УДК 524.38+524.354.6

ЭВОЛЮЦИЯ МАССЫ НЕЙТРОННЫХ ЗВЕЗД В ДВОЙНЫХ СИСТЕМАХ

© 2005 г. А. И. Богомазов¹, М. К. Абубекеров², В. М. Липунов^{1,2}, А. М. Черепащук^{1,2}

¹ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ² Государственный астрономический институт им. П.К. Штернберга, Московский государственный университет им. М.В. Ломоносова, Москва, Россия Поступила в редакцию 10.08.2004 г.; принята в печать 20.09.2004 г.

Исследуется рост массы нейтронных звезд вследствие аккумуляции вещества оптического донора на их поверхности. Рассматриваются возможные сценарии аккреции вещества. Полученные в ходе популяционного синтеза значения масс и напряженностей магнитных полей радиопульсаров сравниваются с наблюдаемыми данными. Популяционный синтез показал, что нейтронная звезда способна за счет аккреции увеличить свою массу со стандартного значения $m_x \simeq 1.35 M_{\odot}$ до предела Опенгеймера—Волкова $m_x \simeq 2.5 M_{\odot}$.

1. ВВЕДЕНИЕ

На сегодняшний момент благодаря успешной работе орбитальных рентгеновских обсерваторий открыто около тысячи источников рентгеновского излучения в нашей и ближайших галактиках [1, 2]. Большинство из них являются тесными двойными системами, в которых оптический компонент поставляет вещество на нейтронную звезду. Аккреция с субрелятивистскими скоростями на поверхность нейтронной звезды приводит к гигантскому выделению энергии в рентгеновском диапазоне со светимостью порядка $10^{36}-10^{37}$ эрг/с [3–7]. Механизм столь мощного энерговыделения был впервые предсказан и обоснован в работах Зельдовича [3] и Солпитера [4].

По современным представлениям, в зависимости от параметров двойной системы и темпа потери массы оптической звездой, помимо обычной аккреции вещества на нейтронную звезду может иметь место супер- и гипераккреция. Рентгеновская светимость при супераккреции достигает эдингтоновского предела светимости и тем самым ограничивает дальнейшее выпадение вещества. Это имеет место при темпах аккреции $\dot{m} \simeq 10^{-4} - 10^{-5} M_{\odot}/$ год. В работе Шевалье [8] показано, что в случае более высокого темпа выпадения вещества на поверхность нейтронной звезды $\dot{m} \simeq 10^{-2} - 10^{-3} M_{\odot}$ /год, его высвечивание будет происходить не посредством высокоэнергетичных фотонов, а посредством нейтрино. Таким образом, за характерную длительность стадии гипераккреции ${\sim}10^2$ лет на поверхности нейтронной звезды может осесть до ${\sim}1M_{\odot}$.

За последние годы измерены свыше десятка масс радио- и рентгеновских пульсаров, и с каждым годом количество оценок масс нейтронных звезд растет. С целью прогноза возможных значений наблюдаемых масс и магнитных полей нейтронных звезд в тесных двойных системах нами на "Машине сценариев" проведен популяционный синтез [9].

2. ТРИ РЕЖИМА НАБОРА МАССЫ АККРЕЦИРУЮЩИМИ НЕЙТРОННЫМИ ЗВЕЗДАМИ

Значительная часть наблюдаемых нейтронных звезд в ходе эволюции увеличивала или увеличивает (если речь идет о рентгеновских источниках) свою массу. Но сколь сильным может быть такое изменение? Понятно, что причиной увеличения массы может быть только аккреция. Очевидно, полное изменение массы аккрецирующей звезды ΔM определяется не только темпом аккреции, но и ее продолжительностью:

$$\Delta M = \int_{0}^{T_a} \dot{M}(t) dt = \dot{M} T_a, \qquad (1)$$

где \dot{M} — средний темп аккреции и T_a — время жизни звезды на аккреционной стадии. Подчеркнем, что в данном случае темп аккреции — это количество вещества, достигающее поверхности нейтронной звезды, и оно может значительно отличаться от величин, определяемых из классических формул Бонди—Хойла. В тесной двойной системе возможны три режима аккреции на нейтронную звезду: собственно аккреция, супераккреция, гипераккреция.

Аккреция

Режим обычной аккреции реализуется, когда все захваченное гравитационным полем нейтронной звезды вещество попадает на ее поверхность. Очевидно, это возможно лишь в том случае, когда сила давления излучения и электромагнитные силы, связанные с собственным магнитным полем и вращением нейтронной звезды, малы по сравнению с силой тяжести.

