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Abstract

Formation of galaxy clusters corresponds to the collapse of the largest gravi-
tationally bound overdensities in the initial density field and is accompanied
by the most energetic phenomena since the Big Bang and by the complex in-
terplay between gravity-induced dynamics of collapse and baryonic processes
associated with galaxy formation. Galaxy clusters are, thus, at the cross-roads
of cosmology and astrophysics and are unique laboratories for testing mod-
els of gravitational structure formation, galaxy evolution, thermodynamics of
the intergalactic medium, and plasma physics. At the same time, their large
masses make them a useful probe of growth of structure over cosmologi-
cal time, thus providing cosmological constraints that are complementary
to other probes. In this review, we describe our current understanding of
cluster formation: from the general picture of collapse from initial density
fluctuations in an expanding Universe to detailed simulations of cluster for-
mation including the effects of galaxy formation. We outline both the areas in
which highly accurate predictions of theoretical models can be obtained and
areas where predictions are uncertain due to uncertain physics of galaxy for-
mation and feedback. The former includes the description of the structural
properties of the dark matter halos hosting clusters, their mass function, and
clustering properties. Their study provides a foundation for cosmological
applications of clusters and for testing the fundamental assumptions of the
standard model of structure formation. The latter includes the description of
the total gas and stellar fractions and the thermodynamical and nonthermal
processes in the intracluster plasma. Their study serves as a testing ground
for galaxy formation models and plasma physics. In this context, we identify
a suitable radial range where the observed thermal properties of the intra-
cluster plasma exhibit the most regular behavior and, thus, can be used to
define robust observational proxies for the total cluster mass. Finally, we
discuss the formation of clusters in nonstandard cosmological models, such
as non-Gaussian models for the initial density field and models with modi-
fied gravity, along with prospects for testing these alternative scenarios with
large cluster surveys in the near future.
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1. INTRODUCTION

The tendency of nebulae to cluster was discovered by Charles Messier and William Herschel, who
constructed the first systematic catalogs of these objects. This tendency has become more apparent
as larger and larger samples of galaxies were compiled in the nineteenth and early twentieth
centuries. Studies of the most prominent concentrations of nebulae, the clusters of galaxies, were
revolutionized in the 1920s by Edwin Hubble’s proof that spiral and elliptical nebulae were bona
fide galaxies like the Milky Way located at large distances from us (Hubble 1925, 1926), which
implied that clusters of galaxies are systems of enormous size. Just a few years later, measurements
of galaxy velocities in regions of clusters made by Hubble & Humason (1931) and assumption
of the virial equilibrium of galaxy motions were used to show that the total gravitating cluster
masses for the Coma (Zwicky 1933, and see also Zwicky 1937) and Virgo clusters (Smith 1936)
were enormous as well.

The masses implied by the measured velocity dispersions were found to exceed the combined
mass of all the stars in clusters galaxies by factors of ∼200–400, which prompted Zwicky to pos-
tulate the existence of large amounts of dark matter (DM), inventing this widely used term in the
process. Although the evidence for dark matter in clusters was disputed in the subsequent decades,
as it was realized that stellar masses of galaxies were underestimated in the early studies, dark
matter was ultimately confirmed by the discovery of extended hot intracluster medium (ICM)
emitting at X-ray energies by thermal bremsstrahlung that was found to be smoothly filling in-
tergalactic space within the Coma cluster (Cavaliere, Gursky & Tucker 1971; Gursky et al. 1971;
Meekins et al. 1971; Forman et al. 1972; Kellogg et al. 1972). The X-ray emission of the ICM
has not only provided a part of the missing mass (as was conjectured on theoretical grounds by
Limber 1959 and van Albada 1960), but also allows the detection of clusters out to z > 1 (Rosati,
Borgani & Norman 2002). Furthermore, measurement of the ICM temperature has provided an
independent confirmation that the depth of gravitational potential of clusters requires additional
dark component. It was also quickly realized that inverse Compton scattering of the cosmic mi-
crowave background (CMB) photons off thermal electrons of the hot intergalactic plasma should
lead to distortions in the CMB spectrum, equivalent to black body temperature variations of about
10−4–10−5 [the Sunyaev-Zel’dovich (SZ) effect; Sunyaev & Zel’dovich 1970, 1972b, 1980]. This
effect has now been measured in hundreds of clusters (e.g., Carlstrom, Holder & Reese 2002).

Given such remarkable properties, it is no surprise that the quest to understand the formation
and evolution of galaxy clusters has become one of the central efforts in modern astrophysics
over the past several decades. Early pioneering models of collapse of initial density fluctuations
in the expanding Universe have shown that systems resembling the Coma cluster can indeed
form (van Albada 1960, 1961; Peebles 1970; White 1976). Gott & Gunn (1971; see also Sunyaev
& Zel’dovich 1972a) showed that hot gas observed in the Coma via X-ray observations can be
explained within such a collapse scenario by heating of the infalling gas by the strong accretion
shocks. Subsequently, emergence of the hierarchical model of structure formation (Press &
Schechter 1974, Gott & Rees 1975, White & Rees 1978), combined with the cold dark matter
(CDM) cosmological scenario (Bond, Szalay & Turner 1982; Blumenthal et al. 1984), provided
a powerful framework for interpretation of the multiwavelength cluster observations. At the
same time, rapid advances in computing power and new, efficient numerical algorithms have
allowed fully three-dimensional ab initio numerical calculations of cluster formation within a
self-consistent cosmological context in both dissipationless regime (Klypin & Shandarin 1983,
Efstathiou et al. 1985) and including dissipational baryonic component (Evrard 1988, 1990).

In the past two decades, theoretical studies of cluster formation have blossomed into a vibrant
and mature scientific field. As we detail in the subsequent sections, the standard scenario of cluster
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formation has emerged and theoretical studies have identified the most important processes that
shape the observed properties of clusters and their evolution, which has enabled usage of clusters
as powerful cosmological probes (see, e.g., Allen, Evrard & Mantz 2011 for a recent review). At the
same time, observations of clusters at different redshifts have highlighted several key discrepancies
between models and observations, which are particularly salient in the central regions (cores) of
clusters.

In the current paradigm of structure formation, clusters are thought to form via a hierarchical
sequence of mergers and accretion of smaller systems driven by gravity and DM that dominates
the gravitational field. Theoretical models of clusters employ a variety of techniques determined
by a particular aspect of cluster formation they aim to understand. Many of the bulk properties
of clusters are thought to be determined solely by the initial conditions, dissipationless DM that
dominates cluster mass budget, and gravity. Thus, cluster formation is often approximated in
models as DM-driven dissipationless collapse from cosmological initial conditions in an expanding
Universe. Such models are quite successful in predicting the existence and functional form of
correlations between cluster properties, as well as their abundance and clustering, as we discuss
in detail in Section 3. One of the most remarkable models of this kind is a simple self-similar
model of clusters (Kaiser 1986; see Section 3.9 below). Despite its simplicity, the predictions of
this model are quite close to results of observations and have, in fact, been quite useful in providing
baseline expectations for evolution of cluster scaling relations. Studies of abundance and spatial
distribution of clusters using dissipationless cosmological simulations show that these statistics
retain remarkable memory of the initial conditions.

The full description of cluster formation requires detailed modeling of the nonlinear processes
of collapse and the dissipative physics of baryons. The gas is heated to high, X-ray emitting temper-
atures by adiabatic compression and shocks during collapse and settles in hydrostatic equilibrium
(HE) within the cluster potential well. Once the gas is sufficiently dense, it cools, the process that
can feed both star formation and accretion onto supermassive black holes (SMBHs) harbored by
the massive cluster galaxies. The process of cooling and formation of stars and SMBHs can then
result in energetic feedback due to supernovae (SNe) or active galactic nuclei (AGN), which can
inject substantial amounts of heat into the ICM and spread heavy elements throughout the cluster
volume.

Galaxy clusters are therefore veritable crossroads of astrophysics and cosmology: While abun-
dance and spatial distribution of clusters bear indelible imprints of the background cosmology,
gravity law, and initial conditions, the nearly closed-box nature of deep cluster potentials makes
them ideal laboratories to study processes operating during galaxy formation and their effects on
the surrounding intergalactic medium.

In this review we discuss the main developments and results in the quest to understand the
formation and evolution of galaxy clusters. Given the limited space available for this review and
the vast amount of literature and research directions related to galaxy clusters, we have no choice
but to limit the focus of our review, as well as the number of cited studies. Specifically, we
focus on the most basic and well-established elements of the standard paradigm of DM-driven
hierarchical structure formation within the framework of �CDM cosmology as it pertains to galaxy
clusters. We focus mainly on the theoretical predictions of the properties of the total cluster mass
distribution and properties of the hot intracluster gas, and only briefly discuss results pertaining
to the evolution of stellar components of clusters, understanding of which is still very much a
work in progress. Comparing model predictions to real clusters, we mostly focus on comparisons
with X-ray observations, which have provided the bulk of our knowledge of ICM properties so
far. In Section 5, we briefly discuss the differences in formation of clusters in models with the
non-Gaussian initial conditions and modified gravity. Specifically, we focus on the information
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that statistics sensitive to the cluster formation process, such as cluster abundance and clustering,
can provide about the primordial non-Gaussianity and possible deviations of gravity from General
Relativity. We refer readers to recent extensive reviews on cosmological uses of galaxy clusters by
Allen, Evrard & Mantz (2011) and Weinberg et al. (2012) for a more extensive discussion of this
topic.

2. THE OBSERVED PROPERTIES OF GALAXY CLUSTERS

Observational studies of galaxy clusters have now developed into a broad, multifaceted and mul-
tiwavelength field. Before we embark on our overview of different theoretical aspects of cluster
formation, we briefly review the main observational properties of clusters and, in particular, the
basic properties of their main matter constituents.

Figure 1 shows examples of the multiwavelength observations of two massive clusters at two
different cosmic epochs: the Abell 1689 at z = 0.18 and the SPT-CL J2106-5844 at z = 1.133.
It illustrates all of the main components of the clusters: the luminous stars in and around galaxies
(the intracluster light or ICL), the hot ICM observed via its X-ray emission and the Sunyaev-
Zel’dovich effect and, in the case of Abell 1689, even the presence of invisible DM manifesting
itself through gravitational lensing of background galaxies distorting their images into extended,
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Figure 1
(a) The composite X-ray/optical image (556 kpc on a side) of the galaxy cluster Abell 1689 at redshift z = 0.18. The purple haze shows
X-ray emission of the T ∼ 108 K gas, obtained by the Chandra X-ray Observatory. Images of galaxies in the optical band, colored in
yellow, are from observations performed with the Hubble Space Telescope. The long arcs in the optical image are caused by the
gravitational lensing of background galaxies by matter in the galaxy cluster, the largest system of such arcs ever found (Credit: X-ray:
NASA/CXC/MIT; Optical: NASA/STScI). (b) The galaxy cluster SPT-CL J2106-5844 at z = 1.133, the most massive cluster known
at z > 1 discovered via its Sunyaev-Zel’dovich (SZ) signal (M 200 ≈ 1.3 × 1015 M�). The color image shows the Magellan/LDSS3
optical and Spitzer/IRAC mid-IR measurements (corresponding to the blue-green-red color channels). The frame subtends 4.8 ×
4.8 arcmin, which corresponds to 2.4 × 2.4 Mpc at the redshift of the cluster. The solid yellow contours correspond to the South Pole
Telescope SZ significance values, as labeled, where dashed yellow contours are used for the negative significance values. Adapted from
Foley et al. 2011.
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Figure 2
The mass in stars versus the mass of hot, X-ray emitting gas. Both masses are measured within the radius
R500 estimated from the observationally calibrated Y X − M 500 relation, assuming flat �CDM cosmology
with �m = 1 − �� = 0.26 and h = 0.71. Red circles show local clusters located at z < 0.1, whereas blue
squares show higher redshift clusters: 0.1 < z < 0.6 (see Lin et al. 2012 for details). The dotted line
corresponds to the constant stellar-to-gas mass ratio M ∗,500/M g,500 = 0.1, whereas the dashed lines
correspond to the values of 0.05 and 0.2 for this ratio.

cluster-centric arcs (Bartelmann 2010, and references therein). At larger radii, the lensing effect is
weaker. Although not easily visible by eye, it can still be reliably measured by averaging the shapes
of many background galaxies and comparing the average with the expected value for an isotropic
distribution of shapes. The gravitational lensing is a direct probe of the total mass distribution in
clusters, which makes it both extremely powerful in its own right and a very useful check of other
methods of measuring cluster masses. The figure shows several bright elliptical galaxies that are
typically located near the cluster center. A salient feature of such central galaxies is that they show
little evidence of ongoing star formation, despite their extremely large masses.

The diffuse plasma is not associated with individual galaxies, and constitutes the intracluster
medium, which contains the bulk of the normal baryonic matter in massive clusters. Although
the hot ICM is not directly associated with galaxies, their properties are correlated. For example,
Figure 2 shows the mass of the ICM gas within the radius R500, defined as the radius enclosing
mean overdensity of �c = 500ρcr, versus stellar mass in galaxies within the same radius for a
number of local (z � 0.1) and distant (0.1 < z < 0.6) clusters (Lin et al. 2012). Here, ρcr(z) =
3H (z)2/(8πG) is the critical mean density of the Universe, defined in terms of the Hubble function
H(z). The figure shows a remarkably tight, albeit nonlinear, correlation between these two baryonic
components. It also shows that the gas mass in clusters is on average about ten times larger than
the mass in stars, although this ratio is systematically larger for smaller mass clusters, ranging from
M ∗/M g ≈ 0.2 to ≈0.05, as mass increases from group scale (M 500 ∼ few × 1013 M�) to massive
clusters (M 500 ∼ 1015 M�).
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The temperature of the ICM is consistent with velocities of galaxies and indicates that both
galaxies and gas are nearly in equilibrium within a common gravitational potential well. The mass
of galaxies and hot gas is not sufficient to explain the depth of the potential well, which implies that
most of the mass in clusters is in a form of DM. Given that hydrogen is by far the most abundant
element in the Universe, most of the plasma particles are electrons and protons, with a smaller
number of helium nuclei. There are also trace amounts of heavier nuclei, some of which are only
partially ionized. The typical average abundance of the heavier elements is about one-third of that
found in the Sun or a fraction of one percent by mass; it decreases with increasing radius and can
be quite inhomogeneous, especially in merging systems (see Werner et al. 2008 for a review).

Thermodynamic properties of the ICM are of utmost importance because comparing such
properties to predictions of baseline models without cooling and heating can help to isolate
the impact of these physical processes in cluster formation. The most popular baseline model
is the self-similar model of clusters developed by Kaiser (1986), which we consider in detail in
Section 3.9 below. In its simplest version, this model assumes that clusters are scaled versions of
each other, so that gas density at a given fraction of the characteristic radius of clusters, defined
by their mass, is independent of cluster mass. Figure 3 shows the electron density in clusters
as a function of ICM temperature (and hence mass) at different radii. It is clear that density

10
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(z
) n

e (
10

–4
 c

m
–3

)

kT500 (keV)

0.15R500

R2,500

R500

Chandra
XMM-Newton

Figure 3
The observed electron number density, ne , in galaxy clusters and groups, measured at different radii (from
top to bottom: 0.15R500, R2,500, R500; see labels) as a function of the intracluster medium temperature at
R500. The values of ne are rescaled by E−2(z), the scaling expected from the definition of the radii at which
densities are measured. Squares and circles show systems observed with the Chandra X-Ray Observatory from
the studies by Vikhlinin et al. (2009a) and Sun et al. (2009); triangles show systems observed with the
XMM-Newton telescope by Pratt et al. (2010). Note that electron densities at large radii are independent of
temperature, as expected from the self-similar model, whereas at small radii the rescaled densities increase
with temperature. Note also that the scatter from cluster to cluster increases with decreasing radius,
especially for low-temperature groups. After Sun (2012).
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Figure 4
Comparison between temperature profiles, normalized to the global temperature measured within R180 by
Leccardi & Molendi (2008), for a set of about 50 nearby clusters with z � 0.3 and with temperature
kB T X > 3 keV, observed with the XMM-Newton (dots with error bars) and results from cosmological
hydrodynamical simulations including the effect of radiative cooling, star formation, and supernova feedback
in the form of galactic winds (solid curve; Borgani et al. 2004). From Leccardi & Molendi (2008).

is independent of temperature only outside the cluster core at r ∼ R500, although there is an
indication that density is independent of temperature at r = R2,500 for kB T � 3 keV clusters.
This indicates that processes associated with galaxy formation and feedback affect the properties
of clusters at r � R2,500, but their effects are mild at larger radii.

During the past two decades, it has been established that the core regions of the relaxed clusters
are generally characterized by a strongly peaked X-ray emissivity, indicating efficient cooling of
the gas (e.g., Fabian 1994). Quite interestingly, spectroscopic observations with the Chandra and
XMM-Newton satellites have demonstrated that, despite strong X-ray emission of the hot gas,
only a relatively modest amount of this gas cools down to low temperatures (e.g., Böhringer et al.
2001, Peterson et al. 2001). This result is generally consistent with the low levels of star formation
observed in the brightest cluster galaxies (BCGs; e.g., McDonald et al. 2011). It implies that a
heating mechanism should compensate for radiative losses, thereby preventing the gas in cluster
cores from cooling down to low temperature. The presence of cool cores is also reflected in the
observed temperature profiles (e.g., Vikhlinin et al. 2006, Pratt et al. 2007, Leccardi & Molendi
2008; see also Figure 4), which exhibit decline of temperature with decreasing radius in the
innermost regions of relaxed cool-core clusters.

