
0
2  

к () .                    (4.29) 

 

and therefore 

 

  (х+iу)
n
 (r

2к
 -R k

0
2

)Ак() .                          (4.30) 

 

This shows that in the case of volume perturbations on the surface r=R0, the 

tangent part of the displacement vanishes. 

Result (4.28) should also follow from the analysis of the NDE of volume 

perturbations of pulsating models. Indeed, substituting  = 1, cosh =1, for example, 

in NDE (3.44), we have dPN/dcosh = N(N+1)/ 2 and 

 

   
1

)dψ
1

(ψ3пS)
1

(ψ
0

a
ψ

1W3ψ3пψ
0

a 


  .              (4.31) 

 

From this follows the equation 

 

   ψ03a0a
dψ

0da
sinψ

2
dψ

0a
2

d
cosψ1   .                   (4.32) 
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As can be seen, we have obtained an equation in the form (4.27) and, consequently, 

the solution for а0() will have the form (4.28). 

Volume perturbations in the collapsing model, as well as surface 

perturbations, are unstable according to a power law. Using linearization (4.15), we 

find that 

    1/3
t)0(tδrψkAψ0А


  .                  (4.33) 

 

Further, since 
2

t)
0

(tρ


 , the volume density perturbation 

 

3
t)0(tδρ


  .                                      (4.34) 

 

and the rate of development of the perturbation does not depend on the indices n 

and k. This was also true for those small-scale perturbations with which Newtonian 

cosmology operates. Indeed, (4.34) coincides with the result known for the case of 

a shrinking infinite model of the Universe [41]. It is interesting to compare the 

particle displacements r of the two types of perturbations considered. As can be 

seen from the comparison of (4.17) and (4.34), taking into account (4.15), for n  

1, the value of r is always greater in the case of volume fluctuations than in the 

case of surface fluctuations. 

    

§ 17. Instability of the cosmological expansion, attached to an Einstein 

ball with rotation 

 

We are talking about the behavior of the process of unlimited expansion for 

a self-gravitating model with a finite volume in the Newtonian approximation. Let 

us analyze the instability of the expanding model with rotation (1.78). As we saw 

in the previous section, in such cases it suffices to study the general NDE for the 

corresponding approximation in . And when constructing the nonlinear model 

(1.78), we assumed that [)
2


1/2


2
/2, and revealed the existing 

features in the NDE of the pulsating model. Similarly, and taking into account 

(1.77), in particular, we find that 
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)
2

1
ψ)(1

2
ψ(1

)
2

1
ψψ(1

1
ψ)

2
ψ(1

2sinh,

)
2

1
ψ)(1

2
ψ(1

)
1

ψψ4
2

1
ψ)(1

2
ψ(1

cosh











        (4.35) 

 

Based on the results of the previous chapters, it can be seen that further we 

can restrict ourselves to the study of the two largest fluctuation modes: ellipsoidal 

(N=n=2) and dipole-odd modes (or, in particular, “egg-shaped” with N=3 and 

N=1). 

The considered model expands all the time and, therefore, taking into 

account (1.77) at t   and the radius R. Therefore, below we will be 

interested in the asymptotic behavior of perturbations at . Here we study the 

case of ellipsoidal perturbations, and in the next section we consider “egg-shaped” 

perturbations in order to compare the growth rates of deviations. 

Substituting (1.77) and (2.111) and deriving the notation 

 

  





















ψ

1
dψ

3

2
ψ1

2

1
ψ1

S)
1

(ψ
0

a
τ

)
2

1
ψ(1

τ1

1
ψψτL               (4.36) 

 

( , we get the following two equations 

 

 
 

 
 

 ψL
22

ψ15

2
ψ16

1
ΛL,ψL

22
ψ15

6ψ

0
ΛL 








 .           (4.37) 

 

where the operator: 

1

dψ

d
ψ

2
dψ

2
d

2

2
ψ1

Λ 


                            (4.38) 

and the function 

   
1

ψL4
0

L)
2

ψ(1μ

2

im

0
ψL4

1
L)

2
ψ(1ψL              (4.39) 
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The system of differential equations of the 4th order (4.37) must have only four 

pairs of solutions in L0 and L1. To find them, we first assume that the functions L0 

and L1 have the same order as . Then (4.37), taking into account (4.39), takes 

the form 

 

1τ
ψ))(

0
μL

2

im

1
(L

5

6

τL

dψ

τdL
ψ

2
dψ

τL
2

d

2

2
ψ

τLψΛ


        (4.40) 

 

Comparing the equations in (4.40) with   and  with each other, we conclude 

that L0 and L1 can have the same order, unless 

    0ψ
0

μL

2

im
ψ

1
L                                     (4.41) 

Under the condition that (4.41) is satisfied, the equations in (4.40) have the 

following two pairs of solutions 

  

    2
ψτ

~
ψ

2τ
Lψ,τψ

1τ
L                            (4.42) 

 

which are, respectively, the highest terms in two pairs of solutions of the original 

system of equations (4.37), the coefficients τ  and τ
~  satisfy the relations 
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0
μ2

im
1
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To complete the “picture”, solutions (4.42) should be generalized in the form: 
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2ψ

1
2τ
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~
21τ

L                          (4.45) 

 



131 

 

Substituting (4.43) into (4.37) and equating the coefficients at the same powers of 

, we find the unknown constants рi from the relations 
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    (4.46) 

 

and so on, and P00=0. A separate substitution of (4.45) into (4.37) gives, in 

particular, the following unknowns 
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It remains to find two more pairs of solutions to system (4.37). To do this, 

according to the nature of the equations in (4.37), it is necessary to consider the 

case when the functions L0() and L1() have different orders in , exact L1/L0 

 as . Then for  from (4.37) we have 

.
1

L

5

6

1
LψΛ,

1
L

ψ5

6

0
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The second equation is rewritten as 

0
1

L
5

1

dψ

1
dL

ψ
2

dψ

1
L

2
d

2
ψ

2

1
                             (4.49) 

and is solved by the assumption L1() = с
к
. From here we find k1 = 3.1279, k2 = -

0.1279, and c is an arbitrary constant. Therefore, from (4.48) we have 
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L0() = 12с
к
1

-1
 / [5(3-k)(k-2)]                          (4.50) 

 

The last two pairs of solutions are supplemented by subsequent terms by analogy 

with (4.44) and (4.45), and then the unknown constants are easily found from 

(4.37). As a result, we obtain four pairs of independent solutions to the system of 

equations (4.37). For each pair L() there is its own expression for the function 

а0()  and the perturbation of the potential is defined as follows: 
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 (4.51) 

 

where r() = П()r0 is taken into account. From (4.51), taking into account the 

above solutions, it follows that for   , the perturbation of the potential 

behaves as 

 

32
1

k
t

2
1

k
ψ

22
δΦ








 



                               (4.51) 

 

In a similar way, one can analyze and find the corresponding expression   for 

model (1.78) in the case of dipole-odd fluctuation modes, when m=1, and N takes 

odd values (starting from N = 3). However, in accordance with the results of §15, it 

is more interesting to compare the growth rates  within the framework of model 

(1.79), which is a special case of model (1.60). For this model, the results found in 

this section also remain valid. Therefore, let us pass to the case of the model (1.79). 

 

§ 18. Rotating non-stationary version of the Camm model 

 

The model (1.79) expanding indefinitely from a finite volume is the limiting 

case for (1.60). Therefore, to analyze stability (1.79), one can proceed from the 

NDE model (1.60). Since the most important type of surface fluctuations has 

already been considered in the previous section, below it is sufficient to study the 
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large-scale mode N = 3, m = 1 based on the NDE of volume fluctuations (3.68). 

The latter for the above particular case has the form 

 

 




ψ

1
dψcoshsinhimμ1h

2
5cosE

2
W

4

33
Π

0
a            (4.52) 

 

Substituting here (4.35) and introducing the notation 
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we have 
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where 
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The system of differential equations (4.54) has the sixth order. Therefore, it is 

necessary to find 6 groups of its solutions. We should be primarily interested in the 

highest term in  for each type of movement. We apply the method used in the 

previous paragraph, considering at the beginning the case  . 

In this case, instead of the system of equations (4.54), we have 
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(ср. с (4.40)). This shows that the functions L(), in particular, can have the same 

order in  if 

  0)ψ(
1

Lμ

2

im
ψ

0
L)ψ(

2
L                          (4.57) 

 

Under this condition (4.56) has solutions of the form (4.42) known to us, i.e., 
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According to (4.57), the constants 
1τ

g  and 
2τ

g  satisfy the relation 
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The subsequent terms following the terms in (4.58) can be easily found from (4.54) 

by analogy with (4.44) and (4.45). 

We find the third and fourth groups of solutions by assuming that the ratios 

L2/L0 and L2/L1 tend to infinity as  . Then from (4.56) we obtain the system 

of equations 

L () = 3(-)


 L2 () .                         (4.60) 

 

Of these, the equations for  

 

  0ψ
2

L2

dψ

2
dL

ψ
2

dψ

2
L

2
d

2

2
ψ

  

has solutions 

   

L23 () = 23
g 

4
 ,     L24 () = 

24
g 

-1 
                       (4.61) 

 



135 

 

The remaining solutions can be easily found from (4.60) with  and 1. Further, 

in exactly the same way, one can obtain the fifth and sixth groups of solutions, 

assuming that first L1()  contains a higher degree than other functions, and then it 

is function L0(). However, there is no need to waste time on them, so that in 

(4.61) we have already obtained the solution (
4
), in which the corresponding 

perturbation response grows faster than in the case of the bar mode (4.51). 

Indeed, for “egg-shaped” perturbations 
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where а0()=3L()/(1+
2
)

4
. The solution L2

4
, in accordance with (4.55), leads 

us to the dependence 
~
L 

8
. Substituting all this (4.62), we find 

 

Ф31  
6
   t

2
,                                         (4.63) 

 

which is clearly higher in growth rate than (4.51). Exactly the same result would 

be obtained if we calculated 31 for the model considered in the previous 

paragraph. 
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CHAPTER V. ANALYSIS OF INTERMEDIATE STATES BETWEEN 

NONLINEAR MODELS 

 

§19. Search for New Nonlinear Models: Composite Model 

 

Note that the collapse of protogalaxies before the formation of the galaxies 

themselves takes a number of stages of globally nonstationary evolution. 

Unfortunately, these stages are still unknown to anyone. That is why, step by step, 

it is necessary to build analytically solvable new nonlinear models of individual 

early stages of the evolution of galaxies. First of all, it would be interesting to build 

weakly inhomogeneous models, as well as models with a central core, in order to 

accurately estimate their effect during the collapse. However, this is a very, very 

difficult task. 

    On the other hand, we must also study the intermediate states between the 

nonlinear models constructed above. Therefore, we will conclude this book with a 

chapter that we will devote to the analysis of the physics of intermediate states 

between the considered nonlinear models, introducing the concept of a composite 

configuration. More precisely, we call a composite model an early-stage model 

whose phase density is (see Chapter 1) a linear superposition of two other non-

linear non-stationary rotating configurations (1.38) and (1.60) (hereinafter models 

1 and 2): 

   t)λ,,μ,v,r(νΨt)λ,,μ,v,r(ν)Ψ(1t)ν,λ,,μ,μ,v,r(Ψ 221121s



              (5.1) 

The composite model (5.1) will allow us to explore intermediate states in order to 

capture the broader possible initial conditions at an early stage at the moment of 

the beginning of the collapse. It depends, in general, on four parameters: ripple 

amplitude , rotation parameters 1, 2 and superposition parameter . It is not 

difficult to obtain physical characteristics for the model before the perturbation is 

applied.
 

 

We indicate the following most basic characteristics:  

a). The velocity dispersion components: 
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The root-mean-square velocity components: 
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c). The kinetic energy components and their values averaged over the pulsation 

period: 
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 d). The global anisotropy parameter: 
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To derive the NDE, we use the same approach described in the previous chapters. 

As a result, in the case when the phase density function of the composite model is 

taken in the form (5.1), the NDE is obtained in the form [68]: 
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aν1ψa                                      (5.7) 

 

§20. Analysis of surface perturbation  

 

In accordance with (5.7), the NDEs of the composite model for individual modes 

are as follows [68, 69, 34]: 
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N=10: 

 a K( )
( cos )
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Formulas and expressions for functions here in square brackets have a cumbersome 

appearance and therefore we will not give them. The corresponding expressions 

were given in detail in [68, 69]. 

  

20а.  Non-rotating model.   

  

 For simplicity, we will consider a special case when the rotation parameters 

of models 1 and 2 are the same. Since it makes no sense to consider a composite 

model for the N=2 mode, the results are given for the N=3 modes; four; 5; 6; eight; 

10 [68]. Figure 16 shows that the surface modes here also show a qualitative 

similarity between the critical dependences. All considered modes have an "island" 

of stability, but now it is quite long and very narrow, extending on average to 

values   0 8. . Summing up the calculation results, it can be seen that with the 

growth of N the following happens: 

a) the area of the region of instability decreases, and the width of the "island" 

also decreases; 

b) the length of the "island" of stability gradually, almost imperceptibly, 

decreases; 

c) comparing the values of the increments (Fig. 16), we find that at N=3 

models 1 ((=0) and 2 ((=1) do not differ much in the degree of instability, 

and starting from N=4 model 1 becomes significantly " more unstable" for 

all other values of . 

d) if there are no “islands” of stability or any other features at the boundary 

values (=0 and 1.0, then there are none when considering intermediate 

states, that is, nothing “by itself” arises. 
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Fig. 16 а. Critical dependences of the initial virial ratio and dependences 

of the increments of instability of the composite non-rotating 

model for modes а) N=3, b) 4, c) 5, d) 6, e) 8, f) 10. 
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Fig 16 b.   Continuation fig. 16 а. 