One of the most important and most widely studied aspects of ICM properties are correla-
tions between its different observable integrated quantities and between observable quantities and
total mass. Such scaling relations are the key ingredient in cosmological uses of clusters, where
it is particularly desirable that the relations are characterized by small scatter and are indepen-
dent of the relaxation state and other properties of clusters. Although clusters are fascinatingly
complex systems overall, they do exhibit some remarkable regularities. As an example, Figure 5
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Figure 5
Correlation of bolometric luminosity of intracluster gas and Y X ≡ M gasT X , where M gas is the mass of the
gas within R500 and T X is temperature derived from the fit to gas spectrum accounting only for emission
from radial range (0.15–1)R500. Results are shown for the local clusters from the Representative XMM-
Newton Cluster Structure Survey sample of Pratt et al. (2009). (a) Total luminosity integrated within radius
R500; (b) bolometric luminosity calculated with the central 0.15R500 of the cluster excised. Labels in the top
left corner indicate the radial range used in computing the luminosity and logarithmic scatter of luminosity
at fixed Y X. The blue points show cool core clusters, whereas magenta points are non–cool core clusters.
Clusters classified as relaxed and disturbed are shown by circles and squares, respectively. Note that
exclusion of the cluster cores reduces the scatter between luminosity and Y X by more than a factor of two.

shows the correlation between the bolometric luminosity emitted from within R500 and the Y X

parameter defined as a product of gas mass within R500 and ICM temperature derived from the
X-ray spectrum within the radial range (0.15 − 1)R500 (Kravtsov, Vikhlinin & Nagai 2006) for the
Representative XMM-Newton Cluster Structure Survey (REXCESS) sample of clusters studied
by Pratt et al. (2009). Different symbols indicate clusters in different states of relaxation, whereas
clusters with strongly peaked central gas distribution (the cool core clusters) and clusters with
less centrally concentrated gas distribution are shown with different colors. Figure 5a shows total
luminosity integrated within radius R500, whereas Figure 5b shows luminosity calculated with the
central region within 0.15R500 excised. Quite clearly, the core-excised X-ray luminosity exhibits
remarkably tight correlation with Y X, which, in turn, is expected to correlate tightly with total
cluster mass (Kravtsov, Vikhlinin & Nagai 2006; Stanek et al. 2010; Fabjan et al. 2011). This figure
illustrates the general findings in the past decade that clusters exhibit strong regularity and tight
correlations among X-ray observable quantities and total mass, provided that relevant quantities
are measured after excluding the emission from cluster cores.

3. UNDERSTANDING THE FORMATION OF GALAXY CLUSTERS

3.1. Initial Density Perturbation Field and Its Linear Evolution

In the currently standard hierarchical structure formation scenario, objects are thought to form via
gravitational collapse of peaks in the initial primordial density field characterized by the density
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contrast (or overdensity) field: δ(x) = (ρ(x) − ρ̄m)/ρ̄m, where ρ̄m is the mean mass density of the
Universe. Properties of the field δ(x) depend on specific details of the processes occurring during
the earliest inflationary stage of evolution of the Universe (Guth & Pi 1982; Starobinsky 1982;
Bardeen, Steinhardt & Turner 1983) and the subsequent stages prior to recombination (Peebles
1982, Bond & Efstathiou 1984, Bardeen et al. 1986, Eisenstein & Hu 1999). A fiducial assumption
of most models that we discuss is that δ(x) is a homogeneous and isotropic Gaussian random field.
We briefly discuss non-Gaussian models in Section 5.1.

Statistical properties of a uniform and isotropic Gaussian field can be fully characterized by
its power spectrum, P(k), which depends only on the modulus k of the wavevector, but not on its
direction. A related quantity is the variance of the density contrast field smoothed on some scale
R, where δR(x) ≡ ∫

δ(x − r)W (r, R)d 3r :

〈δ2
R〉 ≡ σ 2(R) = 1

(2π )3

∫
P (k)|W̃ (k, R)|2d 3k, (1)

where W̃ (k, R) is the Fourier transform of the window (filter) function W (r, R), such that δR(k) =
δ(k)W̃ (k, R) [see, e.g., Zentner (2007) or Mo, van den Bosch & White (2010) for details on the
definition of P(k) and choices of window function]. For the case when one is interested in only a
narrow range of k, the power spectrum can be approximated by the power-law form, P (k) ∝ kn,
and the variance is σ 2(R) ∝ R−(n+3).

At a sufficiently high redshift z, for the spherical top-hat window function, mass and radius are
interchangeable according to the relation M = 4π/3ρm(z)R3. We can think about the density
field smoothed on the scale R or the corresponding mass scale M. The characteristic amplitude
of peaks in the δR (or δM) field smoothed on scale R (or mass scale M) is given by σ (R) ≡ σ (M ).
The smoothed Gaussian density field is, of course, also Gaussian with the probability distribution
function (PDF) given by

p(δM ) = 1√
2πσ (M )

exp
[
− δ2

M

2σ 2(M )

]
. (2)

During the earliest linear stages of evolution in the standard structure formation scenario, the initial
Gaussianity of the δ(x) field is preserved, as different Fourier modes δ(k) evolve independently
and grow at the same rate, described by the linear growth factor, D+(a), as a function of expansion
factor a = (1 + z)−1, which for �CDM cosmology is given by (Heath 1977)

δ(a) ∝ D+(a) = 5�m

2
E(a)

∫ a

0

da ′

[a ′ E(a ′)]3
, (3)

where E(a) is the normalized expansion rate, which is given by

E(a) ≡ H (a)
H 0

= [�ma−3 + (1 − �m − ��)a−2 + ��]1/2 (4)

if the contribution from relativistic species, such as radiation or neutrinos, to the energy density
is neglected. Growth rate and the expression for E(a) in more general, homogeneous dark energy
(DE) cosmologies are described by Percival (2005). Note that in models in which DE is clustered
(Alimi et al. 2010) or gravity deviates from General Relativity (GR) (see Section 5.2), the growth
factor can be scale dependent.

Correspondingly, the linear evolution of the root mean square (rms) amplitude of fluctuations
is given by σ (M , a) = σ (M , ai )D+(a)/D+(ai ), which is often useful to recast in terms of linearly
extrapolated rms amplitude σ (M , a = 1) at a = 1 (i.e., z = 0):

σ (M , a) = σ (M , a = 1)D+0(a), where D+0(a) ≡ D+(a)/D+(a = 1). (5)
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Once the amplitude of typical fluctuations approaches unity, σ (M , a) ∼ 1, the linear approxi-
mation breaks down. Further evolution must be studied by means of nonlinear models or direct
numerical simulations. We discuss results of numerical simulations extensively below. However,
we consider first the simplified, but instructive, spherical collapse model and associated concepts
and terminology. Such a model can be used to gain physical insight into the key features of the
evolution and is used as a basis for both definitions of collapsed objects (see Section 3.6) and
quantitative models for halo abundance and clustering (Sections 3.7 and 3.8).

3.2. Nonlinear Evolution of Spherical Perturbations

The simplest model of nonlinear collapse assumes that density peak can be characterized by
constant overdensity and spherical perturbation of radius R. Despite its simplicity and limitations
discussed below, the model provides useful insight into general features and timing of nonlinear
collapse. Its results are commonly used in analytic models for halo abundance and clustering and
motivate mass definitions for collapsed objects. Below we briefly describe the model and nonlinear
mass scale that is based on its predictions.

3.2.1. Spherical collapse model. The simplest spherical collapse model considers a spherically
symmetric density fluctuation of initial radius Ri, amplitude δi > 0, and mass M = (4π/3)(1 +
δi)ρ̄R3

i , where Ri is physical radius of the perturbation and ρ̄ is the mean density of the Universe
at the initial time. Given the symmetry, the collapse of such perturbation is a one-dimensional
problem and is fully specified by evolution of the top-hat radius R(t) (Gunn & Gott 1972, Lahav
et al. 1991). It consists of an initially decelerating increase of the perturbation radius—until it
reaches the maximum value, Rta, at the turnaround epoch, tta—and subsequent decrease of R(t)
at t > tta until the perturbation collapses, virializes, and settles at the final radius Rf at t = tcoll.
Physically, Rf is set by the virial relation between potential and kinetic energy and is Rf = Rta/2
in cosmologies with �� = 0. The turnaround epoch and the epoch of collapse and virialization
are defined by initial conditions.

The final mean internal density of a collapsed object can be estimated by noting that in an �� =
0 Universe, the time interval tcoll − tta = tta should be equal to the free-fall time of a uniform sphere
tff = √

3π/(32Gρta), which means that the mean density of perturbation at turnaround is ρta =
3π/(32Gt2

ta) and ρcoll = 8ρta = 3π/(Gt2
coll). These densities can be compared with background

mean matter densities at the corresponding times to get mean internal density contrasts: � = ρ/ρ̄m.
In the Einstein–de Sitter model (�m = 1, �� = 0), background density evolves as ρ̄m = 1/(6πGt2),
which means that density contrast after virialization is

�vir ≡ ρcoll

ρ̄m
= 18π2 = 177.653. (6)

For general cosmologies, density contrast can be computed by estimating ρcoll and ρ̄m(tcoll) in a
similar fashion. For lower �m models, fluctuation of the same mass M and δ has a larger initial
radius and smaller physical density and, thus, takes longer to collapse. The density contrasts of
collapsed objects therefore are larger in lower density models because the mean density of matter
at the time of collapse is smaller. Accurate (to � 1% for �m = 0.1–1) approximations for �vir in
open (�� = 0) and flat �CDM (1 − �� − �m = 0) cosmologies are given by Bryan & Norman
(1998, their equation 6). For example, for the concordance �CDM cosmology with �m = 0.27
and �� = 0.73 (Komatsu et al. 2011), density contrast at z = 0 is �vir ≈ 358.

Note that if the initial density contrast δi would grow only at the linear rate, D+(z), then the
density contrast at the time of collapse would be more than a hundred times smaller. Its value can be
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derived starting from the density contrast linearly extrapolated to the turnaround epoch, δta. This
epoch corresponds to the time at which perturbation enters in the nonlinear regime and detaches
from the Hubble expansion, so that δta ∼ 1 is expected. In fact, the exact calculation in the case of
�m(z) = 1 at the redshift of turn-around gives δta = 1.062 (Gunn & Gott 1972). Because tcoll = 2tta,
further linear evolution for �m(z) = 1 until the collapse time gives δc = δta D+(tc )/D+(tta) ≈ 1.686.
In the case of �m �= 1, we expect that δta should have different values. For instance, for �m < 1,
density contrast at turn-around should be higher to account for the higher rate of the Hubble
expansion. However, linear growth from tta to tcoll is smaller due to the slower redshift dependence
of D+(z). As a matter of fact, these two factors nearly cancel, so that δc has a weak dependence on
�m and �� (e.g., Percival 2005). For the concordance �CDM cosmology at z = 0, for example,
δc ≈ 1.675.

Additional interesting effects may arise in models with DE characterized by small or zero speed
of sound, in which structure growth is affected not only because DE influences linear growth, but
also because it participates nontrivially in the collapse of matter and may slow down or accelerate
the formation of clusters of a given mass depending on the DE equation of state (Abramo et al.
2007, Creminelli et al. 2010). DE in such models can also contribute nontrivially to the gravitating
mass of clusters.

3.2.2. The nonlinear mass scale MNL. The linear value of the collapse overdensity δc is useful
in predicting whether a given initial perturbation δi  1 at initial zi collapses by some later
redshift z. The collapse condition is simply δi D+0(z) ≥ δc (z) and is used extensively to model the
abundance and clustering of collapsed objects, as we discuss below in Section 3.7. The distribution
of peak amplitudes in the initial Gaussian overdensity field smoothed over mass scale M is given
by a Gaussian PDF with an rms value of σ (M ) (Equation 2). The peaks in the initial Gaussian
overdensity field smoothed at redshift zi over mass scale M can be characterized by the ratio
ν = δi/σ (M , zi ) called the peak height. For a given mass scale M, the peaks collapsing at a given
redshift z according to the spherical collapse model have the peak height given by

ν ≡ δc (z)
σ (M , z)

. (7)

Given that δc (z) is a very weak function of z (changing by �1−2% typically), whereas
σ (M , z) = σ (M , z = 0)D+0(z) decreases strongly with increasing z, the peak height of collapsing
objects of a given mass M increases rapidly with increasing redshift.

Using Equation 7, we can define the characteristic mass scale for which a typical peak (ν = 1)
collapses at redshift z:

σ (M NL, z) = σ (M NL, z = 0)D+0(z) = δc (z). (8)

This nonlinear mass, M NL(z), is a key quantity in the self-similar models of structure formation,
which we consider in Section 3.9.

3.3. Nonlinear Collapse of Real Density Peaks

The spherical collapse model provides a useful approximate guideline for the time scale of halo
collapse and has proven to be a very useful tool in developing approximate statistical models for
the formation and evolution of halo populations. Such a simple model and its extensions (e.g.,
ellipsoidal collapse model) do, however, miss many important details and complexities of collapse
of the real density peaks. Such complexities are usually explored using three-dimensional numerical
cosmological simulations. Techniques and numerical details of such simulations are outside the
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a bz = 3

z = 0.5 z = 0

z = 1

c d

Figure 6
Evolution of a dark matter density field in a comoving region of 15h−1 Mpc on a side around cluster mass
density peak in the initial perturbation field. The panels show redshifts (a) z = 3, (b) z = 1, (c) z = 0.5, and
(d ) z = 0. The forming cluster has a mass M 200 � 1.2 × 1015h−1 M � at z = 0. The figure illustrates the
complexities of the actual collapse of real density peaks: strong deviations from spherical symmetry,
accretion of matter along filaments, and the presence of smaller-scale structure within the collapsing
cluster-scale mass peak.

scope of this review, and we refer readers to recent reviews on this subject (Bertschinger 1998,
Dolag et al. 2008, Norman 2010, Borgani & Kravtsov 2011). Here, we simply discuss the main
features of gravitational collapse learned from analyses of such simulations.

Figure 6 shows evolution of the DM density field in a cosmological simulation of a comoving
region of 15h−1 Mpc on a side around cluster mass–scale density peak in the initial perturbation
field from z = 3 to the present epoch. The overall picture is quite different from the top-hat
collapse. First of all, real peaks in the primordial field do not have the constant density or sharp
boundary of the top-hat, but have a certain radial profile and curvature (Bardeen et al. 1986, Dalal
et al. 2008). As a result, different regions of a peak collapse at different times so that the overall
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collapse is extended in time and the peak does not have a single collapse epoch (e.g., Diemand,
Kuhlen & Madau 2007). Consequently, the distribution of matter around the collapsed peak can
smoothly extend to several virial radii for late epochs and small masses (Prada et al. 2006, Cuesta
et al. 2008). This creates ambiguity about the definition of halo mass and results in a variety of
mass definitions adopted in practice, as we discuss in Section 3.6.

Second, the peaks in the smoothed density field, δR(x), are not isolated but are surrounded by
other peaks and density inhomogeneities. The tidal forces from the most massive and rarest peaks
in the initial density field shepherd the surrounding matter into massive filamentary structures
that connect them (Bond, Kofman & Pogosyan 1996). Accretion of matter onto clusters at late
epochs occurs preferentially along such filaments, as can be clearly seen in Figure 6.

Finally, the density distribution within the peaks in the actual density field is not smooth, as
in the smoothed field δR(x), but contains fluctuations on all scales. Collapse of density peaks on
different scales can proceed almost simultaneously, especially during early stages of evolution in the
CDM models when peaks undergoing collapse involve small scales, over which the power spectrum
has an effective slope n ≈ −3. Figure 6 shows that at high redshifts the protocluster region contains
mostly small-mass collapsed objects, which merge to form a larger and larger virialized system
near the center of the shown region at later epochs. Nonlinear interactions between smaller-
scale peaks within a cluster-scale peak during mergers result in relaxation processes and energy
exchange on different scales, and mass redistribution. Although the processes accompanying major
mergers are not as violent as envisioned in the violent relaxation scenario (Valluri et al. 2007), such
interactions lead to significant redistribution of mass (Kazantzidis, Zentner & Kravtsov 2006) and
angular momentum (Vitvitska et al. 2002), both within and outside of the virial radius.

3.4. Equilibrium

Following the collapse, matter settles into an equilibrium configuration. For collisional baryonic
component this configuration is approximately described by the HE equation, in which the pres-
sure gradient ∇ p(x) at point x is balanced by the gradient of local gravitational potential ∇φ(x):
∇φ(x) = −∇ p(x)/ρg(x), where ρg(x) is the gas density. Under the further assumption of spherical
symmetry, the HE equation can be written as ρ−1

g d p/dr = −GM (< r)/r2, where M (< r) is the
mass contained within the radius r. Assuming the equation of state of ideal gas, p = ρgkB T /μmp ,
where μ is the mean molecular weight and mp is the proton mass, cluster mass within r can be
expressed in terms of the density and temperature profiles, ρg(r) and T(r), as

M HE(< r) = −rkB T (r)
Gμmp

[
d ln ρg(r)

d ln r
+ d ln T (r)

d ln r

]
. (9)

Interestingly, the slopes of the gas density and temperature profiles that enter the above equation
exhibit correlation that appears to be a dynamical attractor during cluster formation ( Juncher,
Hansen & Macciò 2012).

For a collisionless system of particles, such as CDM, the condition of equilibrium is given
by the Jeans equation (e.g., Binney & Tremaine 2008). For a nonrotating spherically symmetric
system, this equation can be written as

MJ(< r) = −rσ 2
r

G

[
d ln ν(r)

d ln r
+ d ln σr (r)2

d ln r
+ 2β(r)

]
, (10)

where β = 1 − σ 2
t

2σ 2
r

is the orbit anisotropy parameter defined in terms of the radial (σr ) and
tangential (σt) velocity dispersion components (β = 0 for isotropic velocity field). We con-
sider equilibrium density and velocity dispersion profiles, as well as anisotropy profile β(r) in
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Section 3.5.2. Equation 10 is also commonly used to describe the equilibrium of cluster galaxies.
Although, in principle, galaxies in groups and clusters are not strictly collisionless, interactions
between galaxies are relatively rare, and the Jeans equation should be quite accurate.

Note that the difference between equilibrium configuration of collisional ICM and collisionless
DM and galaxy systems is significant. In HE, the isodensity surfaces of the ICM should trace
the iso-potential surfaces. The shape of the isopotential surfaces in equilibrium is always more
spherical than the shape of the underlying mass distribution that gives rise to the potential. Given
that the potential is dominated by DM at most of the cluster-centric radii, the ICM distribution
(and consequently the X-ray isophotes and SZ maps) will be more spherical than the underlying
DM distribution.

As we noted in the previous section, the gravitational collapse of a halo is a process extended in
time. Consequently, a cluster may not reach complete equilibrium over the Hubble time due to
ongoing accretion of matter and the occurrence of minor and major mergers. The ICM reaches
equilibrium state following a major merger only after ≈3–4 Gyr (e.g., Nelson et al. 2012). Devi-
ations from equilibrium affect observable properties of clusters and cause systematic errors when
Equations 9 and 10 are used to estimate cluster masses (e.g., Rasia, Tormen & Moscardini 2004;
Nagai, Kravtsov & Vikhlinin 2007; Lau et al. 2009; Piffaretti & Valdarnini 2008; Ameglio et al.
2009).