 

  

 In the bottom Table. 5.1 given the change in the length of the “island” in 

units of  .  

 

          Tab.  5.1. 

N length of the island in units.  N length of the island in units.  

3 0.835 6 0.750 

4 0.801 8 0.732    

5 0.779 10 0.711    

 

 In general, turning to the role of the superposition parameter, we note that 

here there is a fairly smooth transition from model 1 to model 2 without any 

surprises. 

On fig. 17 compares the mode increments for three values of the 

superposition parameter. 
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 20 b.  Rotating model.  

  

The results of calculations of two large modes N=3 and N=4 for individual 

ones are shown in Figures 18 and 19. Let us formulate the patterns that are found 

in the study of this composite model (for smaller-scale modes, see the work of 

Gainullina and Nuritdinov [68] ). 

(1) For a given mode N: 

a) with an increase in the values of the “island”, in comparison with the 

previous case (  0), it becomes even narrower and shorter, until it 

completely disappears. The value of  , at which this occurs, is 

determined by the value  , up to which the “island” is still observed in 

model 1.  

b) there is a phenomenon that can be seen even when comparing the 

increments of models 1 and 2, namely: for m<n, model 1 is more 

“unstable” than model 2 for all values of   (see, for example, Fig. 18 a 

,b); when m=n, as  approaches 1.0, the instability region at =1 (model 

2) begins to slightly exceed the unstable region at =0 (model 1). This is 

even better illustrated in Fig. 20. 

(2) As the value of N increases, the areas of “unstable” regions decrease, as it was 

before. 

(3) The action of rotation here is also destabilizing everywhere. 

(4) The role of the superposition parameter is small: model 1 (=0) smoothly 

passes into model 2 (=1). 
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Fig.  17   Comparison of the mode increments of a composite non-

rotating model. The numbers next to the curves indicate the 

mode order N. 
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Fig.  18.   Composite Model. Mode N=3. а, b) m=1; c, d) m=3; а, 

c) =0.1; b, d)  =1.0. 
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Fig.  19.   Mode N=4 composite model. а, b) m=1; с, d) m=4; а, c) =0.1; 

b, d)  =1.0. 
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Fig.  20.   Comparison of instability regions of non-equilibrium 

versions of Einstein (H1) and Camm (H2) balls for the 

maximum azimuthal wave number m=N. 

 

(5) “Islands” of stability take place only when they exist either in the case of   0, 

or when  1, that is, nothing “by itself” arises at intermediate values of the 

superposition parameter. 

It is easy to guess what will happen if we consider a more general case  1 2 : 

we will have all possible combinations of existing dependencies.  
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§21. Analysis of volume perturbations  

 

Thus, the study of the role of the superposition parameter in the case of 

surface perturbations did not lead to anything unexpected. When considering 

intermediate, between states 1 and 2 (0 10  . ), the critical values of the initial 

virial ratio occupied an intermediate position, that is, there was a smooth transition 

from model 1 to model 2. Even when analyzing non-rotating models, it was found 

that the increments of the egg-shaped mode of the perturbation superimposed on 

the pulsating model (1.50), turned out to be much larger than the N=2 mode 

increments [23, 24]. Later it was shown that the increments of the N=4, n=2 mode 

of model (1.29) also exceed the mode N=2, although they are smaller than the 

increments of the egg-shaped mode of model (1.50). And the increments of the 

egg-shaped mode for (1.29) and the N=4 n=2 mode of model (1.50) exceed the 

increments of the zone of aperiodic instability and instability of the radial orbits of 

the ellipsoidal mode. These results show the importance of volume perturbations in 

the early nonequilibrium stages of the evolution of spherical self-gravitating 

systems. 

Let us present non-stationary dispersion equations for the composite model 

and study the stability with respect to four volume modes. 

n=1, N=3:             a K( )
( cos )

( ) ( ) ( )
 

 


 


 






3

1
1

27 13 13  

 

n=2, N=4:            a K( )
( cos )

( ) ( ) ( )
 

 


 


 






3

1
1

49 24 24  

 

n=3, N=5:            a K( )
( cos )

( ) ( ) ( )
 

 


 


 






3

1
1

811 35 35  

 

n=4, N=6:            a K( )
( cos )

( ) ( ) ( )
 

 


 


 






3

1
1

813 46 46  

 

We begin our analysis again with the case without rotation. 
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21а.  Non-rotating model 

  

The results of a numerical study of these equations of the composite model 

[68] are illustrated in Fig. 21. Even a cursory glance shows a variety of 

dependences, in contrast to surface perturbation modes. The dependence for the 

N=3, n=1 mode (Fig. 21(a)) demonstrates the role of the   parameter, which is 

fundamentally different from all other studied modes, both surface and volume. 

Namely, the superposition of two models led to the emergence of a certain 

resonance effect, as a result of which the instability region from 

( /| |) ( ; . )2 0 01640T U   increased to ( /| |) ( ; . )2 0 0 9930T U  , ( . )  0 357 , occupying 

almost the entire range of possible values taken by the virial ratio (the deviation of 

the model from the equilibrium state by only 0.7% leads to Having reached the 

maximum value ( /| |) .2 0 99310T U   at  03575. , the instability region gradually 

decreased to the interval ( /| |) ( ; . )2 0 0 4460T U   ( ) 1 . To the left and to the right 

of this peak, “outgrowths” (similar to horns) extend from the main region of 

instability.of instability. 
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Fig. 21. Critical dependences of the initial virial ratio and dependences 

of the instability increments of the composite model for volume 

modes a) N=3, n=1; b) N=4, n=2; с) N=5, n=3; d) N=6, n=4. 
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Fig. 22.   Comparison of increments of volume modes of the 

composite model: =0   
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The remaining three modes, like the previously surface ones, do not show anything 

unusual, except for a smooth transition from model 1 to model 2. It is only worth 

noting that the smaller-scale modes (N=5, n=3 and N=6, n=4) are very similar to 

the dependences of surface modes with a slight difference: the “islands” of stability 

slightly expand (thicken) at moderate  and continue to values (that is, there are 

actually two separate regions of instability) and  095. , respectively. 