3.5. Internal Structure of Cluster Halos

Relaxation processes establish equilibrium in the internal structure of clusters. Below we review
our current understanding of the equilibrium radial density distribution, velocity dispersion, and
triaxiality (shape).

3.5.1. Density profile. Internal structure of collapsed halos may be expected to depend both on
the properties of the initial density distribution around collapsing peaks (Hoffman & Shaham 1985)
and on the processes accompanying hierarchical collapse (e.g., Syer & White 1998, Valluri et al.
2007). The fact that simulations have demonstrated that the characteristic form of the spherically
averaged density profile arising in CDM models, characterized by the logarithmic slope steepening
with increasing radius (Dubinski & Carlberg 1991; Katz 1991; Navarro, Frenk & White 1995,
1996), is virtually independent of the shape of the power spectrum and background cosmology
(Katz 1991; Cole & Lacey 1996; Navarro, Frenk & White 1997; Huss, Jain & Steinmetz 1999b) is
nontrivial. Such a generic form of the profile also arises when small-scale structure is suppressed
and the collapse is smooth, as is the case for halos forming at the cut-off scale of the power
spectrum (Moore et al. 1999; Diemand, Moore & Stadel 2005; Wang & White 2009) or even
from noncosmological initial conditions (Huss, Jain & Steinmetz 1999a).

The density profiles measured in dissipationless simulations are most commonly approximated
by the “NFW” form proposed by Navarro, Frenk & White (1995) based on their simulation of
cluster formation:

ρNFW(r) = 4ρs

x(1 + x)2
, x ≡ r/rs , (11)

where rs is the scale radius, at which the logarithmic slope of the profile is equal to −2, and
ρ s is the characteristic density at r = rs . Overall, the slope of this profile varies with radius as
d ln ρ/d ln r = −[1 + 2x/(1 + x)], i.e., from the asymptotic slope of −1 at x  1 to −3 at
x � 1, where the enclosed mass diverges logarithmically: M (< r) = M � f (x)/ f (c �), where M �

is the mass enclosing a given overdensity �, f (x) ≡ ln(1 + x) − x/(1 + x), and c � ≡ R�/rs is
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the concentration parameter. Accurate formulae for the conversion of mass of the NFW halos
defined for different values of � are given in the appendix of Hu & Kravtsov (2003).

Subsequent simulations (Navarro et al. 2004, Graham et al. 2006, Merritt et al. 2006) showed
that the Einasto (1965) profile and other similar models designed to describe deprojection of
the Sérsic profile (Merritt et al. 2006) provide a more accurate description of the DM density
profiles arising during cosmological halo collapse, as well as profiles of bulges and elliptical galaxies
(Cardone, Piedipalumbo & Tortora 2005). The Einasto profile is characterized by the logarithmic
slope that varies as a power law with radius:

ρE(r) = ρs exp
[

2
α

(1 − xα)
]

, x ≡ r/rs , (12)

where rs is again the scale radius at which the logarithmic slope is −2; but now for the Einasto
profile, ρs ≡ ρE(rs ), and α is an additional parameter that describes the power-law dependence of
the logarithmic slope on radius: d ln ρE/d ln r = −2xα .

Note that unlike the NFW profile and several other profiles discussed in the literature, the
Einasto profile does not have an asymptotic slope at small radii. The slope of the density profile
becomes increasingly shallower at small radii at the rate controlled by α. The parameter α varies
with halo mass and redshift: at z = 0 galaxy-sized halos are described by α ≈ 0.16, whereas massive
cluster halos are described by α ≈ 0.2–0.3; these values increase by ∼0.1 by z ≈ 3 (Gao et al.
2008). Although α depends on mass and redshift (and thus also on the cosmology) in a nontrivial
way, Gao et al. (2008, and see also Duffy et al. 2008) showed that these dependencies can be
captured as a universal dependence on the peak height ν = δc /σ (M , z) (see Section 3.2.2 above):
α = 0.0095ν2 + 0.155. Finally, unlike the NFW profile, the total mass for the Einasto profile is
finite due to the exponentially decreasing density at large radii. A number of useful expressions
for the Einasto profile, such as mass within a radius, are provided by Cardone, Piedipalumbo &
Tortora (2005), Mamon & Łokas (2005), and Graham et al. (2006).

The origin of the generic form of the density profile has recently been explored in detail by
Lithwick & Dalal (2011), who show that it arises due to two main factors: (a) the density and
triaxiality profile of the original peak and (b) approximately adiabatic contraction of the previously
collapsed matter due to deepening of the potential well during continuing collapse. Without
adiabatic contraction the profile resulting from the collapse would reflect the shape of the initial
profile of the peak. For example, if the initial profile of mean linear overdensity within radius r
around the peak can be described as δ̄L ∝ r−γ

L , it can be shown that the resulting differential density
profile after collapse without adiabatic contraction behaves as ρ(r) ∝ r−g , where g = 3γ /(1 + γ )
(Fillmore & Goldreich 1984). Typical profiles of initial density peaks are characterized by shallow
slopes, γ ∼ 0–0.3 at small radii, and very steep slopes at large radii (e.g., Dalal et al. 2008; Dalal,
Lithwick & Kuhlen 2010), which means that resulting profiles after collapse should have slopes
varying from g ≈ 0−0.7 at small radii to g ≈ 3 at large radii.

However, Lithwick & Dalal (2011) showed that contraction of particle orbits during subsequent
accretion of mass interior to a given radius r leads to a much more gradual change of logarithmic
slope with radius, such that the regime within which g ≈ 0−0.7 is shifted to very small radii
(r/rvir � 10−5), whereas at the radii typically resolved in cosmological simulations the logarithmic
slope is in the range of g ≈ 1−3, so that the radial dependence of the logarithmic slope g(r) =
d ln ρ/d ln r is in good qualitative agreement with simulation results. This contraction occurs
because matter that is accreted by a halo at a given stage of its evolution can deposit matter
over a wide range of radii, including small radii. The orbits of particles that accreted previously
have to respond to the additional mass, and they do so by contracting. For example, for a purely
spherical system in which mass is added slowly so that the adiabatic invariant is conserved, radii r
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of spherical shells must decrease to compensate an increase of M (< r). This model thus elegantly
explains both the qualitative shape of density profiles observed in cosmological simulations and
their universality. The latter can be expected because the contraction process crucial to shaping
the form of the profile should operate under general collapse conditions, in which different shells
of matter collapse at different times.

Although the model of Lithwick & Dalal (2011) provides a solid physical picture of halo profile
formation, it also neglects some of the processes that may affect details of the resulting density
profile, most notably the effects of mergers. Indeed, major mergers lead to resonant dynamical
heating of a certain fraction of collapsed matter due to the potential fluctuations and tidal forces
that they induce. The amount of mass that is affected by such heating is significant (e.g., Valluri
et al. 2007). In fact, up to ∼40% of mass within the virial radii of merging halos may end up
outside of the virial radius of the merger. This implies, for example, that virial mass is not additive
in major mergers. Nevertheless, in practice the merger remnant retains the functional form of the
density profiles of the merger progenitors (Kazantzidis, Zentner & Kravtsov 2006), which means
that major mergers do not lead to efficient violent relaxation.

Although the functional form of the density profile arising during halo collapse is generic for a
wide variety of collapse conditions and models, initial conditions and cosmology do significantly
affect the physical properties of halo profiles such as its characteristic density and scale radius
(Navarro, Frenk & White 1997). These dependencies are often discussed in terms of halo con-
centrations, c � ≡ R�/rs . Simulations show that the scale radius is approximately constant during
late stages of halo evolution (Bullock et al. 2001, Wechsler et al. 2002), but evolves as rs = c min R�

during early stages when a halo quickly increases its mass through accretion and mergers (Zhao
et al. 2003, 2009). The minimum value of concentration is c min = const ≈ 3−4 for � = 200. For
massive cluster halos, which are in the fast growth regime at any redshift, the concentrations are
thus expected to stay approximately constant with redshift or may even increase after reaching a
minimum (Klypin, Trujillo-Gomez & Primack 2011; Prada et al. 2012).

The characteristic time separating the two regimes can be identified as the formation epoch
of halos. This time approximately determines the value of the scale radius and the subsequent
evolution of halo concentration. The initial conditions and cosmology determine the formation
epoch and the typical mass accretion histories for halos of a given mass (Navarro, Frenk & White
1997; Bullock et al. 2001; Zhao et al. 2009), and therefore determine the halo concentrations.
Although these dependences are nontrivial functions of halo mass and redshift, they can also be
encapsulated by a universal function of the peak height ν (Zhao et al. 2009, Prada et al. 2012).

Baryon dissipation and feedback are expected to affect the density profiles of halos appreciably,
although predictions for these effects are far less certain than predictions of the DM distribution
in the purely dissipationless regime. The main effect is contraction of DM in response to the
increasing depth of the central potential during baryon cooling and condensation, which is often
modeled under the assumption of slow contraction conserving adiabatic invariants of particle orbits
(e.g., Zel’dovich et al. 1980, Barnes & White 1984, Blumenthal et al. 1986, Ryden & Gunn 1987).
The standard model of such adiabatic contraction assumes that DM particles are predominantly
on circular orbits, and for each shell of DM at radius r the product of the radius and the enclosed
mass rM(<r) is conserved (Blumenthal et al. 1986). The model makes a number of simplifying
assumptions and does not take into account effects of mergers. Nevertheless, it was shown to
provide a reasonably accurate description of the results of cosmological simulations (Gnedin et al.
2004). Its accuracy can be further improved by relaxing the assumption of circular orbits and
adopting an empirical ansätz, in which the conserved quantity is r M (<r̄), where r̄ is the average
radius along the particle orbit, instead of rM(<r) (Gnedin et al. 2004). At the same time, several
recent studies showed that no single set of parameters of such simple models describes all objects
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that form in cosmological simulations equally well (Gustafsson, Fairbairn & Sommer-Larsen 2006;
Abadi et al. 2010; Tissera et al. 2010; Gnedin et al. 2012).

A more subtle but related effect is the increase of the overall concentration of DM within the
virial radius of halos due to redistribution of binding energy between DM and baryons during the
process of cluster assembly (Rudd, Zentner & Kravtsov 2008). The larger range of radii over which
this effect operates makes it a potential worry for the precision constraints from the cosmic shear
power spectrum ( Jing et al. 2006; Rudd, Zentner & Kravtsov 2008). This effect depends primarily
on the fraction of baryons that condense into the central halo galaxies and may be mitigated by
the blow-out of gas by efficient AGN or SN feedback (van Daalen et al. 2011). The effects of
baryons on the overall concentration of mass distribution in clusters are, thus, uncertain, but can
potentially increase halo concentration and thereby significantly enhance the cross section for
strong lensing (Puchwein et al. 2005, Rozo et al. 2008, Mead et al. 2010) and affect statistics of
strong lens distribution in groups and clusters (e.g., More et al. 2011).

A number of studies have derived observational constraints on density profiles of clusters and
their concentrations (Pointecouteau, Arnaud & Pratt 2005; Vikhlinin et al. 2006; Buote et al. 2007;
Schmidt & Allen 2007; Mandelbaum, Seljak & Hirata 2008; Ettori et al. 2010; Okabe et al. 2010;
Wojtak & Łokas 2010; Umetsu et al. 2011a,b; Sereno & Zitrin 2012). Although most of these
studies find that the concentrations of galaxy clusters predicted by �CDM simulations are in the
ballpark of values derived from observations, the agreement is not perfect and there is tension
between model predictions and observations, which may be due to effects of baryon dissipation
(e.g., Rudd, Zentner & Kravtsov 2008; Fedeli 2012).

Some studies do find that the concordance cosmology predictions of the average cluster con-
centrations are somewhat lower than the average values derived from X-ray observations (Buote
et al. 2007, Schmidt & Allen 2007, Duffy et al. 2008). Moreover, lensing analyses indicate that the
slope of the density profile in central regions of some clusters may be shallower than predicted
(Tyson, Kochanski & dell’Antonio 1998; Sand et al. 2004, 2008; Newman et al. 2009, 2011),
whereas concentrations are considerably higher than both theoretical predictions and most other
observational determinations from X-ray and WL analyses (Comerford & Natarajan 2007; Oguri
et al. 2009, 2012; Zitrin et al. 2011).

At this point, it is not clear whether these discrepancies imply serious challenges to the �CDM
structure formation paradigm, unknown baryonic effects flattening the profiles in the centers, or
unaccounted systematics in the observational analyses [e.g., N. Dalal & C. R. Keeton, unpublished
(astro-ph/0312072); Hennawi et al. 2007]. When considering such comparisons, it is important
to remember that density profiles in cosmological simulations are always defined with respect to
the center defined as the global density peak or potential minimum, whereas in observations the
corresponding location is not as unambiguous as in simulations and the choice of center may affect
the derived slope.

It should be noted that improved theoretical predictions for cluster-sized systems generally pre-
dict larger concentrations for the most massive objects than do extrapolations of the concentration-
mass relations from smaller mass objects (Zhao et al. 2009; Bhattacharya, Habib & Heitmann 2011;
Prada et al. 2012). In addition, as we noted above, the evolution predicted for the concentrations
of these rarest objects is much weaker than c ∝ (1 + z) found for smaller mass halos, so rescaling
the concentrations of high-redshift clusters by (1 + z) factor, as is often done, could lead to an
overestimate of their concentrations.

3.5.2. Velocity dispersion profile and velocity anisotropy. Velocity dispersion profile is a
halo property related to its density profile. Simulations show that this profile generally increases
from the central value to a maximum at r ≈ rs and slowly decreases outward (e.g., Cole & Lacey
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1996; Rasia, Tormen & Moscardini 2004). One remarkable result illustrating the close connection
between density and velocity dispersion is that for collapsed halos in dissipationless simulations
the ratio of density to the cube of the rms velocity dispersion can be accurately described by a
power law over at least three decades in radius (Taylor & Navarro 2001): Q(r) ≡ ρ/σ 3 ∝ r−α with
α ≈ 1.9.

An important quantity underlying the measured velocity dispersion profile is the profile of the
mean velocity, and the mean radial velocity, v̄r, in particular. For a spherically symmetric matter
distribution in HE, we expect v̄r = 0. Therefore, the profile of v̄r is a useful diagnostic of deviations
from equilibrium at different radii. Simulations show that clusters at z = 0 generally have zero
mean radial velocities within r ≈ Rvir and turn sharply negative between 1 and ≈ 3Rvir, where
density is dominated by matter infalling onto clusters (Cole & Lacey 1996; Eke, Navarro & Frenk
1998; Cuesta et al. 2008).

The distinguishing characteristic between gas and DM is the fact that gas has an isotropic
velocity dispersion tensor on small scales, whereas DM in general does not. On large scales,
however, both gas and DM may have velocity fields that are anisotropic. The degree of velocity
anisotropy is commonly quantified by the anisotropy profile, β(r) (see Section 3.4). DM anisotropy
is mild: β ≈ 0−0.1 near the center and increases to β ≈ 0.2−0.4 near the virial radius (Cole
& Lacey 1996; Eke, Navarro & Frenk 1998; Colı́n, Klypin & Kravtsov 2000; Rasia, Tormen
& Moscardini 2004; Lemze et al. 2012). Interestingly, velocities exhibit substantial tangential
anisotropy outside the virial radius in the infall region of clusters (Cuesta et al. 2008, Lemze et al.
2012). Another interesting finding is that the velocity anisotropy correlates with the slope of the
density profile (Hansen & Moore 2006), albeit with significant scatter (Lemze et al. 2012).

The gas component also has some residual motions driven by mergers and gas accretion
along filaments. Gas velocities tend to have tangential anisotropy (Rasia, Tormen & Moscardini
2004) because radial motions are inhibited by the entropy profile, which is convectively stable in
general.

3.5.3. Shape. Although the density structure of mass distribution in clusters is most often de-
scribed by spherically averaged profiles, clusters are thought to collapse from generally triaxial
density peaks (Bardeen et al. 1986, Doroshkevich 1970). The distribution of matter within halos
resulting from hierarchical collapse is triaxial as well (Frenk et al. 1988, Dubinski & Carlberg
1991, Warren et al. 1992, Cole & Lacey 1996, Jing & Suto 2002, Kasun & Evrard 2005, Allgood
et al. 2006), with triaxiality predicted by dissipationless simulations increasing with decreasing
distance from halo center (Allgood et al. 2006). Triaxiality of halos decreases with decreasing mass
and redshift (Kasun & Evrard 2005, Allgood et al. 2006) in a way that again can be parameterized
in a universal form as a function of peak height (Allgood et al. 2006). The major axis of the triaxial
distribution of clusters is generally aligned with the filament connecting a cluster with its nearest
neighbor of comparable mass (e.g., West & Blakeslee 2000, Lee et al. 2008), which reflects the
fact that a significant fraction of mass and mergers is occurring along such filaments (e.g., Onuora
& Thomas 2000, Lee & Evrard 2007).

Jing & Suto (2002) showed how the formalism of density distribution as a function of distance
from cluster center can be extended to the density distribution in triaxial shells. Accounting for
such triaxiality is particularly important in theoretical predictions and observational analyses of
weak and strong lensing (N. Dalal & C. R. Keeton, unpublished data (astro-ph/0312072); Clowe,
De Lucia & King 2004; Oguri et al. 2005; Corless & King 2007; Hennawi et al. 2007; Becker &
Kravtsov 2011). At the same time, it is important to keep in mind that, as with many other results
derived mainly from dissipationless simulations, the physics of baryons may modify predictions
substantially.
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The shape of the DM distribution in particular is quite sensitive to the degree of central
concentration of mass. As baryons condense toward the center to form a central galaxy within a
halo, the DM distribution becomes more spherical (Dubinski 1994; Evrard, Summers & Davis
1994; Tissera & Dominguez-Tenreiro 1998; Kazantzidis et al. 2004). The effect increases with
decreasing radius, but is substantial even at half of the virial radius (Kazantzidis et al. 2004).
The main mechanism behind this effect lies in adiabatic changes of the shapes of particle orbits
in response to more centrally concentrated mass distribution after baryon dissipation (Dubinski
1994, Debattista et al. 2008).

In considering effects of triaxiality, it is important to remember that triaxiality of the hot
intracluster gas and DM distribution are different (gas is rounder; see, e.g., discussion in Lau
et al. 2011, and references therein). This is one of the reasons why mass proxies defined within
spherical aperture using observable properties of gas (see Section 4 below) exhibit small scatter
and are much less sensitive to cluster orientation.

The observed triaxiality of the ICM can be used as a probe of the shape of the underlying
potential (Lau et al. 2011) and as a powerful diagnostic of the amount of dissipation that is
occurring in cluster cores (Fang, Humphrey & Buote 2009) and of the mass of the central cluster
galaxy (Lau et al. 2012).

3.6. Mass Definitions

As we discussed above, the existence of a particular density contrast delineating a halo boundary
is predicted only in the limited context of the spherical collapse of a density fluctuation with the
top-hat profile (i.e., uniform density, sharp boundary). Collapse in such a case proceeds on the
same timescale at all radii and the collapse time and “virial radius” are well defined. However,
the peaks in the initial density field are not uniform in density, are not spherical, and do not have
a sharp boundary. Existence of a density profile results in different times of collapse for different
radial shells. Note also that even in the spherical collapse model the virial density contrast
formally applies only at the time of collapse; after a given density peak collapses, its internal
density stays constant while the reference (i.e., either the mean or critical) density changes merely
due to cosmological expansion. The actual overdensity of the collapsed top-hat initial fluctuations
will, therefore, grow larger than the initial virial overdensity at t > tcollapse.

The triaxiality of the density peak makes the tidal effects of the surrounding mass distribution
important. Absence of a sharp boundary, along with the effects of nonuniform density, triaxiality,
and nonlinear effects during the collapse of smaller scale fluctuations within each peak, results
in a continuous, smooth outer density profile without a well-defined radial boundary. Although
one can identify a radial range, outside of which a significant fraction of mass is still infalling, this
range is fairly wide and does not correspond to a single well-defined radius (Eke, Navarro & Frenk
1998; Cuesta et al. 2008). The boundary based on the virial density contrast is, thus, only loosely
motivated by theoretical considerations.

The absence of a well-defined boundary of collapsed objects makes the definition of the halo
boundary and the associated enclosed mass ambiguous. This explains, at least partly, the existence
of various halo boundary and mass definitions in the literature. Below we describe the main two
such definitions: the friends-of-friends (FoF) and spherical overdensity (SO) (see also White 2001).
The FoF mass definition is used almost predominantly in analyses of cosmological simulations of
cluster formation, whereas the SO halo definition is used both in observational and simulation
analyses, as well as in analytic models, such as the Halo Occupation Distribution (HOD) model.
Although other definitions of the halo mass are discussed, theoretical mass determinations often
have to conform to the observational definitions of mass. Thus, for example, although it is possible
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to define the entire mass that will ever collapse onto a halo in simulations (Cuesta et al. 2008,
Anderhalden & Diemand 2011), it is impossible to measure this mass in observations, which makes
it of interest only from the standpoint of the theoretical models of halo collapse.

3.6.1. The friends-of-friends mass. Historically, the FoF algorithm was used to define groups
and clusters of galaxies in observations (Huchra & Geller 1982, Press & Davis 1982, Einasto et al.
1984) and was adopted to define collapsed objects in simulations of structure formation (Einasto
et al. 1984, Davis et al. 1985). The FoF algorithm considers two particles to be members of the
same group (i.e., friends) if they are separated by a distance that is less than a given linking length.
Friends of friends are considered to be members of a single group—the condition that gives the
algorithm its name. The linking length, the only free parameter of the method, is usually defined
in units of the mean interparticle separation: b = l/l̄ , where l is the linking length in physical units
and l̄ = n̄−1/3 is the mean interparticle separation of particles with mean number density of n̄.

Attractive features of the FoF algorithm are its simplicity (it has only one free parameter), a
lack of any assumptions about the halo center, and the fact that it does not assume any particular
halo shape. Therefore, it can better match the generally triaxial, complex mass distribution of
halos forming in the hierarchical structure formation models.

The main disadvantages of the FoF algorithm are the difficulty in theoretical interpretation
of the FoF mass, and sensitivity of the FoF mass to numerical resolution and the presence of
substructure. For the smooth halos resolved with many particles, the FoF algorithm with b = 0.2
defines the boundary corresponding to the fixed local density contrast of δFoF ≈ 81.62 (More et al.
2011). Given that halos forming in hierarchical cosmologies have concentrations that depend on
mass, redshift, and cosmology, the enclosed overdensity of the FoF halos also varies with mass,
redshift, and cosmology. Thus, for example, for the current concordance cosmology, the FoF
halos (defined with b = 0.2) of mass 1011−1015 M� have enclosed overdensities of ∼450−350
at z = 0 and converge to overdensity of ∼200 at high redshifts where concentration reaches
its minimum value of c ≈ 3−4 (More et al. 2011). For small particle numbers, the boundary
of the FoF halos becomes “fuzzier” and depends on the resolution (and so does the FoF mass).
Simulations most often have fixed particle mass, and the number of particles therefore changes
with halo mass, which means that properties of the boundary and mass identified by the FoF
are mass dependent. The presence of substructure in well-resolved halos further complicates the
resolution and mass dependence of the FoF-identified halos (More et al. 2011). Furthermore, it
is well known that the FoF may spuriously join two neighboring distinct halos with overlapping
volumes into a single group. The fraction of such neighbor halos that are “bridged” increases
significantly with increasing redshift.

3.6.2. The spherical overdensity mass. The spherical overdensity algorithm defines the bound-
ary of a halo as a sphere of radius enclosing a given density contrast � with respect to the reference
density ρ. Unlike the FoF algorithm, the definition of an SO halo also requires a definition of the
halo center. The common choices for the center in theoretical analyses are the peak of density,
the minimum of the potential, the position of the most bound particle, or, more rarely, the center
of mass. Given that the center and the boundary need to be found simultaneously, an iterative
scheme is used to identify the SO boundary around a given peak. The radius of the halo boundary,
R�, is defined by solving the implicit equation

M (< r) = 4π

3
�ρ(z)r3, (13)
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where M (< r) is the total mass profile, ρ(z) is the reference physical density at redshift z, and r is
in physical (not comoving) radius.

The choice of � and the reference ρ may be motivated by theoretical considerations or by
observational limitations. For example, one can choose to define the enclosed overdensity to be
equal to the virial overdensity at collapse predicted by the spherical collapse model, �ρ = �vir,cρcr

(see Section 3.2). Note that in �m �= 1 cosmologies, there is a choice for reference density to be
either the critical density ρcr(z) or the mean matter density ρm(z), and both are in common use.
The overdensities defined with respect to these reference densities, which we denote here as �c

and �m, are related as �m = �c/�m(z). Note that �m(z) = �m0(1 + z)3/E2(z), where E(z) is
given by Equation 4. For concordance cosmology, 1 − �m(z) < 0.1 at z ≥ 2 and the difference
between the two definitions decreases at these high redshifts. In observations, the choice may
simply be determined by the extent of the measured mass profile. Thus, masses derived from
X-ray data under the assumption of HE are limited by the extent of the measured gas density and
temperature profiles and are therefore often defined for the high values of overdensity: �c = 2,500
or �c = 500.

The crucial difference from the FoF algorithm is the fact that the SO definition forces a spherical
boundary on the generally nonspherical mass definition. In addition, spheres corresponding to
different halos may overlap, which means that a certain fraction of mass may be double counted
(although in practice this fraction is very small; see, e.g., discussion in section 2.2 of Tinker et al.
2008).

The advantage of the SO algorithm is the fact that the SO-defined mass can be measured both
in simulations and in observational analyses of clusters. In the latter, the SO mass can be estimated
from the total mass profile derived from the hydrostatic and Jeans equilibrium analysis for the
ICM gas and galaxies, respectively (see Section 3.4 above) or gravitational lensing analyses (e.g.,
Vikhlinin et al. 2006, Hoekstra 2007). Furthermore, suitable observables that correlate with the SO
mass with scatter of �10% can be defined (see Section 4 below), thus making this mass definition
preferable in the cosmological interpretation of observed cluster populations. The small scatter
shows that the effects of triaxiality are quite small in practice. Note, however, that the definition
of the halo center in simulations and observations may not necessarily be identical, because in
observations the cluster center is usually defined at the position of the peak or the centroid of
X-ray emission or SZ signal, or at the position of the BCG.

3.7. Abundance of Halos

Contrasting predictions for the abundance and clustering of collapsed objects with the observed
abundance and clustering of galaxies, groups, and clusters has been among the most powerful
validation tests of structure formation models (e.g., Press & Schechter 1974; Blumenthal et al.
1984; Kaiser 1984, 1986).

3.7.1. The mass function and its universality. Although real clusters are usually characterized
by some quantity derived from observations (an observable), such as the X-ray luminosity, such
quantities are generally harder to predict ab initio in theoretical models because they are sensitive
to uncertain physical processes affecting the properties of cluster galaxies and intracluster gas.
Therefore, the predictions for the abundance of collapsed objects are usually quantified as a
function of their mass, i.e., in terms of the mass function dn(M , z) defined as the comoving volume
number density of halos in the mass interval [M , M + dM] at a given redshift z. The predicted
mass function is then connected to the abundance of clusters as a function of an observable using
a calibrated mass-observable relation (discussed in Section 4, below).
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The first statistical model for the abundance of collapsed objects as a function of their mass was
developed by Press & Schechter (1974). The main powerful principle underlying this model is that
the mass function of objects resulting from nonlinear collapse can be tied directly and uniquely to
the statistical properties of the initial linear density contrast field δ(x).

Statistically, one can define the probability F(M) that a given region within the initial overden-
sity field, smoothed on a mass scale M, δM(x), will collapse into a halo of mass M or larger:

F (M ) =
∫ ∞

−1
p(δ)Ccoll(δ)dδ, (14)

where p(δ)dδ is the PDF of δM(x), which is given by Equation 2 for the Gaussian initial density
field, and Ccoll is the probability that any given point x with local overdensity δM(x) will actually
collapse. The mass function can then be derived as a fraction of the total volume collapsing into
halos of mass (M , M + dM), i.e., dF/dM, divided by the comoving volume within the initial density
field occupied by each such halo, i.e., M /ρ̄:

dn(M )
dM

= ρ̄m

M

∣∣∣∣ d F
dM

∣∣∣∣ . (15)

In their pioneering model, Press & Schechter (1974) have adopted the ansätz motivated by the
spherical collapse model (see Section 3.1) that any point in space with δM(x)D+0(z) ≥ δc will
collapse into a halo of mass ≥ M by redshift z; i.e., Ccoll(δ) = �(δ − δc ), where � is the Heaviside
step function. Note that δM(x) used above is not the actual initial overdensity, but the initial
overdensity evolved to z = 0 with the linear growth rate. One can easily check that, for a Gaussian
initial density field, this assumption gives F (M ) = 1

2 erfc[δc /(
√

2σ (M , z))] = F (ν). This line of
arguments and assumptions thus leads to an important conclusion that the abundance of halos
of mass M at redshift z is a universal function of only their peak height ν(M , z) ≡ δc /σ (M , z).
In particular, the fraction of mass in halos per logarithmic interval of mass in such a model
is

dn(M )
d ln M

= ρ̄m

M

∣∣∣∣ d F
d ln M

∣∣∣∣ = ρ̄m

M

∣∣∣∣ d ln ν

d ln M
∂ F

∂ ln ν

∣∣∣∣ ≡ ρ̄m

M

∣∣∣∣ d ln ν

d ln M

∣∣∣∣ g(ν) ≡ ρ̄m

M
ψ(ν). (16)

Clearly, the shape ψ(ν) in such models is set by the assumptions of the collapse model.
Numerical studies based on cosmological simulations have eventually revealed that the shape
ψPS(ν) predicted by the Press & Schechter (1974) model deviates by �50% from the actual shape
measured in cosmological simulations (e.g., Klypin et al. 1995, Gross et al. 1998, Tormen 1998,
Lee & Shandarin 1999, Sheth & Tormen 1999, Jenkins et al. 2001).

A number of modifications to the original ansätz have been proposed that result in ψ(ν),
which more accurately describes simulation results. Such modifications are based on the collapse
conditions that take into account asphericity of the peaks in the initial density field (Monaco 1995;
Audit, Teyssier & Alimi 1997; Lee & Shandarin 1998; Sheth & Tormen 2002; Desjacques 2008)
and stochasticity due to the dependence of the collapse condition on peak properties other than
ν or shape (e.g., Desjacques 2008; Maggiore & Riotto 2010; Corasaniti & Achitouv 2011; de
Simone, Maggiore & Riotto 2011; Ma et al. 2011). The more sophisticated excursion set models
match the simulations more closely, albeit at the expense of more assumptions and parameters.
There may be also inherent limitations in the accuracy of such models given that they rely on
the strong assumption that one can parameterize all the factors influencing collapse of any given
point in the initial overdensity field in a relatively compact form. In the face of complications
to a simple picture of peak collapse, as discussed in Section 3.3, one can indeed expect that the
excursion set ansätze are limited in how accurately they can ultimately describe the halo mass
function.
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3.7.2. Calibrations of halo mass function in cosmological simulations. An alternative route
to derive predictions for halo abundance accurately is to calibrate it using large cosmological
simulations of structure formation. Simulations have generally confirmed the remarkable fact that
the abundance of halos can be parameterized via a universal function of peak height ν (Sheth &
Tormen 1999; Jenkins et al. 2001; Evrard et al. 2002; White 2002; Warren et al. 2006; Lukić et al.
2007; Reed et al. 2007; Tinker et al. 2008; Crocce et al. 2010; Bhattacharya, Habib & Heitmann
2011; Courtin et al. 2011). Note that in many studies the linear overdensity for collapse is assumed
to be constant across redshifts and cosmologies, and the mass function is therefore quantified as
a function of σ−1—the quantity proportional to ν. However, as pointed out by Courtin et al.
(2011), it is necessary to include the redshift and cosmology dependence of δc (z) for an accurate
description of the mass function across cosmologies. Even though δc varies only by ∼1–2%, it
enters into halo abundance via an exponent, and such small variations can result in variations in
the mass function of several percent or more.

The main efforts with simulations have thus been aimed at improving the accuracy of the ψ(ν)
functional form, assessing systematic uncertainties related to the mass definition, and quantifying
deviations from the universality of ψ(ν) for different redshifts and cosmologies. The mass function,
and especially its exponential tail, is sensitive to the specifics of halo mass definition, a point
emphasized strongly in a number of studies ( Jenkins et al. 2001; White 2002; Cohn & White 2008;
Tinker et al. 2008; Klypin, Trujillo-Gomez & Primack 2011). Thus, in precision cosmological
analyses using an observed cluster abundance, care must be taken to ensure that the cluster mass
definition matches that used in the calibration of the halo mass function.

Predictions for the halo abundance as a function of the SO mass for a variety of overdensities
used to define the SO boundaries, accurate to better than ≈5–10% over the redshift interval z =
[0,2], were presented by Tinker et al. (2008). In Figure 7 we compare the form of the function
ψ(ν) calibrated through simulations by different researchers and compared to ψ(ν) predicted by
the Press-Schechter model, and to the calibration of the functional form based on the ellipsoidal
collapse ansätz by Sheth, Mo & Tormen (2001).

These calibrations of the mass function through N-body simulations provide the basis for
the use of galaxy clusters as tools to constrain cosmological models through the growth rate of
perturbations (see recent reviews by Allen, Evrard & Mantz 2011 and Weinberg et al. 2012). As
we discuss in Section 5 below, similar calibrations can be extended to models with non-Gaussian
initial density field and models of modified gravity.

Future cluster surveys promise to provide tight constraints on cosmological parameters, thanks
to the large statistics of clusters with accurately inferred masses. The potential of such surveys
clearly requires a precise calibration of the mass function, which currently represents a challenge.
Deviations from universality at the level of up to ∼10% have been reported (Lukić et al. 2007,
Reed et al. 2007, Cohn & White 2008, Tinker et al. 2008, Crocce et al. 2010, Courtin et al.
2011). In principle, a precise calibration of the mass function is a challenging but tractable tech-
nical problem, as long as it only requires a large suite of dissipationless simulations for a given
set of cosmological parameters and an optimal interpolation procedure (e.g., Lawrence et al.
2010).

A more serious challenge is the modeling of uncertain effects of baryon physics: baryon collapse,
dissipation, and dynamical evolution, as well as feedback effects related to energy release by the
SNe and AGN, may lead to subtle redistribution of mass in halos. Such redistribution can affect
halo mass and thereby halo mass function at the level of a few percent (Rudd, Zentner & Kravtsov
2008; Stanek, Rudd & Evrard 2009; Cui et al. 2012), although the exact magnitude of the effect
is not yet certain due to uncertainties in our understanding of the physics of galaxy formation in
general and the process of condensation and dynamical evolution in clusters in particular.
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Sheth, Mo & Tormen 2001
Jenkins et al. 2001
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Tinker et al. 2010

Figure 7
The function ψ(ν) defining the comoving abundance of collapsed halos via dn/d ln M = (ρ̄m/M )ψ(ν) as a
function of ν from different models and simulation-based calibrations. Panel a shows deviations of specific
models and calibrations for z = 0 from Tinker et al. (2010) based on a suite of �CDM cosmological
simulations.

3.8. Clustering of Halos

Galaxy clusters are clustered much more strongly than galaxies themselves. It is this strong clus-
tering discovered in the early 1980s (Bahcall & Soneira 1983, Klypin & Kopylov 1983) that led
to the development of the concept of bias in the context of Gaussian initial density perturbation
fields (Kaiser 1984). Linear bias of halos is a coefficient of proportionality between the overden-
sity of halos within a given sufficiently large region with the overdensity of matter in that region:
δh = bδ, with b defined as the bias parameter. For the Gaussian perturbation fields, local linear bias
is independent of scale (Scherrer & Weinberg 1998), such that the large-scale power spectrum
and correlation function on large scales can be expressed in terms of the corresponding quantities
for the underlying matter distribution as Phh(k) = b2 Pmm(k) and ξhh(r) = b2ξmm(r), respectively.
As we discuss in Section 5, this is not true for non-Gaussian initial perturbation fields (Dalal et al.
2008) or for models with a scale-dependent linear growth rate (Parfrey, Hui & Sheth 2011), in
which cases the linear bias is generally scale-dependent.