Figure 22 compares the increments of a composite non-rotating model. 

Everywhere, the undisputed leader is the mode (3.1), which is significantly ahead 

of the mode increments (4.2) and (2.2). 

 

 21 b.  Rotating compound model  

  

  Here we consider only the two largest-scale modes and briefly mention the 

results obtained for the other two modes [34]. 

Mode N=3, n=1. The results of the numerical analysis of the instability are 

shown in Figure 23. The combination of the dependencies in Figs. 8(a), fig. 13(a) 

and fig. 21(a) gave some very bizarre pictures. Against the background of general 

instability, there are various “offshoots” that at first look like “horns”, and later 

turn into “peninsulas” and isolated “islands”; both those and other details are 

modified, reduced, completely, however, without disappearing (Fig. 23.A). The 

“peak”, where the instability is maximum, slightly shifts (moves) to the left (to 

smaller  ) with increasing  . Since the “outgrowths” only slightly distort the 

overall picture, the dependences of the increments are given for only one value   

(Fig. 23.B). 

Mode N=4, n=2. There is nothing unexpected here (see Fig. 24). And 

dependences 24a and 24с are identical, since their products = 0.2 are the same in 

this case. 

Modes N=5, n=3 and N=6, n=4. As noted above, there is a “return” to 

surface modes here. 
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Fig.  23 A. Critical dependencies of the composite model for the egg-

shaped mode: a) =0.2; b) =0.4; с) =0.7; d) =1.0. B. 

Dependences of increments for the value of the rotation parameter 

=0.4. The numbers next to the curves indicate the values of the 

superposition parameter. 
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Fig. 24 Critical dependences and dependences of the composite model 

increments for the mode N=4, n=2; m=1: а) =0.2; b) =1.0; 

m=2: с) =0.1; d) =1.0. 
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Fig. 25 Comparison of increments of non-equilibrium versions of 

Einstein balls (solid lines) and Camm balls (dashed line) with 

the egg-shaped mode of the composite non-rotating model 

(thin lines). 
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It seems that small-scale volume modes behave similarly to surface modes. 

Figures comparing the modes of the composite rotating model are not given, 

since they will take up too much space, and this is not advisable, since for modes, 

in addition to (3.1), the increments of the intermediate ones also occupy an 

intermediate position. Finally, Figure 25 shows the volumetric mode increments 

for models 1 and 2 compared to the egg-shaped mode increments of the composite 

non-rotating model. 

Thus, in the case of volume perturbation modes, it is impossible to formulate 

any regularities that would describe the behavior of all considered modes at once. 

It is only possible, on the basis of the available results, to assume a qualitative 

similarity between surface modes and volume modes, starting from N=5 n=3 (and 

to be even more precise, from N=6 n=4). Volume modes do not have the 

phenomenon that surface modes have and is shown in Fig. 20. The increments of 

volume modes with increasing order (increasing N) are not as uniform as those of 

surface modes (that is, the larger N, the smaller the increments), but show a more 

complex picture. 

Thus, we have completely covered all possible states between the 

constructed two nonlinear models of the early stages of the evolution of rotating 

collapsing galaxies and studied interesting large-scale and small-scale modes of 

fluctuations against their background. 
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CHAPTER VI. COLLISIONLESS AND COLLISIONAL STELLAR 

SYSTEMS 

 

§22. Collision term 

Any deviation of the phase density function Ψ(𝑡, 𝑅,⃗⃗  ⃗ 𝑉⃗ ) from purely 

collisionless conditions is described by the collision term (
𝜕Ψ

𝜕𝑡
)
𝑐𝑜𝑙𝑙

which takes into 

account the effects due to velocity variations emerged by two-particle stellar 

encounters. When considering dynamic processes in stellar systems, in most cases 

we can neglect the effects of close stellar encounters on the time evolution of the 

phase density function, since under normal conditions (low concentration of stars, 

high relative velocities) the mean free path of the test star between two successive 

encounters by many orders of magnitude exceeds average interparticle distance 

and even the size of the stellar system. One of the key kinetic characteristics of the 

stellar field is the impact parameter of close encounter 𝑑90 =
𝐺⋅(𝑚+𝑚𝑓)

𝑉0
2 , where the 

vector of relative velocity of two approaching stars is deflected by 90°; here G, the 

gravitational constant; m and mf, the masses of the test and field star respectively, 

and V0, the magnitude of the relative velocity vector. The second important 

parameter is the characteristic mean interstellar distance, 𝑑̅ ≈ 0.554 ⋅ 𝜈−1/3, where 

𝜈 is the stellar number concentration. It is easy to show that in the galactic disk 

(𝜈 ∼ 0.1 𝑝𝑐−3, 𝑉0 ∼ 30 𝑘𝑚 ⋅ 𝑠−1) 𝑑90 ≈ 10−5 𝑝𝑐 ∼ 𝐴𝑈, 𝑑̅ ≈ 1 𝑝𝑐. In open star 

clusters (𝜈 ∼ 1 𝑝𝑐−3, 𝑉0 ∼ 1 𝑘𝑚 ⋅ 𝑠−1) 𝑑90 ≈ 10−2 𝑝𝑐 ∼ 103𝐴𝑈, 𝑑̅ ≈ 0.3 −

0.5 𝑝𝑐. In globular star clusters we deal with broader interval of the parameters 

(𝜈 ∼ 10 − 103 𝑝𝑐−3, 𝑉0 ∼ 5 − 10 𝑘𝑚 ⋅ 𝑠−1), and 𝑑90 ≈ 10−4 𝑝𝑐, 𝑑̅ ≈ 0.05 −

0.1 𝑝𝑐. As can be seen, in realistic stellar systems typical impact parameter which 

provides noticeable change of the velocity, is much less than the average 

interstellar distance. This means that encounters leading to significant changes in 

the velocity of stars are extremally rare under normal conditions, and their short-

term effect can be neglected. Nevertheless, it is stellar encounters, leading to the 

dissipation of mass and total energy, that ensure the long-term evolution of quasi-

stationary and non-stationary stellar systems. 

Due to the low frequency of stellar encounters, their effect is usually 

described within the framework of the theory of random forces arising during 

stellar encounters. There are two distinct ways to describe their action. The first 

considers the cumulative (that is, total) effect of successive random stellar 

encounters, each of which leads to a very small change in the spatial velocity of the 

star. This process is of a diffusion nature, and the logical development of this 

approach leads to an expression for the collision term of the Fokker-Planck form 

[71, 72]. Within the framework of an alternative approach, we introduce the 

probability of stellar collision, which leads to a given finite change in velocity (or 
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kinetic energy). Successive changes in velocity are described in terms of a purely 

discontinuous random process, and the collision term is written in the form of the 

Kolmogorov-Feller integral equation [73, 74]. 

There is a fundamental difference between these approaches. The Fokker-

Planck approximation describes the process of stellar diffusion in velocity space 

(random walk) and uses calculations of linear and quadratic diffusion coefficients 

〈∆𝑽𝒊〉, 〈∆𝑽𝒊 ∙ ∆𝑽𝒋〉. When calculating the diffusion coefficients, the results of 

successive independent two-particle encounters of a test star with field stars with 

different approach geometries, different values of impact parameters and relative 

velocities are summed up. Diffusion assumes that the speed of the test star changes 

with time in an almost continuous manner; therefore, leaving the system with 

almost a critical speed, the star does not carry away part of the energy of the 

system, and the dynamic evolution of the system proceeds with the conservation of 

the total energy. The Kolmogorov-Feller approximation does not have this 

disadvantage, because there is a non-zero probability of a significant change in the 

velocity of the test star, which in this case can abruptly overcome the critical 

velocity, carrying away part of the kinetic energy. The loss of the energy tend to 

accelerate dynamical evolution of the system and leads to decrease of the lifetime 

of stellar clusters. 

All estimates of the rate of the velocity and kinetic energy change usually 

yield quite similar values for the characteristic time scale of these kinetic 

processes, which is usually identified with the collisional relaxation time. A 

characteristic feature of standard diffusion coefficients and relaxation time 

estimates is the logarithmic divergence, which arises at the upper integration limit 

of the cumulative effect of two-particle encounters over impact parameter. It has 

the form of the term 𝚲 = 𝐥𝐧
𝒅𝒎𝒂𝒙

𝒅𝟗𝟎
 – a close analog of the so-called Coulomb 

logarithm in plasma physics – that appears in the formulas for the diffusion 

coefficients. Here 𝒅𝒎𝒂𝒙 is the upper limit of impact parameter. The problem of the 

upper limit of impact parameter has been raised repeatedly by many authors in 

their studies of stellar dynamics during past 100 years. Thus Williamson and 

Chandrasekhar [76] and Parenago [77] pointed out that in the frame of two-particle 

encounters the natural upper limit for the impact parameter should be equal to the 

average interparticle distance, 𝒅̅, because all the weaker encounters with the 

impact parameter 𝒑 ≳ 𝒅̅ are actually simultaneous and multiple, implying that 

integration over all 𝒑 overestimates their combined effect. By treating these distant 

encounters as involving only two particles, we actually incorporate into the 

resulting diffusion coefficients not only the effect of irregular forces, but also, to a 

certain extent, the effect due to the regular component of the gravitational field. 
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From the other side, Ambartsumyan [78], Ogorodnikov [79], King [80], 

Binney and Tremaine [1] and some other authors mentioned in the latter 

monograph [1], on the contrary, believe that dmax should be set equal to the 

characteristic size of the entire stellar system (the radius of the cluster, thickness of 

the galactic disk etc.) or the radius of the regular stellar orbit. Note that the precise 

knowledge of the upper integration limit is by no means critical for practical 

purposes (estimation of the relaxation time and computation of the diffusion 

coefficients), because the rather weak (logarithmic) divergence cannot change 

significantly the estimates of the above quantities whatever be a realistic choice of 

the maximum impact parameter. Indeed, we have for the solar neighborhood in the 

Galaxy 𝒅̅ ≈ 𝟏 𝒑𝒄, 𝒅𝟗𝟎 ≈ 𝟏 − 𝟐 𝑨𝑼, and 𝚲 ≈ 𝐥𝐧
𝒅̅

𝒅𝟗𝟎
~𝟏𝟏 − 𝟏𝟐. Adopting dmax ~ Hz 

≈ 100 pc as the upper limit increases the “Coulomb logarithm” 𝚲 to 𝚲~𝟏𝟓 − 𝟏𝟔, 

i.e., only by 40-50%, with no radical effect whatsoever on our estimates. However, 

the problem of choosing the upper limit for impact parameter has another aspect, 

which is directly associated with the physical basis of collisional kinetics of stellar 

systems, and we believe that a more in-depth understanding of the physics of such 

phenomena and attempts to describe them in a noncontroversial way is a task of 

fundamental importance and leads to deeper understanding of nature of random 

forces in stellar systems. 

 

§23. On the multiplicity of stellar encounters 

 

As was noted above, Agekyan [73] developed and implemented a 

probabilistic approach to account for stellar encounters, and derived analytical 

formulas for the probability Φ(𝑉2, ℎ) of a stellar encounter producing the given 

change in the velocity of the test star in some special cases. Here ℎ =
Δ𝑉2

𝑉2
, Δ𝑉2 is 

the change in the squared velocity of the star. The weak point of Agekyan’s 

approach is the divergence of the probability for small changes of velocity,    

Φ(V
2
, h) ~ h

-3
, which, in particular, prevented the computation of the average 

change in the star’s energy. It is evident that this divergence is directly associated 

with the multiplicity of distant encounters mentioned above, which results in small 

velocity changes in the computation of the cumulative effect. To attenuate the 

divergence, Agekyan [81] introduced a factor accounting for the multiplicity of 

encounters (Agekyan’s 𝜆-factor; although in previous chapters of this book the 

symbol 𝜆 denoted the amplitude of radial pulsations, in this chapter, in order to 

preserve the historical original designation used by Agekian, we decided to use the 

same symbol 𝜆 for the reduction factor). This factor is equal to the ratio of the 

magnitude of the random force |𝛿𝐹 |  acting on the test star and produced by all 

stars within a thin spherical layer to the arithmetic sum of the magnitudes of the 
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forces ∑|𝐹 𝑖| acting on the test star and produced by all these stars, i.e., 𝜆(𝑝) =
|𝛿𝐹 |

∑|𝐹 𝑖|
< 1. 

This problem was later discussed by Kandrup [82], who used simplified 

approach and suggested that the forces from distant stars effectively cancel each 

other. Detailed quantitative description of an irregular force field in locally 

homogeneous stellar field was presented in very important paper of Kandrup [83]. 

He was the first to note that the diffusion coefficients in the Fokker-Planck 

approximation do not diverge on the upper limit of integration over the impact 

parameter. 