In the context of the hierarchical structure formation, halo bias is closely related to the overall
abundance of halos discussed above, as illustrated by the peak-background split framework (Kaiser
1984, Cole & Kaiser 1989, Mo & White 1996, Sheth & Tormen 1999), in which the linear halo
bias is obtained by considering a Lagrangian patch of volume V 0, mass M0, and overdensity δ0

at some early redshift z0. The bias is calculated by requiring that the abundance of collapsed
density peaks within such a patch is described by the same function ψ(νp ) as the mean abundance
of halos in the Universe, but with peak height νp appropriately rescaled with respect to the
overdensity of the patch and relative to the rms fluctuations on the scale of the patch. Thus, the
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Δ ln b

b2(ν)

ν

Sheth, Mo & Tormen 2001

Mo & White 1996

Tinker et al. 2010

a

b

Figure 8
The square of the bias b2(ν) as a function of peak height ν corresponding to halos of mass M 200m in the bias
model–based excursion set and spherical collapse barrier ( gray dashed line) (Mo & White 1996), in the
excursion set model based on ellipsoidal collapse ( purple dot-dashed line) (Sheth, Mo & Tormen 2001), and
the bias function calibrated using �CDM cosmological simulations (solid blue line) (Tinker et al. 2010) for
spherical overdensity halos defined using an overdensity of � = 200 with respect to the mean density. Panel
a shows deviations of excursion set models from the calibration by Tinker et al. (2010).

functional form of the bias dependence on halo mass, bh(M ), depends on the functional form
of the mass function explicitly in this framework. Simulations show that the peak–background
split model provides a fairly accurate (to ∼20%) prediction for the linear halo bias (Tinker et al.
2010).

Another line of argument illustrating the close connection between the halo abundance and
bias is the fact that if one assumes that all of the mass is in the collapsed halos, as is done,
for example, in the halo models (Cooray & Sheth 2002), the requirement that matter in the
Universe is not biased against itself implies that

∫
b(ν)g(ν)d ln ν = 1 (e.g., Seljak 2000), where

g(ν) ≡ |d ln ν/d ln M |−1ψ(ν) (see Equation 16). This integral constraint requires that the form
of the bias function b(ν) is changed whenever ψ(ν) changes. Incidentally, the close connection
between b(ν) and ψ(ν) implies that if ψ(ν) is a universal function, then the bias b(ν) should be a
universal function as well.

The function b(ν) recently calibrated for the SO-defined halos of different overdensities using
a suite of large cosmological simulations with accuracy �5% and satisfying the integral constraint
(Tinker et al. 2010) is shown in Figure 8 for halos defined using an overdensity of � = 200 with
respect to the mean. This calibration of the bias is compared to the corresponding prediction of
the Press & Schechter (1974) and the Sheth, Mo & Tormen (2001) ansätze. The figure shows that
b(ν) is a rather weak function of ν at ν < 1, but steepens substantially for rare peaks of ν > 1. It
also shows that the rarest clusters (ν ∼ 5) in the Universe can have the amplitude of the correlation
function or power spectrum that is two orders of magnitude larger than the clustering amplitude
of the galaxy-sized halos (ν � 1).
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3.9. Self-Similar Evolution of Galaxy Clusters

In the previous sections, we have considered processes that govern the collapse of matter during
cluster formation, the transition to equilibrium, and the equilibrium structure of matter distri-
bution in collapsed halos. In the following sections, we consider baryonic processes that shape
the observable properties of clusters, such as their X-ray luminosity or the temperature of the
ICM. However, before we delve into the complexities of such physical processes, it is instructive
to introduce the simplest models based on assumptions of self-similarity, in which the number
of control parameters is minimal. We discuss the assumptions and predictions of the self-similar
model in some detail because parametric scalings that it predicts are in wide use to interpret results
from both cosmological simulations of cluster formation and observations.

3.9.1. Self-similar model: assumptions and basic expectations. The self-similar model de-
veloped by Kaiser (1986) makes three key assumptions. The first assumption is that clusters form
via gravitational collapse from peaks in the initial density field in an Einstein-de Sitter Universe,
�m = 1. Gravitational collapse in such a Universe is scale-free or self-similar. The second assump-
tion is that the amplitude of density fluctuations is a power-law function of their size, �(k) ∝ k3+n.
This means that initial perturbations also do not have a preferred scale (i.e., they are scale-free
or self-similar). The third assumption is that the physical processes that shape the properties of
forming clusters do not introduce new scales in the problem. With these assumptions, the problem
has only two control parameters: the normalization of the power spectrum of the initial density
perturbations at an initial time, ti, and its slope, n. Properties of the density field and halo pop-
ulation at t > ti (or corresponding redshift z < zi), such as typical halo masses that collapse or
halo abundance as a function of mass, depend only on these two parameters. One can choose
any suitable variable that depends on these two parameters as a characteristic variable for a given
problem. For evolution of halos and their abundance, the commonly used choice is to define the
characteristic nonlinear mass, MNL (see Section 3.1), which encapsulates such dependence. The
halo properties and halo abundance then become universal functions of μ ≡ M /M NL in such a
model. Thus, for example, clusters with masses M 1(z1) and M 2(z2) that correspond to the same
ratio M 1(z1)/M NL(z1) = M 2(z2)/M NL(z2) have the same dimensionless properties, such as gas
fraction or concentration of their mass distribution.

As we have discussed above, in more general cosmologies the halo properties and mass function
should be universal functions of the peak height ν, which encapsulates the dependence on the
shape and normalization of the power spectra for general, nonpower-law shapes of the fluctuation
spectrum.

3.9.2. The Kaiser model for cluster scaling relations. In this section, we define cluster mass
to be the mass within the sphere of radius R, encompassing characteristic density contrast, �,
with respect to some reference density ρr (usually either ρcr or ρm): M = (4π/3)�ρr R3. In this
definition, radius and mass are directly related and interchangeable. The model assumes spherical
symmetry and that the ICM is in equilibrium within the cluster gravitational potential, so that the
HE equation (Equation 9) holds. The mass M (<R) derived from the HE equation is proportional
to T(R)R, and the sum of the logarithmic slopes of the gas density and temperature profiles at R.
In addition to the assumptions about self-similarity discussed above, a key assumption made in
the model by Kaiser (1986) is that these slopes are independent of M, so that

T ∝ M
R

∝ (�ρr )
1
3 M

2
3 . (17)

378 Kravtsov · Borgani

A
nn

u.
 R

ev
. A

st
ro

n.
 A

st
ro

ph
ys

. 2
01

2.
50

:3
53

-4
09

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
85

.1
92

.5
2.

27
 o

n 
05

/1
1/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



AA50CH09-Kravtsov ARI 16 July 2012 12:19

Note that, formally, the quantity T appearing in the above equation is the temperature measured
at R, whereas some average temperature at smaller radii is usually measured in observations. How-
ever, if we parameterize the temperature profile as T (r) = T∗T̃ (x), where T∗ is the characteristic
temperature and T̃ is the dimensionless profile as a function of dimensionless radius x ≡ r/R,
and we assume that T̃ (x) is independent of M, any temperature averaged over the same fraction
of radial range [x1, x2] will scale as ∝T∗ ∝ T (R). The latter is not strictly true for the “spectro-
scopic” temperature, TX, derived by fitting an observed X-ray spectrum to a single-temperature
bremsstrahlung model (Mazzotta et al. 2004, Vikhlinin 2006), although in practice deviations of
TX from the expected behavior for T∗ are small.

The gas mass within R can be computed by integrating over the gas density profile, which,
by analogy with temperature, we parameterize as ρg(r) = ρg∗ ρ̃g(x), where ρg∗ is the characteristic
density and ρ̃g is the dimensionless profile. The gas mass within R can then be expressed as

M g(< R) = 4πρg∗ R3
∫ 1

0
x2ρ̃g(x)d x = 3M

ρg∗

�ρr
Iρg ∝ M (< R). (18)

The latter proportionality is assumed in the Kaiser (1986) model, which means that ρg∗ and Iρg

are assumed to be independent of M. Note that ρg∗ ∝ �ρr , so �ρr does not enter the M g − M
relation.

Using the scalings of M g and T with mass, we can construct other cluster properties of interest,
such as the luminosity of ICM emitted due to its radiative cooling. Assuming that the ICM emission
is due to the free-free radiation and neglecting the weak logarithmic dependence of the Gaunt
factor on temperature, the bolometric luminosity can be written as (e.g., Sarazin 1986)

Lbol ∝ ρ2
g T

1
2 V ∝ M 2

g

V
T

1
2 ∝ �

7
6 M

4
3 . (19)

We omit ρr in these equations for clarity; it suffices to remember that ρr enters into the scaling
relations exactly as �. Note that the bolometric luminosity of a cluster is not observable directly,
and the X-ray luminosity in soft band (e.g., 0.5–2 keV), LXs, is frequently used. Such soft band
X-ray luminosity is almost insensitive to temperature at T > 2 keV (as can be easily verified with
a plasma emission code; Fabricant & Gorenstein 1983), so that its temperature dependence can
be neglected. LXs then scales as

LXs ∝ ρ2
g V ∝ M 2

g

V
∝ �M . (20)

At temperatures T < 2 keV, temperature dependence is more complicated both for the bolometric
and soft X-ray emissivity due to significant flux in emission lines. Therefore, strictly speaking, for
lower mass systems the above L−M scaling relations are not applicable, and scaling of the emissivity
with temperature needs to be calibrated separately, taking also into account the ICM metallicity.
The same is true for luminosity defined in some other energy band or for the bolometric luminosity.

Another quantity of interest is the ICM “entropy” defined in X-ray analyses as

KX ≡ kBTX

n2/3
e

∝ ρ−2/3
g T ∝ �−1/3 M 2/3, (21)

where ne is the electron number density. Finally, the quantity Y = M gT , where gas mass and
temperature are measured within a certain range of radii scaled to R�, is used to characterize the
ICM in the analyses of SZ and X-ray observations. This quantity is expected to be a particularly
robust proxy of the cluster mass (e.g., da Silva et al. 2004; Motl et al. 2005; Kravtsov, Vikhlinin
& Nagai 2006; Nagai 2006; Fabjan et al. 2011; see also discussion in Section 4) because it is
proportional to the global thermal energy of the ICM. Using Equations 18 and 17, the scaling of
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Y with mass in the self-similar model is

Y ≡ M gT ∝ �1/3 M 5/3. (22)

Note that the redshift dependence in the normalization of the scaling relations introduced above
is due solely to the particular SO definition of mass and associated redshift dependence of �ρr .
In �m �= 1 cosmologies, there is a choice of either defining the mass relative to the mean matter
density or critical density (Section 3.6.2). This specific, arbitrary choice determines the specific
redshift dependence of the observable-mass relations. It is clear that this evolution due to �(z)
factors has no deep physical meaning. However, the absence of any additional redshift dependence
in the normalization of the scaling relations is just the consequence of the assumptions of the Kaiser
(1986) model and is a physical reflection of these assumptions.

Extra evolution can, therefore, be expected if one or more of the assumptions of the self-similar
model is violated. This can be due to either actual physical processes that break self-similarity or
the fact that some of the model assumptions are not accurate. We discuss physical processes
that lead to the breaking of self-similarity in subsequent sections. Here, below, we first consider
possible deviations that may arise because assumptions of the Kaiser model do not hold exactly,
i.e., deviations not ascribed to physical processes that explicitly violate self-similarity.

3.9.3. Extensions of the Kaiser model. Going back to Equations 17 and 18, we note that the
specific scaling of T ∝ M 2/3 and M g ∝ M will only hold if the assumption that the dimensionless
temperature and gas density profiles, T̃ (x) and ρ̃g(x), are independent of M holds. In practice,
however, some mass dependence of these profiles is expected. For example, if the concentration of
the gas distribution depends on mass similarly to the concentration of the DM profile (Ascasibar
et al. 2006), the weak mass dependence of DM concentration implies weak mass dependence of
ρ̃g(x) and T̃ (x). Indeed, concentration depends on mass even in purely self-similar models (Cole
& Lacey 1996; Navarro, Frenk & White 1997). These dependencies imply that predictions of the
Kaiser model may not describe accurately even the purely self-similar evolution. This is evidenced
by deviations of scaling relation evolution from these predictions in hydrodynamical simulations
of cluster formation even in the absence of any physical processes that can break self-similarity
(e.g., Nagai 2006, Stanek et al. 2010).

In addition, the characteristic gas density, ρg∗ , may be mildly modified by a mass-dependent,
nonself-similar process during some early stage of evolution. If such a process does not introduce
a pronounced mass scale and is confined to some early epochs (e.g., owing to shutting off of star
formation in cluster galaxies due to AGN feedback and gas accretion suppression), then subsequent
evolution may still be described well by the self-similar model. The Kaiser model is just the simplest
specific example of a more general class of self-similar models and can therefore be extended to
take into account deviations described above.

For simplicity, let us assume that the scalings of gas mass and gas mass fraction against total
mass can be expressed as a power law of mass:

M g = Cg M 1+αg , fg ≡ M g

M
= Cg M αg = Cg M αg

NLμαg . (23)

This does not violate the self-similarity of the problem per se, as long as dimensionless properties
of an object, such as fg, remain a function of only the dimensionless mass μ(z) ≡ M /M NL(z).
This means that the normalization of the M g–M relation must scale as Cg ∝ M −αg

NL during the
self-similar stages of evolution, such that

M g = Cg0 M −αg
NL (z)M 1+αg = Cg0 M μαg . (24)

Note that self-similarity requires that the slope αg does not evolve with redshift.
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By analogy with the M g–M relation, we can assume that the T−M relation can be well described
by a power law of the form

T = CT�
1
3 M

2
3 +αT , (25)

where αT describes mild deviation from the scaling due, e.g., to mild dependence of gas and tem-
perature profile slopes in the HE equation. The dimensionless quantities involving temperature
T can be constructed using ratios of T with TNL = (μmp/kB )GM NL/RNL ∝ �1/3 M 2/3

NL. As be-
fore for the gas fraction, requirement that such dimensionless ratio depends only on μ requires
CT ∝ M −αT

NL so that

T = CTo M −αT
NL �

1
3 M

2
3 +αT = CTo�

1
3 M

2
3 μαT . (26)

Other observable-mass scaling relations can be constructed in the manner similar to the derivation
of the original relations above. These are summarized below for the specific choice of �ρr ≡
�c ρcr(z) ∝ h2 E2(z):

M g ∝ M −αg
NL (z)M 1+αg

�c
, (27)

T ∝ E(z)2/3 M −αT
NL M 2/3+αT

�c
, (28)

Lbol ∝ E(z)7/3 M −2αg−αT/2
NL (z)M

4/3+2αg+ αT
2

�c
, (29)

K ∝ E−2/3(z)M
2
3 αg−αT

NL (z)M
2
3 (1−αg)+αT
�c

, (30)

Y ∝ E(z)2/3(z)M −αg−αT
NL (z)M 5/3+αg+αT

�c
. (31)

In all of the relations one can, of course, recover the original relations by setting αg = αT = 0. The
observable-mass relations can be used to predict observable-observable relations by eliminating
mass from the corresponding relations above.

Note that the evolution of scaling relations in this extended model arises both from the redshift
dependence of �(z)ρr (z) and from the extra redshift dependence due to factors involving M NL.
The practical implication is that if measurements show that αg �= 0 and/or αT �= 0 at some
redshift, the original Kaiser scaling relations are not expected to describe the evolution, even if the
evolution is self-similar. Instead, relations given by Equations 27–31 should be used. Note that
at z ≈ 0, observations indicate that within the radius r500, enclosing overdensity �c = 500 and
αg ≈ 0.1−0.2, while αT ≈ 0.0−0.1. Therefore, the extra evolution compared to the Kaiser model
predictions due to factors involving αg and, to a lesser degree, factors involving αT is expected.
Such evolution, consistent with predictions of the above equations, is indeed observed both in
simulations (see, e.g., figure 10 in Vikhlinin et al. 2009a) and in observations (Lin et al. 2012;
although see Böhringer, Dolag & Chon 2012).

In practice, evolution of the scaling relations can be quite a bit more complicated than the
evolution predicted by the above equations. The complication is not due to any deviation from
self-similarity but rather due to specific mass definition and the fact that cluster formation is an
extended process that is not characterized by a single collapse epoch. Some clusters evolve only
mildly after their last major merger. However, the mass of such clusters will change with z even if
their potential does not change, simply because mass definition is tied to a reference density that
changes with expansion of the Universe and because density profiles of clusters extend smoothly
well beyond the virial radius. Any observable property of clusters that has radial profile differing
from the mass profile, but which is measured within the same R�, will change differently than
mass with redshift. As a simplistic toy model, consider a population of clusters that does not evolve
from z = 1 to z = 0. Their X-ray luminosity is mostly due to the ICM in the central regions
of clusters and it is not sensitive to the outer boundary of integration as long as it is sufficiently
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large. Thus, X-ray luminosity of such a nonevolving population will not change with z, but masses
M � of clusters will increase with decreasing z as the reference density used to define the cluster
boundary decreases. Normalization of the LX − M � relation will thus decrease with decreasing
redshift simply due to the definition of mass. The strength of the evolution will be determined by
the slope of the mass profile around R�, which is weakly dependent on mass. Such an effect may,
thus, result in the evolution of both the slope and normalization of the relation. In this respect,
quantities that have radial profiles most similar to the total mass profile (e.g., M g, Y ) will suffer
the least from such spurious evolution.

Finally, we note again that, in principle, for general nonpower-law initial perturbation spectra of
the CDM models, the scaling with M /M NL needs to be replaced with scaling with the peak height
ν. For clusters within a limited mass range, however, the power spectrum can be approximated
by a power law and, thus, a characteristic mass similar to M NL can be constructed, although such
mass should be within the typical mass range of the clusters. The latter is not true for M NL, which
is considerably smaller than typical cluster mass at all z.

3.9.4. Practical implications for observational calibrations of scaling relations. In observa-
tional calibrations of the cluster scaling relations, it is often necessary to rescale between different
redshifts either to bring results from the different z to a common redshift or because the scaling
relation is evaluated using clusters from a wide range of redshifts due to small sample size. It is
customary to use predictions of the Kaiser model to carry out such rescaling to take into account
the redshift dependence of �(z). In this context, one should keep in mind that these predictions are
approximate due to the approximate nature of some of the assumptions of the model, as discussed
above. Inaccuracies introduced by such scalings may, for example, then be incorrectly interpreted
as intrinsic scatter about the scaling relation.