Agekyan’s 𝜆-factor has a simple physical meaning. In fact, the actual change 

in the velocity of the test star (within unit time interval) due to stellar encounters 

with impact parameters in the (p, p+dp) interval is determined by the magnitude 

of random force, |𝛿𝐹 |, i.e., by the geometric sum of the forces produced by all 

stars in the spherical layer. The use of the arithmetic sum of forces arising in two-

particle encounters instead of the random force, as is the case in the calculations of 

the cumulative effect, results in substantially overestimated values of both the 

irregular force and the effect of encounters. The need to take into account the 

attenuation of the effect of distant encounters becomes absolutely clear if one 

recalls Newton’s theorem about a spherically symmetric distribution of external 

masses. Uniform discrete distribution of gravitating material points evidently has 

similar properties at large distances from the test particle because particles are 

distributed practically uniformly over all angles. Scattering centers – i.e., field 

stars – are distributed randomly and uniformly with average number density 

(concentration) 𝜐, and therefore the vectors of their forces acting onto the test star 

cancel out. This results in the effect of sui generis total levelling of the random 

force of two-particle encounters already at several interparticle distances. 

Agekyan’s factor allows us to compensate the overestimation of the effect of 

distant encounters. To compute λ(p), Agekyan [81] used the technique earlier 

employed by Chandrasekhar [84] to derive Holtsmark’s distribution for random 

gravitational force, and obtained the following formula 

  𝜆(𝑝) =
4

𝜋
 ∫

𝑥−sin 𝑥

𝑥3
exp (−𝑎

4𝜋

3
𝜈 𝑝3𝑥

3
2⁄ )

∞

0
 𝑑𝑥,  (6.1) 

where 𝑎 =
2

5
√2𝜋 ≈ 1.00265. 

Taking into account that 
4𝜋

3
𝜈 𝑝3 ≡ 𝑁(𝑝) – average number of stars inside 

the sphere of radius p, where p is the impact factor of the encounter under 

consideration – we can rewrite (6.1) in the equivalent form, treating λ-factor as a 

function of N = N(p): 
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𝜆(𝑁) = ∫
𝑥 − sin 𝑥

𝑥3

∞

0

𝑒𝑥𝑝 (−𝑎 𝑁 𝑥
3

2⁄ )𝑑𝑥 

Thus Agekyan’s λ-factor is fully determined by the average number of stars located 

inside the sphere of radius equal to the impact parameter of the encounter 

considered. We will use this form of the λ-factor throughout the text. Function λ(p) 

cannot be expressed in terms of elementary functions, however, at large N is has 

the well-known asymptotic behavior ~N
 -2/3

~ p
 -2 

and rapidly decreases with 

increasing impact parameter. Fig. 6.1 shows the Agekyan’s λ-factor as a function of 

the impact parameter expressed in the units of average interparticle distance, 

𝒑′ = 𝒑/𝒅̅. As is evident from the Fig. 6.1, the effect of stellar encounters is 

overestimated by one order of magnitude even at two average interparticle 

distances from the test star. Thus Agekyan quantitatively confirmed the intuitive 

conclusion that within the framework of 3D-Poisson model of the stellar medium 

the immediate neighborhood of the test particle is the main contributor to the 

random gravitational force. 

        
Fig. 6.1. Agekyan’s λ-factor as a function of the impact parameter p′ expressed in 

the units of average interparticle distance 𝑑̅. 

 Agekyan’s λ-factor cannot be expressed in terms of elementary functions and 

therefore we must use piecewise analytical approximations to estimate the 

diffusion coefficients. First, we consider Agekyan’s λ-factor to be a function of 

𝑛 = 𝑁/𝑁0, where 𝑁0 ≈ 0.7122 is the average number of stars inside the sphere of 

radius equal to the average interparticle distance 𝑑̅. We thus naturally introduce 𝑑̅ 

as a scale parameter of the stellar field. We established with simple computations 

that Agekyan’s λ-factor can, up to about 2-3%, be approximated by the following 

simple analytical formulas 
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𝜆(𝑛) ≈ {
𝑎 ∙ 𝑒𝑥𝑝[−𝑏 ∙ 𝑛𝑐] + 𝑑, 𝑛 ≤ 1

𝑒 ∙ 𝑛−2
3⁄ ,                    𝑛 > 1

 ,  (6.2) 

Where the constants a≈0.863±0.001, b≈2.281±0.002, c≈0.616±0.0002, 

d≈0.141±0.002, e≈0.235±0.001 (at a significance level of 95%). This accuracy is 

more than sufficient for our estimates of integrals. 

 The current values of the impact parameter and average number of stars in 

the sphere of the corresponding radius are connected by the following evident 

relation, 

    𝑝 = 𝑑̅ ∙ (𝑁
𝑁0

⁄ )

1
3⁄

= 𝑑̅ ∙ 𝑛
1

3⁄     (6.3) 

This approximation will be used to integrate the diffusion coefficients over the 

impact parameter up to infinite limit. 

 

§24. Rigorous calculation for the diffusion coefficients 

 

 We will follow the paper of Rastorguev, Utkin and Chumak [75] who have 

explicitly shown that the consistent usage of Agekyan’s reduction factor leads to 

convergent expression for the diffusion coefficients. We take as a basis the 

derivation of the diffusion coefficients described in the monograph by Binney and 

Tremaine [1], Fig. L.6. Initial expressions for first and second order components of 

the diffusion tensor for a test star averaged over only the orientation of the plane of 

relative orbit have the form: 

  〈Δ𝑉𝑖〉 = −Δ𝑉∥ (𝑒𝑖⃗⃗  ∙ 𝑒1
′⃗⃗  ⃗) ,       (6.4) 

  〈Δ𝑉𝑖 ⋅ Δ𝑉𝑗〉 = (Δ𝑉∥)
2 (𝑒𝑖⃗⃗  ⋅ 𝑒1

′⃗⃗  ⃗) (𝑒𝑗⃗⃗  ⋅ 𝑒1
′⃗⃗  ⃗) + 

   + 
1

2
(Δ𝑉⊥)2 [(𝑒𝑖⃗⃗  ⋅ 𝑒2

′⃗⃗  ⃗) (𝑒𝑗⃗⃗  ⋅ 𝑒2
′⃗⃗  ⃗) + (𝑒𝑖⃗⃗  ⋅ 𝑒3

′⃗⃗  ⃗) (𝑒𝑗⃗⃗  ⋅ 𝑒3
′⃗⃗  ⃗)], (6.5) 

where (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗) – are the orts of the laboratory coordinate system; (𝑒1
′⃗⃗  ⃗, 𝑒2

′⃗⃗  ⃗, 𝑒3
′⃗⃗  ⃗) –

are the orts of the coordinate system connected with the field star, such that the 

vector 𝑒1
′⃗⃗  ⃗ is directed along the vector of the relative velocity of approaching stars 

(see Fig. L.1 in [1]). The variations of the parallel and transverse velocity 

components transformed to the laboratory coordinate system and appearing in 

formulas (6.4), (6.5) for the diffusion coefficient are equal to ([1], Fig. L.7) 

   Δ𝑉∥ =
2𝐺𝑚𝑓𝑝90

𝑉0(𝑝
2+𝑝90

2 )
, Δ𝑉⊥ =

2𝐺𝑚𝑓𝑝

𝑉0(𝑝
2+𝑝90

2 )
 ,   (6.6) 
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where 𝑚𝑓 , 𝑉0, 𝑝 are the mass of the field star, magnitude of the relative velocity of 

approaching stars, and the impact parameter, respectively.  

The variation in the velocity component, Δ𝑉∥, is computed for unit time 

interval, i.e., it can be treated as an acceleration of the test star due to (stochastic) 

irregular forces. It therefore seems absolutely logical to multiply Δ𝑉∥ before the 

integration by 𝜆(𝑝), reduction factor of the force. From the other side, (Δ𝑉∥)
2 and 

(Δ𝑉⊥)2 can be treated as the changes of the kinetic energy per unit time and, 

therefore, these changes are proportional to the power of random force, and these 

terms should also be multiplied by 𝜆(𝑝), when we further integrate formulas (6.4) 

and (6.5) over impact parameters. Note that this is entirely equivalent to the 

alternative Agekyan’s interpretation, that the reduction factor describes also 

decreasing effective concentration of field stars. 

 As usual, we integrate the above expressions over impact parameter with the 

weight 𝑑𝑁(𝑝) = 2𝜋𝜈𝑉0𝑝𝑑𝑝 equal to the number of test-star encounters with field 

stars with relative velocity V0 and impact parameters in the (𝑝, 𝑝 + 𝑑𝑝) interval 

over unit time interval. We focus only on the integration over impact parameters, 

because the subsequent integration over the velocity distribution of field stars 

yields Rosenbluth potentials [85] like in classical stellar dynamics studies. It is 

easy to see that, taking into account the Agekyan’s asymptotics for large values of 

the impact parameter, 𝝀(𝑝) ∼ 𝑝−2, the expressions for the diffusion coefficients 

converge and no longer show logarithmic divergence. Let's calculate, within the 

framework of this approach, the exact values of the diffusion coefficients, taking 

into account analytical approximation for the reduction factor (6.2), shown above. 

 The computation of the diffusion coefficients consists in integrating velocity 

changes Δ𝑉∥, (Δ𝑉∥)
2, (Δ𝑉⊥)2 over impact parameters: 

   〈∆𝑉∥〉 = 𝜋𝜈𝑉0 ∙ ∫ 𝛥𝑉∥ ∙ 𝜆
∞

0
(𝑝) ∙ 𝑑(𝑝2)    (6.7) 

   〈∆𝑉∥
2〉 = 𝜋𝜈𝑉0 ∙ ∫ (Δ𝑉∥)

2 ∙ 𝜆
∞

0
(𝑝) ∙ 𝑑(𝑝2)   (6.8) 

   〈∆𝑉⊥
2〉 = 𝜋𝜈𝑉0 ∙ ∫ (Δ𝑉⊥)2 ∙ 𝜆

∞

0
(𝑝) ∙ 𝑑(𝑝2)   (6.9) 

It is evident that 〈∆𝑉∥
2〉 ≪ 〈∆𝑉⊥

2〉, because integral (6.8) converges in “classical” 

computations of the diffusion coefficients, and the convergence is even more 

evident in our case where the integrand is multiplied by a rapidly decreasing 

function of impact parameter. That is why we do not consider diffusion coefficient 

(6.8) below. 

 We now use formula (6.3) and pass from integration over impact parameter 

to integration over the relative number of stars n by transforming formula (6.7) to 

the form 



163 

 

〈∆𝑉∥〉 =
2𝜋𝐺2𝑚𝑓(𝑚+𝑚𝑓)𝜈

𝑉0
2 ∙ ∫

𝜆(𝑝) 𝑑(𝑝2)

(𝑝2+𝑝90
2 )

 =  
2𝜋𝐺2𝑚𝑓(𝑚+𝑚𝑓)𝜈

𝑉0
2 ∙ 𝐾2 ∙ ∫

𝜆(𝑡) 𝑑𝑡

1+𝐾2𝑡

∞

0

∞

0
 = 

=
2𝜋𝐺2𝑚𝑓(𝑚+𝑚𝑓)𝜈

𝑉0
2 ∙ 𝐼1(𝐾)        (6.10) 

where 𝐾 = 𝑑̅
𝑝90

⁄  is the ratio of two scale lengths of the stellar field and the new 

integration variable is 𝑡 = (𝑁
𝑁0

⁄ )

2
3⁄

. We similarly derive the following formula 

for the quadratic diffusion coefficient, 

 〈∆𝑉⊥
2〉 =

4𝜋𝐺2𝑚𝑓
2𝜈

𝑉0
∫

𝜆(𝑝) 𝑝2 𝑑𝑝

(𝑝2+𝑝90
2 )

2 =
4𝜋𝐺2𝑚𝑓

2𝜈

𝑉0
∙ 𝐾4 ∙ ∫

𝜆(𝑡) 𝑡 𝑑𝑡

(1+𝐾2𝑡)2

∞

0

∞

0
 = 

=
4𝜋𝐺2𝑚𝑓

2𝜈

𝑉0
∙ 𝐼2(𝐾),        (6.11) 

where the dimensionless functions 

  𝐼1(𝐾) = 𝐾2 ∙ ∫
𝜆(𝑡) 𝑑𝑡

1+𝐾2𝑡

∞

0
 ,   𝐼2(𝐾) = 𝐾4 ∙ ∫

𝜆(𝑡) 𝑡 𝑑𝑡

(1+𝐾2𝑡)2

∞

0
 –  (6.12) 

that appear in the expressions (6.10) and (6.11) for the first- and second-order 

diffusion coefficients, respectively, depend only on scale factors ratio K. 

 To illustrate quick convergence of the diffusion coefficients, we computed 

the dimensionless functions in (6.12) by numerically integrating the corresponding 

integrands for a wide range of scale factor ratios 1 < K < 10
5
. Note that the upper 

boundary of parameter K corresponds to rather low star number density of the 

order of 0.1 pc
-3

, which resembles the conditions in the solar neighborhood. 

Fig. 6.2 shows the behavior of integral 𝐼1 with increasing upper integration limit 

for the scale factor ratio of 𝐾 = 𝑑̅
𝑝90

⁄ = 1000. It is evident from the figure that 

the function levels off already at relatively small t values demonstrating the total 

absence of logarithmic divergence. We now recall that 𝑡 = (
𝑑𝑚𝑎𝑥

𝑝90
⁄ )

2

 to see 

that the integral “saturates” and the test star becomes practically “shielded” from 

distant encounters at distances as small as 2–3 average interparticle distances, 𝑑̅. 