In addition, because the �(z) factors are a result of an arbitrary mass definition, they should
not be interpreted as physically meaningful factors describing evolution of mass. For example, in
the T−M relation, the �1/3 factor in Equation 17 arises due to the dimensional M/R factor of
the HE equation. As such, this factor does not change even if the power-law index of the T−M
relation deviates from 2/3, in which case the relation has the form T ∝ �1/3 M 2/3+αT . In other
words, if one fits for the parameters of this relation, such as normalization A and slope B, using
measurements of temperatures and masses for a sample of clusters spanning a range of redshifts,
the proper parameterization of the fit should be

T
Tp

= A�1/3
(

M
M p

)B

, or
T
Tp

= A�1/3
(

M
M p

)2/3+B

, (32)

where Tp and Mp are appropriately chosen pivots. The parameterization T /Tp = A(�1/3 M /M p)B

that is sometimes adopted in observational analyses is not correct in the context of the self-similar
model. In other words, only the observable quantities should be rescaled by the �ρr factors and
not the mass. Likewise, only the �ρr factors actually predicted by the Kaiser model should be
present in the scalings. For example, no such factor is predicted for the M g − M relation, and
therefore the gas and total masses of clusters at different redshifts should not be scaled by �ρr

factors in the fits of this relation.
Finally, we note that observational calibrations of the observable-mass scaling relations gener-

ally depend on the distances to clusters and are, therefore, cosmology dependent. Such dependence
arises because distances are used to convert observed angular scale to physical scale within which
an “observable” is defined, R = θdA(z) ∝ θh−1, or to convert observed flux f to luminosity,
L = 4π f dL(z), where dA(z) and dL(z) = dA(z)(1 + z)2 are the angular diameter distance and lu-
minosity distance, respectively. Thus, if the total mass M of a cluster is measured using the HE
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equation, we have M HE ∝ TR ∝ dA ∝ h−1. The same scaling is expected for the mass derived
from the weak lensing shear profile measurements.

If the gas mass is measured from the X-ray flux from a volume V ∝ R3 ∝ θ3d 3
A, which scales

as f = LX/(4πd 2
L) ∝ ρ2

g V /d 2
L ∝ M 2

g /(V d 2
L) ∝ M 2

g /(θd 2
Ld 3

A) and where f and θ are observables,
gas mass then scales with distance as M g ∝ dLd 3/2

A ∝ h5/2. This dependence can be exploited to
constrain cosmological parameters, as in the case of X-ray measurements of gas fractions in clusters
(Ettori, Tozzi & Rosati 2003; Allen et al. 2004, 2008; LaRoque et al. 2006; Ettori et al. 2009) or
abundance evolution of clusters as a function of their observable (e.g., Vikhlinin et al. 2009b). In
this respect, the M g–M relation has the strongest scaling with distance and cosmology, whereas
the scaling of the T−M relation is the weakest (e.g., see discussion by Vikhlinin et al. 2009a).

3.10. Cluster Formation and Thermodynamics of the Intracluster Gas

Gravity that drives the collapse of the initial large-scale density peaks affects not only the properties
of the cluster DM halos, but also the thermodynamic properties of the intracluster plasma. The
latter are also affected by processes related to galaxy formation, such as cooling and feedback.
Below, we discuss the thermodynamic properties of the ICM resulting from gravitational heating,
radiative cooling, and stellar and AGN feedback during cluster formation.

3.10.1. Gravitational collapse of the intracluster gas. The diffuse gas infalling onto the
DM-dominated potential wells of clusters converts the kinetic energy acquired during the
collapse into thermal energy via adiabatic compression and shocks. As gas settles into HE, its
temperature approaches values close to the virial temperature corresponding to the cluster mass.
In the spherically symmetric collapse model of Bertschinger (1985), supersonic accretion gives
rise to the expanding shock at the interface of the inner hydrostatic gas with a cooler, adiabatically
compressed, external medium. Real three-dimensional collapse of clusters is more complicated and
exhibits large deviations from spherical symmetry, as accretion proceeds both in a quasi-spherical
fashion from low-density regions and along relatively narrow filaments. The gas accreting along
the latter penetrates much deeper into the cluster virial region and does not undergo a shock
at the virial radius (see Figure 9). The strong shocks are driven not just by the accretion of gas
from the outside but also “inside-out” during major mergers (e.g., Poole et al. 2007).

The shocks arising during cluster formation can be classified into two broad categories: strong
external shocks surrounding filaments and the virialized regions of DM halos and weaker internal
shocks, located within the cluster virial radius (e.g., Pfrommer et al. 2006, Skillman et al. 2008,
Vazza et al. 2009). The strong shocks arise in the high–Mach number flows of the intergalactic
gas, whereas weak shocks arise in the relatively low–Mach number flows of gas in filaments and
accreting groups, which was preheated at earlier epochs by the strong shocks surrounding filaments
or external groups. Figure 9a shows these two types of shocks in a map of the shocked cells
identified in a cosmological adaptive mesh refinement simulation of a region surrounding a galaxy
cluster (from Vazza et al. 2009), along with the gas velocity field. This map highlights the strong
external shocks, characterized by high Mach numbers M > 30, surrounding the cluster at several
virial radii from the cluster center and weaker internal shocks, with M � 2–3. The cluster is
shown at the epoch immediately following a major merger, which generated substantial velocities
of gas within virial radius. As we discuss in Section 4 below, incomplete thermalization of these
gas motions is one of the main sources of nonthermal pressure support in the ICM.

Figure 9b shows the distribution of the kinetic energy processed by shocks, as a function of
the local shock Mach number, for different redshifts (Skillman et al. 2008). The figure shows
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Figure 9
(a) Map of the shocked cells identified by the divergence of velocity colored by the local shock Mach number and turbulent gas velocity
field (streamlines) in a slice of simulation box 7.5 Mpc on a side and depth of 18 kpc at z = 0.6 for a simulated cluster that reaches a mass
of ∼2 × 1014 M� by z = 0 (from Vazza et al. 2009). (b) Redshift evolution of the distribution of the kinetic energy processed by shocks,
as a function of the Mach number M in a cosmological simulation (from Skillman et al. 2008). Results shown in both panels are based
on the adaptive mesh refinement ENZO code (O’Shea et al. 2004).

that a large fraction of the kinetic energy is processed by weak internal shocks, and this fraction
increases with decreasing redshift as more and more of the accreting gas is preheated in filaments.
Yet, Figure 9a highlights that large M shocks surround virialized halos in such a way that most
gas particles accreted in a galaxy cluster must have experienced at least one strong shock in their
past.

Because gravity does not have a characteristic length scale, we expect the predictions of the
self-similar model, presented in Section 3.9, to apply when gravitational gas accretion determines
the thermal properties of the ICM. The scaling relations and their evolution predicted by the
self-similar model are indeed broadly confirmed by the nonradiative hydrodynamical simulations
that include only gravitational heating (e.g., Navarro, Frenk & White 1995; Eke, Navarro & Frenk
1998; Nagai, Kravtsov & Vikhlinin 2007), although some small deviations arising due to small
differences in the dynamics of baryons and DM were also found (Ascasibar et al. 2006, Nagai 2006,
Stanek et al. 2010).

As discussed in Section 2, observations carried out with the Chandra and XMM-Newton
telescopes during the past decade showed that the outer regions of clusters (r � r2,500) exhibit
self-similar scaling, whereas the core regions exhibit strong deviations from self-similarity. In
particular, gas density in the core regions of small-mass clusters is lower than expected from self-
similar scaling of large-mass systems. These results indicate that some additional nongravitational
processes are shaping properties of the ICM. We review some of these processes studied in cluster
formation models below.
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3.10.2. Phenomenological preheating models. The first proposed mechanism to break self-
similarity was high-redshift (zh � 3) pre-heating by nongravitational sources of energy, presum-
ably by a combined action of the AGN and stellar feedback (Evrard & Henry 1991, Kaiser 1991).
The specific extra heating energy per unit mass, Eh , defines the temperature scale T ∗ ∝ Eh/kB ,
such that clusters with virial temperature Tvir > T ∗ should be left almost unaffected by the extra
heating, whereas in smaller clusters with Tvir < T ∗ gas accretion is suppressed. As a result, gas
density is relatively lower in lower mass systems, especially at smaller radii, while their entropy is
higher.

Both analytical models (e.g., Tozzi & Norman 2001, Babul et al. 2002, Voit et al. 2003) and
hydrodynamical simulations (e.g., Bialek, Evrard & Mohr 2001; Borgani et al. 2002; Muanwong
et al. 2002) have demonstrated that, with a suitable preheating prescription and typical heating
injection of Eh ∼ 0.5 –1 keV per gas particle, self-similarity can be broken to the degree required
to reproduce observed scaling relations. Studies of the possible feedback mechanisms show that
such amounts of energy cannot be provided by SNe (e.g., Kravtsov & Yepes 2000, Renzini 2000,
Borgani et al. 2004, Kay et al. 2007, Henning et al. 2009) and must be injected by the AGN
population (e.g., Wu, Fabian & Nulsen 2000; Lapi, Cavaliere & Menci 2005; Bower, McCarthy
& Benson 2008) or by some other unknown source.

However, regardless of the actual sources of heating, strong widespread heating at high redshifts
would conflict with the observed statistical properties of the Lyman-α forest (Shang, Crotts &
Haiman 2007, Borgani & Viel 2009). Moreover, hydrodynamical simulations have demonstrated
that simple preheating models predict large isentropic cores (e.g., Borgani et al. 2005, Younger &
Bryan 2007) and shallow pressure profiles (Kay et al. 2012). This is at odds with the entropy and
pressure profiles of real clusters, which exhibit smoothly declining entropy down to r ∼ 10−20 kpc
(e.g., Cavagnolo et al. 2009, Arnaud et al. 2010).

3.10.3. The role of radiative cooling. The presence of galaxies in clusters and low levels of the
ICM entropy in cluster cores are a testament that radiative cooling has operated during cluster
formation in the past and is an important process shaping thermodynamics of the core gas at
present. Therefore, in general, radiative cooling cannot be neglected in realistic models of cluster
formation. Given that cooling generally introduces new scales, it can break self-similarity of the
ICM even in the absence of heating (Voit & Bryan 2001). In particular, cooling removes low-
entropy gas from the hot ICM phase in the cluster cores, which is replaced by higher entropy gas
from larger radii. Somewhat paradoxically, the cooling thus leads to an entropy increase of the
hot, X-ray emitting ICM phase. This effect is illustrated in Figure 10, which shows the entropy
maps in the simulations of the same cluster with and without cooling. In the absence of cooling
(Figure 10a), the innermost region of the cluster is filled by low-entropy gas. Merging substruc-
tures also carry low-entropy gas, which generates comet-like features by ram-pressure stripping,
and is hardly mixed in the hotter ambient of the main halo. In the simulation with radiative cooling
(Figure 10b), most of the low-entropy gas associated with substructures and the central cluster
region is absent, and most of the ICM has a relatively high entropy.

A more quantitative analysis of the entropy distribution for these simulated clusters is shown in
Figure 11, in which the entropy profiles of clusters simulated with inclusion of different physical
processes are compared with the baseline analytic spherical accretion model; this model predicts
the power-law entropy profile K (r) ∝ r1.1 (e.g., Tozzi & Norman 2011; see also Voit 2005).
The figure shows that the entropy profile in the simulation with radiative cooling is signifi-
cantly higher than that of the nonradiative simulation. The difference in entropy is as large as
an order of magnitude in the inner regions of the cluster and greater by a factor of two even at
r500.
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aa ba
Without radiative cooling With radiative cooling

b

Figure 10
Maps of entropy in cosmological hydrodynamical simulations of a galaxy cluster of mass M500 � 1015h−1 M�
at z = 0, carried out (a) without and (b) with radiative cooling. Brighter colors correspond to lower gas
entropy. Each panel encompasses a physical scale of 6.5 h−1 Mpc, which corresponds to ≈2.5 virial radii for
this cluster. The simulations have been carried out using the GADGET-3 smoothed particle hydrodynamics
code (Springel 2005).

Interestingly, the predicted level of entropy at r ∼ r2,500–r500 in the simulations with cooling
(but no significant heating) is consistent with the ICM entropy inferred from X-ray observations.
However, this agreement is likely to be spurious because it is achieved with the amount of cooling
that results in conversion of ≈40% of the baryon mass in clusters into stars and cold gas, which
is inconsistent with observational measurements of cold fraction varying from �20−30% for
small-mass, X-ray-emitting clusters to �10% for massive clusters (see Section 2).

Finally, note that inclusion of cooling in simulations with preheating discussed above usually
results in problematic star-formation histories. In fact, if preheating takes place at a sufficiently
high redshift, clusters exhibit excessive cooling at lower redshifts, as preheated gas collapses and
cools at later epochs compared to the simulations without preheating (e.g., Tornatore et al. 2003).
These results highlight the necessity to treat cooling and heating processes simultaneously using
heating prescriptions that can realistically reproduce the heating rate of the ICM gas as a function
of cosmic time. We discuss efforts in this direction next.

3.10.4. Thermodynamics of the intracluster medium with stellar and active galactic nuclei
feedback. The results discussed above strongly indicate that, in order to reproduce the overall
properties of clusters, cooling should be modeled together with a realistic prescription for non-
gravitational heating. This is particularly apparent in the cluster cores, where a steady heating is
required to offset the ongoing radiative cooling observed in the form of strong X-ray emission
(see, e.g., Peterson & Fabian 2006). Studies of the feedback processes in clusters are one of the
frontiers in cluster formation modeling. Although we do not yet have a complete picture of the
ICM heating, a number of interesting and promising results have been obtained.

In Figure 11, the solid line shows the effect of the SN feedback on the entropy profile. In
these simulations, the kinetic feedback of SNe is included in the form of galactic winds carrying
the kinetic energy comparable to all of the energy released by Type II SNe expected to occur
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Figure 11
Radial profiles of entropy (in units of kiloelectronvolt-centimeters squared) for the same simulations whose
entropy maps are shown in Figure 10. Magenta dotted, long-dashed blue, continuous red, and short-dashed
dark yellow curves refer to the nonradiative simulation and to the three radiative simulations including only
cooling and star formation (SF), the effect of galactic ejecta from supernova (SN), and the effect of active
galactic nuclei (AGN) feedback, respectively. The gray dot-dashed line shows the power-law entropy profile
with slope K (r) ∝ r1.1, whereas the thin gray vertical dotted line marks the position of r500.

according to star formation in the simulation. This energy partially compensates for the radiative
losses in the central regions, which leads to a lower level of entropy in the core. However, the
core ICM entropy in these simulations is still considerably higher than observed (e.g., Sun et al.
2009). The inefficiency of the SN feedback in offsetting the cooling sufficiently is also evidenced
by temperature profiles.

Figure 4 (from Leccardi & Molendi 2008) compares the observed temperature profiles of a
sample of local clusters with results from simulations that include the SN feedback. The figure
shows that simulations reproduce the observed temperature profile at r � 0.2r180. The overall
shape of the profile at these large radii is reproduced by simulations including a wide range of
physical processes, including nonradiative simulations (e.g., Loken et al. 2002; Borgani et al. 2004;
Nagai, Kravtsov & Vikhlinin 2007). At small radii, however, the observed and predicted profiles
do not match: The profiles in simulated clusters continue to increase to the smallest resolved radii,
whereas the observed profiles reach a maximum temperature Tmax ≈ 2T180 and then decrease with
decreasing radius to temperatures of ∼0.1−0.3 Tmax. The high temperatures of the central gas
reflect its high entropy and are due to the processes affecting the entropy, as discussed above.

Another indication that the SN feedback alone is insufficient is the fact that the stellar mass of
the BCGs in simulations that include only the feedback from SNe is a factor of two to three larger
than the observed stellar masses. For example, in the simulated clusters shown in Figure 10, the
baryon fraction in stars within r500 decreases from �40% in simulations without SN feedback to
� 30%, which is still a factor of two larger than observational measurements. The overestimate
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of the stellar mass is reflected in the overestimate of the ICM metallicity in cluster cores (e.g.,
Borgani et al. 2008, and references therein).

Different lines of evidence indicate that energy input from the AGN in the central cluster
galaxies can provide most of the energy required to offset cooling (see McNamara & Nulsen 2007
for a comprehensive review). Because the spatial and temporal scales resolved in cosmological
simulations are larger than those relevant for gas accretion and energy input, the AGN energy
feedback can only be included via a phenomenological prescription. Such prescriptions generally
model the feedback energy input rate by assuming the Bondi gas accretion rate onto the SMBHs,
included as the sink particles, and incorporate a number of phenomenological parameters, such
as the radiative efficiency and the feedback efficiency, which quantify the fraction of the radiated
energy that thermally couples to the surrounding gas (e.g., Springel, Di Matteo & Hernquist
2005). The values of these parameters are adjusted so that simulations reproduce the observed
relation between black hole mass and the velocity dispersion of the host stellar bulge (e.g., Marconi
& Hunt 2003). An alternative way of implementing the AGN energy injection is the AGN-driven
winds, which shock and heat the surrounding gas (e.g., Omma et al. 2004, Dubois et al. 2011,
Gaspari et al. 2011).

In general, simulations of galaxy clusters based on different variants of these models have shown
that the AGN feedback can reduce star formation in massive cluster galaxies and reduce the hot
gas content in the poor clusters and groups, thereby improving agreement with the observed
relation between X-ray luminosity and temperature (e.g., Sijacki et al. 2007; Puchwein, Sijacki &
Springel 2008). Figure 12 (from Martizzi, Teyssier & Moore 2012) shows that simulations with
the AGN feedback result in stellar masses of the BCGs that agree with the masses required to
match observed stellar masses of galaxies and masses of their DM halos predicted by the models.
The figure also shows that stellar masses are overpredicted in the simulations without the AGN
feedback. Incidentally, the large-scale winds at high redshifts and stirring of the ICM in cluster
cores by the AGN feedback also help to bring the metallicity profiles in cluster simulations into
better agreement with observations (Fabjan et al. 2010, McCarthy et al. 2010).

Although results of simulations with the AGN feedback are promising, simulations so far
have not been able to convincingly reproduce the observed thermal structure of cool cores. As an
example, Figure 11 shows that the entropy profiles in such simulations still develop large constant
entropy cores inconsistent with observed profiles. Interestingly, the adaptive mesh refinement
simulations with jet-driven AGN feedback by Dubois et al. (2011) reproduce the monotonically
decreasing entropy profiles inferred from observations. However, such agreement only exists if
radiative cooling does not account for the metallicity of the ICM; in simulations that take into
account the metallicity dependence of the cooling rates, the entropy profile still develops a large
constant entropy core.

The presence of a population of relativistic particles in AGN-driven high-entropy bubbles
has been suggested as a possible solution to this problem (Guo & Oh 2008, Sijacki et al. 2008). A
relativistic plasma increases the pressure support available at a fixed temperature and can, therefore,
help to reproduce the observed temperature and entropy profiles in core regions. However, it
remains to be seen whether the required population of the cosmic rays is consistent with available
constraints inferred from γ and radio observations of clusters (e.g., Brunetti 2011, and references
therein). A number of additional processes, such as thermal conduction (e.g., Narayan & Medvedev
2001) or dynamical friction heating by galaxies (El-Zant, Kim & Kamionkowski 2004), have been
proposed. Generally, these processes cannot effectively regulate cooling in clusters by themselves
(e.g., Dolag et al. 2004, Conroy & Ostriker 2008), but they may play an important role when
operating in concert with the AGN feedback (Voit 2011) or instabilities in plasma (e.g., Sharma
et al. 2012).
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Figure 12
Comparison of the relation between stellar mass and total halo mass as predicted by cosmological
hydrodynamical simulations of four early-type galaxies (symbols) (from Martizzi, Teyssier & Moore 2012).
The open triangle and square refer to the simulations presented by Naab, Johansson & Ostriker (2009) and
by Feldmann et al. (2010), both based on the smoothed particle hydrodynamics codes and not including
active galactic nuclei (AGN) feedback. The filled symbols refer to the simulations by Martizzi, Teyssier &
Moore (2012) with the brightest cluster galaxies forming at the center of a relatively poor cluster carried out
with an AMR code, both including (triangle) and excluding ( pentagon) AGN feedback. The red dotted line
represents the relation expected for 20% efficiency in the conversion of baryons into stars. The solid blue
line is the prediction from Moster et al. (2010) of a model in which dark matter halos are populated with
stars in such a way as to reproduce the observed stellar mass function. The gray shaded areas represent the
1-, 2-, and 3σ scatter around the average relation.

In summary, results of the theoretical studies discussed above indicate that the AGN energy
feedback is the most likely energy source regulating the stellar masses of cluster galaxies throughout
their evolution and suppressing cooling in cluster cores at low redshifts. The latter likely requires
an interplay between the AGN feedback and a number of other physical processes: e.g., injection
of the cosmic rays in the high-entropy bubbles, buoyancy of these bubbles stabilized by magnetic
fields, dissipation of their mechanical energy through turbulence, thermal conduction, and thermal
instabilities. Although details of the interplay are not yet understood, it is clear that it must result
in a robust self-regulating feedback cycle in which cooling immediately leads to the AGN activity
that suppresses further cooling for a certain period of time.

4. REGULARITY OF THE CLUSTER POPULATIONS

Processes operating during cluster formation and evolution discussed in the previous section are
complex and nonlinear. However, it is now also clear that most of the complexity is confined
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to cluster cores and affects a small fraction of volume and mass of the clusters. In this regime,
clusters’ observational properties exhibit strong deviations from the self-similar scalings described
in Section 3.9 (see also Voit 2005). At larger radii, the ICM is remarkably regular. In this section, we
discuss the origins of such highly regular behavior and the range of radii where it can be expected.
We argue that the existence of this radial range allows us to define integral observational quantities,
which have low scatter for clusters of a given mass that are not sensitive to the astrophysical
processes operating during cluster formation and evolution. This fact is especially important for
the current and future uses of clusters as cosmological probes (Allen, Evrard & Mantz 2011;
Weinberg et al. 2012).

4.1. Characterizing Regularity

Much observational evidence, based on X-ray measurements of gas density (e.g., Croston et al.
2008) and temperature profiles (Vikhlinin et al. 2006, Pratt et al. 2007, Leccardi & Molendi
2008) and the combination of the two in the form of entropy profile (Cavagnolo et al. 2009),
demonstrate that clusters have a variety of behaviors in central regions, depending on the presence
and prominence of cool cores. As discussed in Section 2, outside of core regions, clusters behave
as a more homogeneous population and obey assumptions and expectations of the self-similar
model (discussed above in Section 3.9.1). For instance, Figure 3 shows that the ICM density is
nearly independent of temperature once measured outside of core regions r � r2,500, at least for
relatively hot systems with T � 3 keV. Quite remarkably, observed and simulated temperature
profiles agree with each other within this same radial range (see Figure 4).

A good illustration of the regularity of the ICM properties is represented by the pressure
profiles shown in Figure 13 (from Arnaud et al. 2010, but see also Sun et al. 2011) rescaled to the
values of radius and pressure at r500. The perfectly regular, self-similar behavior would correspond
to a single line in this plot for clusters of all masses. The pressure profiles shown in this figure
are derived from X-ray observations and are defined as the product of electron number density
and temperature profiles. Similar profiles are now derived from SZ observations, which probe
pressure more directly (e.g., Bonamente et al. 2012). Quite remarkably, the observed pressure
profiles at r � 0.2r500 follow a nearly universal profile (see also Nagai, Kravtsov & Vikhlinin
2007), exhibiting fractional scatter of �30% at r ∼ 0.2r500 and even smaller scatter of ∼10–15%
at r ∼ 0.5r500. At smaller radii, the scatter of pressure profiles is much larger, with steep profiles
corresponding to the cool core clusters and flatter profiles for disturbed clusters. Figure 13 shows
that simulated and observed pressure profiles agree well with each other for r � 0.2r500, i.e., in
the regime where the cluster population has a more regular behavior. At smaller radii, the profiles
from simulations are on average steeper than observed and exhibit a lower degree of diversity
between cool core and noncool core clusters.

The scatter in the cluster radial profiles can be used to define the following three radial regimes:

1. Cluster cores, r � r2,500, which exhibit the largest scatter and where scaling with mass differs
significantly from the self-similar scaling expectation. We do not yet have a complete and
adequate theoretical understanding of the observed properties of the ICM and their diversity
in the cluster cores. This is one of the areas of active ongoing theoretical and observational
research.

2. Intermediate radii, r2,500 � r � r500, which exhibit the smallest scatter and scaling with
mass close to the self-similar scaling. Although the processes affecting thermodynamics of
these regions are not yet fully understood, the simple scaling and regular behavior make
observable properties of clusters at these radii useful for connecting them to the total cluster
mass.
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Figure 13
Comparison between observed (blue lines) and simulated (red lines with orange shaded area) pressure profiles
(from Arnaud et al. 2010). Observational data refer to the Representative XMM-Newton Cluster Structure
Survey (REXCESS) sample of nearby clusters (Böhringer et al. 2007) observed with XMM-Newton.
Simulation results are obtained by combining different sets of clusters simulated with both smoothed particle
hydrodynamics and adaptive mesh refinement codes (see Arnaud et al. 2010 for details). The continuous red
line corresponds to the average profile from simulations, after rescaling profiles according to the values of
R500 and M500 predicted by hydrostatic equilibrium, with the orange area showing the corresponding rms
scatter. The red dashed line shows the simulation results when using instead the true M500 value. The lower
panel shows the ratio between average simulation profiles and average observed profiles.

3. Cluster outskirts, r > r500, where scatter is increasing with radius and scaling with mass
can be expected to be close to self-similar on theoretical grounds, but have not yet been
constrained observationally. In this regime, clusters are dynamically younger, characterized
by recent mergers, departures from equilibrium, and a significant degree of gas clumping.
Significant progress is expected in the near future due to a combination of high-sensitivity
SZ and X-ray observations using the next generation of instruments.

The physical origin of the regular scaling with mass is the fact that cluster mass is the key
control variable of cluster formation, which sets the amount of gas mass, the average temperature
of the ICM, etc. It is important to note that the close to self-similar scaling with mass outside
the cluster core does not imply that the nongravitational physical processes are negligible in this
regime. For instance, Sun et al. (2009) showed that entropy measured at r500 has a scaling with
temperature quite close to the self-similar prediction, yet its level is higher than expected from
a simple model in which only gravity determines the evolution of the intracluster baryons. This
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implies that, whatever mechanism one invokes to account for such an entropy excess, it must
operate in such a way as to not violate the self-similar scaling. The scatter around the mean profile
exhibited by clusters at different radii can be due to a number of factors. In particular, the small
scatter at intermediate radii is a nontrivial fact, given that different clusters of the same mass are
in different stages of their dynamical evolution and physical processes affecting their profiles may
have operated differently due to different formation histories.

One of the interesting implications of the small scatter in the pressure profiles is that it provides
an upper limit on the contribution of nonthermal pressure support or, at least, on its cluster-by-
cluster variation. A well-known source of nonthermal pressure is represented by residual gas
motions induced by mergers, galaxy motions, and gas inflow along large-scale filaments. Cosmo-
logical hydrodynamical simulations of cluster formation have been extensively used to quantify the
pressure support contributed by gas motions and the corresponding level of violation of HE (e.g.,
Rasia, Tormen & Moscardini 2004; Nagai, Kravtsov & Vikhlinin 2007; Piffaretti & Valdarnini
2008; Ameglio et al. 2009; Biffi, Dolag & Böhringer 2011; Lau et al. 2009). All these analyses
consistently found that ICM velocity fields contribute a pressure support of about 5–15% of the
thermal one, the exact amount depending on the radial range considered (being larger at larger
radii) and on the dynamical state of the clusters. Currently, there are only indirect indications for
turbulent motions in the ICM of the real clusters from fluctuations of gas density measured in
X-ray observations (e.g., Schuecker et al. 2004, Churazov et al. 2012). Direct measurements or
upper limits on gas velocities and characterization of their statistical properties should be feasible
with future high-resolution spectroscopic and polarimetric instruments on the next-generation
X-ray telescopes (e.g., Inogamov & Sunyaev 2003, Zhuravleva et al. 2010).

The galaxies and groups orbiting or infalling onto clusters not only stir the gas, but also make
the ICM clumpier. The dense inner regions of clusters ram-pressure strip the gas on a fairly short
timescale, so that the clumping is fairly small near cluster cores. However, it is substantial in the
outskirts in cluster simulations where orbital times are longer and accretion of new galaxies and
groups is ongoing. Given that the X-ray emissivity scales as the square of the local gas density,
the clumpiness can bias the measurement of gas density from X-ray surface brightness profiles
toward higher values if it is not accounted for. Because clumping is expected to increase with
increasing cluster-centric radius, the inferred slope of gas density profiles can be underestimated,
thus affecting the resulting pressure profile and hydrostatic mass estimates. Furthermore, gas
clumping also affects X-ray temperature, which is measured by fitting the X-ray spectrum to a
single-temperature plasma model (Mazzotta et al. 2004, Vikhlinin 2006). Clumping can, therefore,
contribute to the scatter of pressure profiles at large radii, especially at r > r500 (e.g., Nagai & Lau
2011).

Indirect detections of gas clumping through X-ray observations out to r200 have been recently
claimed, based on Suzaku observations of a flattening in the X-ray surface brightness profiles at
such large radii (Simionescu et al. 2011). However, these results are prone to significant systematic
uncertainties (Ettori & Molendi 2011). Independent analyses based on the ROSAT data (e.g.,
Eckert et al. 2011) show the surface brightness profiles steepen beyond r500 (see also Vikhlinin,
Forman & Jones 1999, Neumann 2005), which is inconsistent with the degree of gas clumping
inferred from the Suzaku data, but consistent with predictions of hydrodynamical simulations.

Clearly, the clumpiness of the ICM depends on a number of uncertain physical processes, such
as efficient feedback, which removes gas from merging structures, or thermal conduction, which
homogenizes the ICM temperatures (e.g., Dolag et al. 2004). The degree of gas clumping in density
and temperature is, therefore, currently uncertain in both theoretical models and observations.
Future high-sensitivity SZ observations of galaxy clusters with improved angular resolution will
allow a direct measurement of projected pressure profiles. Their comparison with X-ray-derived
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profiles will help in understanding the impact of gas clumping on the thermal complexity of the
ICM.

Additional nonthermal pressure support can be provided by the magnetic fields and relativistic
cosmic rays, the presence of which in the ICM is demonstrated by radio observations of the radio
halos: diffuse and faint radio sources filling the central ∼1-Mpc3 region of many galaxy clusters
(e.g., Venturi et al. 2008, Giovannini et al. 2009) arising due to the synchrotron emission of highly
relativistic electrons moving in the ICM magnetic fields. The origin of these relativistic particles
still needs to be understood, although several models have been proposed. Shocks and turbulence
associated with merger events are expected to compress and amplify magnetic fields and accelerate
relativistic electrons (see, e.g., Dolag, Bykov & Diaferio 2008 and Ferrari et al. 2008 for reviews).
Numerical simulations including injection of cosmic rays from accretion shocks and SN explosions
(e.g., Pfrommer et al. 2007, Vazza et al. 2012) indicate that cosmic rays contribute a pressure
support, which can be as high as ∼10% for relaxed clusters and ∼20% for unrelaxed clusters at
the outskirts. At smaller radii, the pressure contribution of cosmic rays in these models becomes
small (�3% at r � 0.1rvir), which is consistent with the upper limits from γ -ray observations by
the Fermi Gamma-ray Space Telescope (e.g., Ackermann et al. 2010).

The role of intracluster magnetic fields has been investigated in a number of studies using
cosmological simulations (see Dolag, Bykov & Diaferio 2008 for a review). The general result is
that pressure support from magnetic fields should be limited to �5%, which is consistent with
observational constraints on the magnetic field strength (∼μG) (see, e.g., Vogt & Enßlin 2005,
Govoni et al. 2010) and upper limits on the contribution of magnetic fields to nonthermal pressure
support (e.g., Laganá, de Souza & Keller 2010).

As a summary, the scatter in cluster profiles in the cluster cores is mainly driven by differences in
the physical processes such as cooling and heating by AGN feedback and different merger activity
that different clusters experienced during their evolution. At intermediate radii, the scatter is
small because the ICM is generally in good HE within cluster gravitational potential and because
processes that shaped its thermodynamic properties have not introduced new mass scale so that
self-similar scaling is not broken. In the cluster outskirts, the scatter is expected to be driven by
deviations from HE and other sources of nonthermal pressure support, such as the cosmic rays,
as well as by a rapid increase of ICM clumpiness with increasing radius.

4.2. Scaling Relations

Existence of the radial range, where ICM properties scale with mass similarly to the self-similar
expectation with a small scatter, implies that we can define integral observable quantities within
this range that will obey tight scaling relations among themselves and with the total cluster mass.
Furthermore, these scaling relations are also expected to be weakly sensitive to the cluster dy-
namical state, given that relaxed and unrelaxed clusters have similar profiles at these intermediate
radii. Indeed, as we showed in Section 2 (see Figure 5), X-ray luminosity measured within the
radial range [0.15–1]r500 exhibits a tight scaling against the total ICM thermal content measured
by the YX parameter, with relaxed and unrelaxed clusters following the same relation. Here, YX

is defined as the product of gas mass and X-ray temperature, both measured within r500 but, like
LX, temperature is measured after excising the contribution from r < 0.15r500.

As discussed in Section 3.9, the gas temperature T, gas mass Mgas, and total thermal content
of the ICM Y = M gasT are commonly used examples of integral observational quantities whose
scaling relations with cluster mass are predicted by the self-similar model and for which calibrations
based on X-ray and SZ observations (or their combinations) and simulations are available. For
example, Figure 14 shows the scaling relation between YX and M500 for simulated clusters and for
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Figure 14
The Y X − M 500 relation for a set of simulated clusters at z = 0 (circles) and for a sample of relaxed Chandra
clusters from Vikhlinin et al. (2006) (stars with error bars). Filled and open circles refer to simulated clusters,
which are classified as relaxed and unrelaxed, respectively. Core regions inside 0.15r500 are excised in the
measurement of the X-ray temperature entering into the computation of YX for both simulated and real
clusters. True and hydrostatic masses are shown for simulated and observed clusters, respectively. The
dot-dashed line shows the best-fit power-law relation for the simulated clusters with the slope fixed to the
self-similar value of α = 3/5. The dashed line shows the same best-fit power-law relation to simulations, but
with the normalization scaled down by 15%, which takes into account the putative effect of hydrostatic mass
bias due to residual gas motions. From Kravtsov, Vikhlinin & Nagai (2006).

a set of clusters with detailed Chandra observations from a study by Kravtsov, Vikhlinin & Nagai
(2006), where YX was introduced and defined specifically to use the temperature estimated only at
0.15r500 < r < r500 in order to minimize the scatter. The relation of YX with M500 in simulations
has scatter of only ≈8% when both relaxed and unrelaxed clusters are included and evolution
of its normalization with redshift is consistent with expectations of the self-similar model. The
insensitivity of the relation to the dynamical state of clusters is not trivial and is due to the fact that
during mergers clusters move almost exactly along the relation (e.g., Poole et al. 2007, Rasia et al.
2011). In addition, the slope and normalization of the Y X − M 500 relation are also not sensitive to
specific assumptions in modeling cooling and feedback heating processes in simulations (Stanek
et al. 2010, Fabjan et al. 2011), which makes them more robust theoretically.

The Y SZ − M relation also exhibits a comparably low scatter, and the slope and evolution of
normalization are close to the predictions of the self-similar model (da Silva et al. 2004, Motl et al.
2005), which is not surprising given the similarity between the YX and the integrated YSZ measured
from SZ observations. Its normalization changes by up to 30–40% depending on the interplay
between radiative cooling and feedback processes included in the simulations (e.g., Nagai 2006,
Bonaldi et al. 2007, Battaglia et al. 2012, and references therein). At the same time, simulation
analysis is also shedding light on the effect of projection (e.g., Kay et al. 2012) and mergers (e.g.,
Krause et al. 2012) on the scatter in the Y SZ − M scaling.
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Figure 15
Sensitivity of different mass proxies on the physical description of the intracluster medium included in
cosmological hydrodynamical simulations for a set of galaxy clusters (from Fabjan et al. 2011). Results for
the scaling relation of M500 with gas mass Mgas and YX are shown in the left and right panels, respectively.
Best fitting normalization C and slope α of the scaling relations of these two mass proxies are shown in the
upper and lower panels, respectively. Here, Tmw is the mass-weighted temperature computed excluding the
central cluster regions within 0.15r500. In the lower panels, the horizontal dashed lines mark the values of the
slope of the scaling relations predicted by the self-similar model. Results are shown for simulations only
including nonradiative hydrodynamics with standard (NR-SV) and reduced artical viscosity (NR-RV);
cooling and star formation without (CSF) and with thermal conduction (CSF-C); cooling and star formation
with metal enrichment, with (CSF-M-W) and without (CSF-M-NW) galactic winds from SN explosions;
and cooling and star formation with the effect of AGN feedback (CSF-M-AGN) (see Fabjan et al. 2011 for
further details).