 Fig. 6.3 shows the behavior of dimensionless integral 𝐼2 as a function of the 

upper integration limit for the same scale ratio 𝐾 = 𝑑̅
𝑝90

⁄ = 1000. It is evident 

from the figure that this integral converges even faster, and the test star becomes 

actually “shielded” from distant encounters at the distances as small as about 1–2 

average interparticle distances. This is no surprise given the very rapid decrease of 
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Agekyan’s λ-factor with impact parameter of the encounters.

 

Fig. 6.2. Behavior of integral 𝐼1(𝐾 = 1000) in (6.10) as a function of the upper 

integration limit, 𝑡𝑚𝑎𝑥. 

 The parameters of linear dependences I1 and I2 on lg (K
2
) for sufficiently 

large parameter values, K > 10, can be easily derived from the results of our 

computations. 

 

 
 

Fig. 6.3. Behavior of integral 𝐼2(𝐾 = 1000) in (6.11) as a function of increasing 

upper integration limit, 𝑡𝑚𝑎𝑥. 
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 From calculated final values of dimensionless functions in (6.12), we 

derived simple linear approximations 

𝐼1(𝐾) ≈ (2.306 ± 0.01) ∙ 𝑙𝑔(𝐾2) − (1.070 ± 0.03) ≈ 2 ∙ 𝑙𝑛 (𝐾
1.7⁄ ) (6.13) 

𝐼2(𝐾) ≈ (2.302 ± 0.04) ∙ 𝑙𝑔(𝐾2) − (2.224 ± 0.02) ≈ 2 ∙ 𝑙𝑛 (𝐾
3.0⁄ ), (6.14) 

where 𝑙𝑛 symbol is used for natural logarithm. We now substitute equations (6.13) 

and (6.14) into equations (6.10) and (6.11), respectively, to obtain the final 

expressions for the diffusion coefficients with the allowance for gravitational 

“shielding” of distant two-particle encounters: 

   〈∆𝑉∥〉 ≈
4 𝜋𝐺2𝑚𝑓(𝑚+𝑚𝑓)𝜈

𝑉0
2 ∙ 𝑙𝑛 (𝑑̅

1.7 ∙ 𝑝90
⁄ ),   (6.15) 

   〈∆𝑉⊥
2〉 ≈

8 𝜋𝐺2𝑚𝑓
2𝜈

𝑉0
∙ 𝑙𝑛 (𝑑̅

3.0 ∙ 𝑝90
⁄ )    (6.16) 

The coefficients at logarithm in (6.13-6.14) are wery close to 2; we are sure that for 

more accurate approximation for Agekyan’s factor these values will be equal 

exactly to 2. 

 Let us now compare our computed diffusion coefficients with the results of 

the “classical” computations with the effect of distant encounters intuitively cut off 

at the average interparticle distance 𝑑̅ (see, e.g., [71]): 

   〈∆𝑉∥〉 ≈
4 𝜋𝐺2𝑚𝑓(𝑚+𝑚𝑓)𝜈

𝑉0
2 ∙ 𝑙𝑛 (𝑑̅

𝑝90
⁄ ),   (6.17) 

   〈∆𝑉⊥
2〉 ≈

8 𝜋𝐺2𝑚𝑓
2𝜈

𝑉0
∙ 𝑙𝑛 (𝑑̅

𝑒 ∙ 𝑝90
⁄ )    (6.18) 

First, given that we are concerned only with estimating the effect of binary stellar 

encounters, it is safe to say that the use of formulas (6.15) and (6.17), (6.16) and 

(6.18) for practical computations of diffusion and the time scales does not bring 

any large discrepancies. Second, from Fig. 6.2 and Fig. 6.3 it becomes absolutely 

clear that the effective maximum impact parameter in the frame of the two-particle 

encounter concept should indeed be not significantly larger than 1–2 average 

interparticle separations, and all the more distant encounters contribute mostly to 

the regular force component or to large-scale fluctuations. We thus actually 

corroborated intuitive point of view of the researchers who consider it necessary to 

restrict the effect of irregular forces calculated in the frame of binary encounters by 

the average interparticle distance. Strictly speaking, encounters with 𝑝 ≥ (5 −

10) 𝑑̅ do not contribute to the random irregular force at all. 
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Third, and most important, both our expressions and those proposed in 

classical works contain the logarithmic factor. However, in our approach it has a 

fundamentally different physical meaning. We show that the reduction factor 

effectively cuts multiple distant encounters and allows avoiding the divergence of 

integrals at the upper limit. In our case, the logarithmic factor appears naturally 

and is due to the fact that any stellar medium is characterized by two totally 

independent scale lengths: the average interparticle separation,  𝒅̅ ≈ 𝟎. 𝟓𝟓𝟒 ⋅

𝝂−𝟏/𝟑, which is related only to the concentration of stars, and the parameter of 

close encounter, 𝒑𝟗𝟎 =
𝑮(𝒎+𝒎𝒇)

𝑽𝟎
𝟐  , which reflects the dynamics of the stellar 

medium (it is determined by the masses and characteristic velocities of stars). 

It should be noted that these parameters become directly related only under the 

conditions of virial equilibrium. 

Nearly the same result was obtained earlier by Kandrup [82, 83] who 

analyzed kinetic processes in a locally homogeneous stellar media (e.g. 

homogeneous over distance comparable to the local mean interparticle spacing). 

Using the distribution of random forces analogous to Holtsmark, he was able to 

derive rigorous expressions for the diffusion coefficients very similar to classic 

expressions for uniform infinite stellar field. He also emphasized that the Coulomb 

logarithm in these expressions does reflect the ratio of two characteristic scales 

rather than logarithmic divergence. Finally, we must note that two different 

methods used by us and by Kandrup [82, 83] to calculate the contribution of 

random forces to the diffusion in the velocity space, lead to the same conclusion 

about very effective shielding of distant encounters, which results in the 

convergence of diffusion coefficients, in contrast to classical artificial cut-off of 

distant encounters. Our technique seems to be more simple and straightforward. 

 Agekyan’s λ-factor was derived based on the Holtsmark distribution for 

infinite static uniform stellar medium. In real stellar systems the size of spatial 

irregularities (density fluctuations) is significantly greater than the average 

interparticle separation, and therefore the estimates of the range of irregular forces 

produced by stars obtained here are, in our opinion, quite applicable to nonuniform 

systems as well, as was also noted by Kandrup [82, 83]. It is evident that the 

influence of spatial irregularities may show up as collective effects in the 

gravitating medium, including the effects due to the fractal structure of the 

medium. We believe that the passage to the limit in the computation of kinetic 

coefficients in the case of fractal medium also allows us to ignore the effect of 

irregularities located beyond several intercluster distances. 
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