The tight relation of integral quantities such as Y X, Y SZ, Mg, or core-excised X-ray luminosity
with the total mass makes them good proxies for observational estimates of cluster mass, which
can be used at high redshifts even with a relatively small number of X-ray photons. For instance,
integral measurements of gas mass or temperature require ∼103 photons, which is feasible for sta-
tistically complete cluster samples out to z ∼ 1 (e.g., Maughan 2007, Vikhlinin et al. 2009a, Mantz
et al. 2010a) or even beyond. This makes these integral quantities very useful as mass proxies in
cosmological analyses of cluster populations (e.g., Allen, Evrard & Mantz 2011). Clearly, the rela-
tion of such mass proxies with the actual mass needs to be calibrated both via detailed observations
of small controlled cluster samples and in cosmological simulations of cluster formation.

The potential danger of relying on simulations for this calibration is that results could be
sensitive to the details of the physical processes included. This implies that a mass proxy is required
not only to have a low scatter in its scaling with mass, but also to be robust against changing the
uncertain description of the ICM physics. As we noted above, YX is quite robust to changes within
a wide range of assumptions about cooling and heating processes affecting the ICM. This is
illustrated in Figure 15 (taken from Fabjan et al. 2011), which shows how the normalization and
slope of the scaling relation of gas mass and YX versus M500 change with the physical processes
included. The evolution of the Y X − M 500 relation with redshift is also consistent with self-similar
expectations for different models of cooling and feedback. Other quantities, such as Mg, often
exhibit a similar or even smaller degree of scatter compared to YX but are more sensitive to
the choice of physical processes included in simulations. An additional practical consideration is
that theoretical models should consider observables derived from mock observations of simulated
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clusters that take into account instrumental effects of detectors and projection effects (e.g., Rasia
et al. 2006; Nagai, Vikhlinin & Kravtsov 2007; Biffi et al. 2012).

Ultimately, calibration of mass proxies for precision use should be obtained via independent
observational mass measurements using the weak lensing analysis, HE, or velocity dispersions
of member galaxies. The combination of future large, wide-area X-ray, SZ, and optical/near-IR
surveys should provide significant progress in this direction.

5. CLUSTER FORMATION IN ALTERNATIVE
COSMOLOGICAL MODELS

In previous sections, we have discussed the main elements of cluster formation in the standard
�CDM cosmology. Although this model is very successful in explaining a wide variety of ob-
servations, some of its key assumptions and ingredients are not yet fully tested. This provides
motivation to explore different assumptions and alternative models.

As discussed in Section 3.7, the halo mass function for a Gaussian random field is uniquely
specified by the peak height ν = δc /σ (R, z), where R is the filtering scale corresponding to
the cluster mass scale M. For sufficiently large mass, that is, rare peaks with ν � 1, the mass
function becomes exponentially sensitive to the value of ν. At the same time, the mass function
also determines the halo bias (see Section 3.8). Again, for ν � 1 and Gaussian perturbations, the
bias function scales as b(ν) ∼ ν2/δc = ν/σ (R, z). Therefore, the cluster two-point correlation
function can be written as ξcl(r) = ν2(ξR(r)/σ 2

R), where ξR(r) is the correlation function of the
smoothed fluctuation field (see Section 3.1). Once the peak height ν is constrained by requiring
a model to predict the observed cluster abundance, the value of the cluster correlation function
at a single scale r provides a measurement of the shape of the power spectrum through the ratio
of the clustering strength at the scale r and at the cluster characteristic scale R. These predictions
are only valid under two assumptions, namely Gaussianity of primordial density perturbations
and scale independence of the linear growth function D(z), as predicted by the standard theory
of gravity. Therefore, the combination of number counts and large-scale clustering studies offers
a powerful means to constrain the possible violation of either one of these two assumptions that
hold for the �CDM model.

In this section, we briefly review the specifics of cluster formation in models with non-Gaussian
initial density field and with nonstandard gravity, the most frequently discussed modifications to
the standard structure formation paradigm.

5.1. Mass Function and Bias of Clusters in Non-Gaussian Models

One of the key assumptions of the standard model of structure formation is that initial density
perturbations are described by a Gaussian random field (see Section 3.1). The simplest single-field,
slow-roll inflation models predict nearly Gaussian initial density fields. However, deviations from
Gaussianity are expected in a broad range of inflation models that violate slow-roll approximation,
and have multiple fields or modified kinetic terms (see Bartolo et al. 2004 for a review). Given
that there is no single preferred inflation model, we do not know which specific form of non-
Gaussianity is possibly realized in nature. Deviations from Gaussianity are parameterized using a
heuristic functional form. One of the simplest and most common choices for such a form is the
local non-Gaussian potential given by �NG(x) = −(φG(x)+ fNL[φG(x)2 −〈φ2

G〉]), where �NG is the
usual Newtonian potential, φG is the Gaussian random field with zero mean, and the parameter
fNL = const controls the degree and nature of non-Gaussianity (e.g., Salopek & Bond 1990;
Matarrese, Verde & Jimenez 2000; Komatsu & Spergel 2001). The simplest inflation models
predict fNL ≈ 10−2 (e.g., Maldacena 2003), but a number of models that predict a much larger
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degree of non-Gaussianity exist as well (Bartolo et al. 2004). The current CMB constraint on scale-
independent non-Gaussianity is fNL = 30 ± 20 (at the 68% confidence level; see, e.g., Komatsu
2010), and there is thus still room for the existence of sizable deviations from Gaussianity.

The non-Gaussian fields with fNL < 0 have a PDF of the potential field that is skewed toward
positive values and the abundance of peaks that seed the collapse of halos is reduced compared to
Gaussian initial conditions. Conversely, the PDF of the potential field in models with fNL > 0
has negative skewness, and, hence, an increased number of potential minima (density peaks). This
would result in an enhanced abundance of rare objects, such as massive distant clusters, relative
to the Gaussian case [see, e.g., figure 1 in Dalal et al. (2008) for an illustration of the effect of fNL

on the large-scale structure that forms]. The suppression or enhancement of abundance of halos
increases with increasing peak height.

The mass functions resulting from non-Gaussian initial conditions have been studied both
analytically (e.g., Chiu, Ostriker & Strauss 1998; Matarrese, Verde & Jimenez 2000; Afshordi &
Tolley 2008; Lo Verde et al. 2008) and using cosmological simulations (Grossi et al. 2007, Dalal
et al. 2008, Lo Verde et al. 2008, Lo Verde & Smith 2011, Wagner & Verde 2011). These studies
showed that accurate formulae for the halo abundance from the initial linear density field exist for
the non-Gaussian models as well. The general result is that the fractional change in the abundance
of the rarest peaks is of order unity for the initial fields with | fNL| ∼ 100. The abundance of clusters
is, thus, only mildly sensitive to deviations of Gaussianity within the currently constrained limits
(Scoccimarro, Sefusatti & Zaldarriaga 2004; Sefusatti et al. 2007; Cunha, Huterer & Doré 2010;
Sartoris et al. 2010). In contrast, primordial non-Gaussianity may also leave an imprint in the
spatial distribution of clusters in the form of a scale dependence of large-scale linear bias.

As was discovered by Dalal et al. (2008) and confirmed in subsequent analytical (Afshordi &
Tolley 2008; Matarrese & Verde 2008; McDonald 2008; Slosar et al. 2008; Taruya, Koyama
& Matsubara 2008) and numerical studies (Desjacques, Seljak & Iliev 2009; Grossi et al. 2009;
Pillepich, Porciani & Hahn 2010; Shandera, Dalal & Huterer 2011), the linear bias of collapsed
objects in the models with local non-Gaussianity can be described as a function of wavenumber
k by bNG = bG + fNL × const/k2, where bG is the linear bias in the corresponding cosmological
model with the Gaussian initial conditions discussed in Section 3.8. This scale dependence arises
because in the non-Gaussian models the large-scale modes that boost the abundance of peaks are
correlated with the peaks themselves, which enhances (or suppresses) the peak amplitudes by a
factor proportional to fNLφ ∝ fNLδ/k2. Because this effect of modulation increases with increasing
peak height, ν = δc /σ (M , z), the scale dependence of bias increases with increasing halo mass.
This unique signature can be used as a powerful constraint on deviations from Gaussianity (at least
for models with local non-Gaussianity) in large samples of clusters in which the power spectrum
or correlation function can be measured on large scales.

5.2. Formation of Clusters in Modified Gravity Models

Recently, there has been a renewed interest in modifications to the standard GR theory of gravity
(e.g., see Durrer & Maartens 2008, Silvestri & Trodden 2009, Capozziello & de Laurentis 2011
for recent reviews). These models have implications not only for cosmic expansion, but also for
the evolution of density perturbations and, therefore, for the formation of galaxy clusters.

For instance, in the class of the f (R) models, cosmic acceleration arises from a modification
of gravity law given by the addition of a general function f (R) of the Ricci curvature scalar R in
the Einstein-Hilbert action (see, e.g., Jain & Khoury 2010, Sotiriou & Faraoni 2010 for recent
reviews). Such modifications result in enhancements of gravitational forces on scales relevant for
structure formation in such a way that the resulting linear perturbation growth rate D becomes
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scale dependent; whereas on very large scales gravity behaves similarly to GR gravity, on smaller
scales it is enhanced compared to GR and the rate of structure formation is thereby also enhanced.
The nonlinear halo collapse and growth are also faster in f (R) models, which leads to enhanced
abundance of massive clusters (Schmidt et al. 2009, Ferraro, Schmidt & Hu 2011, Zhao, Li &
Koyama 2011) compared to the predictions of the models with GR gravity and identical cosmo-
logical parameters. Likewise, the peaks collapsing by a given z have lower peak height ν in the
modified gravity models compared to the peak height in the standard gravity model. This results
in the reduced bias of clusters of a given mass compared to the standard model. Furthermore,
the scale dependence of the linear growth also induces a scale dependence of bias, thus offering
another route to detect modifications of gravity (Parfrey, Hui & Sheth 2011). Qualitatively simi-
lar effects on cluster abundance and bias are expected in the braneworld-modified gravity models
based on higher dimensions, such as the Dvali-Gabadadze-Porrati (DGP; Dvali, Gabadadze &
Porrati 2000) gravity model (Schäfer & Koyama 2008; Khoury & Wyman 2009; Schmidt 2009;
Schmidt, Hu & Lima 2010) and its successors with similar large-scale structure phenomenology
consistent with current observational constraints, such as models of ghost-free massive gravity
(D’Amico et al. 2011; de Rham, Gabadadze & Tolley 2011).

A general consequence of modifying gravity is that the Birkhoff theorem no longer holds, which
does not allow a straightforward extension of the spherical collapse model described in Section 3.2
to a generic model of modified gravity. Nevertheless, numerical calculations of spherical collapse
have been presented for a number of specific models (e.g., Schäfer & Koyama 2008; Martino,
Stabenau & Sheth 2009; Schmidt et al. 2009; Schmidt, Hu & Lima 2010). For both the f (R)
and the DGP classes of models, the results of simulations obtained so far suggest that halo mass
function and bias can still be described by the universal functions of peak height, in which the
threshold for collapse and the linear growth rate are modified appropriately from their standard
model values (Schmidt et al. 2009; Schmidt, Hu & Lima 2010). This implies that it should be
possible to calibrate mass function and bias of halos in the modified gravity models with the
accuracy comparable to that in the standard structure formation models.

6. SUMMARY AND OUTLOOK

All of the main elements of the overall narrative of how clusters form and evolve discussed in
this review have been established over the past four decades. The remarkable progress in our
understanding of cluster formation has been accompanied by great progress in multiwavelength
observations of clusters and our knowledge of the properties of the main mass constituents of
clusters: stars, hot intracluster gas, and gravitationally dominant DM.

Formation of galaxy clusters is a complicated, nonlinear process accompanied by a host of
physical phenomena on a wide range of scales. Yet, some aspects of clusters exhibit remarkable
regularity, and their internal structure, abundance, and spatial distribution carry an indelible
memory of the initial linear density perturbation field and the cosmic expansion history. This is
manifested both by tight scaling relations between cluster properties and total mass, as well as by
the approximate universality of the cluster mass function and bias, when expressed as a function
of the peak height ν.

Likewise, there is abundant observational evidence that complex processes—in the form of
a nonlinear, self-regulating cycle of gas cooling and accretion onto the SMBHs and associated
feedback—have been operating in the central regions of clusters. In addition, the ICM is stirred
by continuing accretion of the intergalactic gas, motion of cluster galaxies, and AGN bubbles.
Studies of cluster cores provide a unique window into the interplay between the evolution of the
most massive galaxies, taking place under extreme environmental conditions, and the physics of
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the diffuse hot baryons. At the same time, processes accompanying galaxy formation also leave
a mark on the ICM properties at larger radii. In these regions, the gas entropy measured from
observations is considerably higher than predicted by simple models that do not include such
processes, and the ICM is also significantly enriched by heavy elements. This highlights that the
ICM properties are the end product of the past interaction between the galaxy evolution processes
and the intergalactic medium. Nevertheless, at intermediate radii, r2,500 � r � r500, the scaling of
the radial profiles of gas density, temperature, and pressure with the total mass is close to simple,
self-similar expectations for clusters of sufficiently large mass (corresponding to kT � 2–3 keV).
This implies that the baryon processes affecting the ICM during cluster formation do not introduce
a new mass scale. Such regular behavior of the ICM profiles provides a basis for the definition
of integrated quantities, such as the core-excised X-ray luminosity and temperature, gas mass, or
integrated pressure, which are tightly correlated with each other and with the total cluster mass.

The low-scatter scaling relations are used to interpret abundance and spatial distribution of
clusters and derive cosmological constraints (see Allen, Evrard & Mantz 2011 and Weinberg et al.
2012 for recent reviews). Currently, cluster counts measured at high redshifts provide interesting
constraints on cosmological parameters complementary to other methods (e.g., Vikhlinin et al.
2009b, Mantz et al. 2010b, Rozo et al. 2010) and a crucial test of the entire class of �CDM and
quintessence models (e.g., Benson et al. 2011; Jee et al. 2011; Mortonson, Hu & Huterer 2011).

100

50

0

– 50

–100
0.6 0.7 0.8 0.9 1.0

fNL

σ8

PS
NC
NC + PS

Figure 16
The potential of future cluster X-ray surveys to constrain deviations from Gaussian density perturbations
(adapted from Sartoris et al. 2010). The figure shows constraints on the power-spectrum normalization, σ 8,
and non-Gaussianity parameter, fNL, expected from surveys of galaxy clusters to be carried out with the
next-generation Wide Field X-ray Telescope. The dot-dashed blue curve and dashed green curve show the
68% confidence regions provided by the evolution of power spectrum (PS) of the cluster distribution and
cluster number counts (NC), respectively. The solid red ellipse shows the constraints obtained by combining
number counts and power spectrum information. Cosmic microwave background Planck priors for Gaussian
perturbations have been included in the analysis.
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Although the statistical power of large future cluster surveys will put increasingly more stringent
requirements on the theoretical uncertainties associated with cluster scaling relations and mass
function (Cunha & Evrard 2010; Wu, Zentner & Wechsler 2010), future cluster samples can
provide competitive constraints on the non-Gaussianity in the initial density field and deviations
from GR gravity.

A combination of cluster abundance and large-scale clustering measurements can be used to
derive stringent constraints on cosmological parameters and possible deviations from the standard
�CDM paradigm. As an example, Figure 16 shows the constraints on the normalization of the
power spectrum and the fNL parameter (from Sartoris et al. 2010) expected for a future high-
sensitivity X-ray cluster survey. It shows that future cluster surveys can achieve a precision of
σ fNL ≈ 5−10 (see also Cunha, Huterer & Doré 2010; Pillepich, Porciani & Reiprich 2012), thus
complementing at smaller scales constraints on non-Gaussianity, which are to be provided on
larger scales by observations of CMB anisotropies from the Planck satellite.

Although a variety of methods will provide constraints on the equation of state of DE and other
cosmological parameters (e.g., Weinberg et al. 2012), clusters will remain one of the most powerful
ways to probe deviations from GR gravity (e.g., Lombriser et al. 2009). Even now, the strongest
constraints on deviations from GR on the Hubble horizon scales are derived from the combination
of the measured redshift evolution of cluster number counts and geometrical probes of cosmic
expansion (Schmidt, Vikhlinin & Hu 2009). Figure 17 illustrates the potential constraints on the

1.1

1.0

0.9

0.8

0.7

0.6
0 1

z

ΛCDM model

Modified gravity model

2

G
(z
) ×

 (1
 +

 z
)

Figure 17
The potential of future cluster surveys to constrain deviations from General Relativity (from Vikhlinin et al.
2009c). The linear growth factor of density perturbations, G(z) = D(z) (not normalized to unity at z = 0),
recovered from 2,000 clusters, distributed in 20 redshift bins, each containing 100 massive clusters, identified
in a high-sensitivity X-ray cluster survey. The solid gray line indicates the evolution of the linear growth
factor for a �CDM model, whereas the dashed blue curve is the prediction of a modified gravity model (the
braneworld model by Dvali, Gabadadze & Porrati 2000), having the same expansion history of the �CDM
model.
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linear rate of perturbation growth that can be derived from a future high-sensitivity X-ray cluster
survey using similar analysis. The figure shows that a sample of about 2,000 clusters at z < 2
with well-calibrated mass measurements would allow one to distinguish the standard �CDM
model from a braneworld-modified gravity model with the identical expansion history at a high
confidence level.

The construction of such large, homogeneous samples of clusters will be aided in the next
decade by a number of cluster surveys both in the optical/near-IR (e.g., DES, PanSTARRS,
EUCLID) and in X-ray (e.g., eROSITA, WFXT) bands. At the same time, the combination of
higher resolution numerical simulations including more sophisticated treatment of galaxy forma-
tion processes and high-sensitivity multiwavelength observations of clusters should help to unveil
the nature of the physical processes driving the evolution of clusters and provide accurate calibra-
tions of their masses. The cluster studies thus will remain a vibrant and fascinating area of modern
cosmology for years to come.
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Mortonson MJ, Hu W, Huterer D. 2011. Phys. Rev. D 83:023015
Moster BP, Somerville RS, Maulbetsch C, van den Bosch FC, Macciò AV, et al. 2010. Ap. J. 710:903–23
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