В этом случае увеличение массы будет в точности определяться газодинамикой аккреции на радиусе гравитационного захвата, или, в случае заполнения полости Роша звездой донором, отношением масс компонентов двойной и эволюционным состоянием оптического компаньона. При этом аккретор наблюдается как источник рентгеновского излучения со светимостью

$$L_x = \dot{M} \frac{GM_x}{R_*},\tag{2}$$

где M_x и R_* — масса и радиус нейтронной звезды, соответственно. Темп аккреции вещества \dot{M} определяется формулой Бонди—Хойла

$$\dot{M} = \pi R_G^2 \rho v, \tag{3}$$

в которой R_G — радиус гравитационного захвата нейтронной звезды, v — скорость набегающего потока вещества относительно нейтронной звезды, ρ — плотность набегающего потока вещества.

Опираясь на рентгеновскую светимость аккретора L_x и его основные параметры, можно оценить массу аккумулируемого вещества на его поверхности ΔM за стадию аккреции:

$$\Delta M = \frac{L_x R_* T_a}{G M_x}.\tag{4}$$

Для массивных звезд, живущих менее 10⁷ лет, набор массы из звездного ветра на уровне современной точности пренебрежимо мал. А вот в маломассивных системах с заполнением полости Роша рост массы может быть значительным и составлять единицы солнечных масс, что будет продемонстрировано ниже.

Супераккреция

Режим супераккреции на замагниченную нейтронную звезду наиболее последовательно разобран в работе Липунова [10]. Несмотря на отсутствие детальной модели сверхкритической дисковой аккреции (а сверхкритическая аккреция реализуется именно в дисковом случае), удается оценить главные характеристики — темп аккреции, радиус магнитосферы и уравнение эволюции. Аккрецию называют сверхкритической в случае, когда энергия, выделяемая на радиусе остановки аккреционного потока, превосходит эддингтоновский предел:

$$\dot{M} \frac{GM_x}{R_{stop}} > L_{Edd} = 1.38 \times 10^{38} (M_x/M_{\odot})$$
эрг/с,
 $\dot{M} > \dot{M}_{crit} = 10^{-8} M_{\odot}$ /год,

где R_{stop} — либо радиус нейтронной звезды, либо радиус магнитосферы R_A .

В случае сильно замагниченных нейтронных звезд с магнитным полем $B \gg 10^8$ Гс все вещество с магнитосферы поступает на магнитные полюса, где и высвечивается гравитационная энергия. Если температура T, которую грубо можно оценить по чернотельной формуле

$$S\sigma T^4 = \dot{M} \frac{GM_x}{R_*},\tag{5}$$

превышает 5×10^9 К (в выражение (5) S – площадь основания аккреционной колонки), то основная энергия с поверхности будет уходить в виде нейтрино, и следовательно, не будет препятствовать аккреции [11, 12]. В этом случае темп набора массы нейтронной звездой будет

$$\dot{M} \simeq \dot{M}_{crit} \left(\frac{R_A}{R_*}\right)^2 \gg \dot{M}_{crit}.$$

Если температура станет ниже, верхний предел темпа аккреции станет определяться стандартным эддингтоновским пределом для поверхности нейтронной звезды.

Гипераккреция

Значительная часть нейтронных звезд в процессе эволюции двойных систем проходит стадию с общей оболочкой. В этом случае нейтронная звезда погружается в оптический компаньон и короткое время $(10^2 - 10^4 \text{ лет})$ двигается по спирали в плотном веществе. Формально определенный по формулам Бонди—Хойла темп аккреции оказывается на 4–6 порядков выше критического и может привести по идее Шевалье [8] к режиму гипераккреции, когда вся энергия с поверхности уносится нейтрино по указанным выше причинам. К настоящему времени не существует детальной теории гипераккреции и стадии с общей оболочкой. Количество аккрецируемого нейтронной звездой вещества можно оценить следующим образом:

$$\Delta M = \int_{0}^{T_{hyper}} \frac{1}{4} \left(\frac{R_G}{a}\right)^2 \dot{M} dt \simeq$$
(6)

Таблица 1. Массы и периоды осевого вращения нейтронных звезд, входящих в систему "радиопульсар + нейтронная звезда"

Название системы	$p_{spin},{ m Mc}$	$\dot{p}_{spin},$ c/c	В, Гс	$m_{ m PSR}, M_{\odot}$	Ссылки
J1518+4904	40.9	4.0×10^{-20}	$2.6 imes 10^9$	$1.56^{+0.20}_{-1.20}$	[13, 14]
B1534+12	37.9	2.4×10^{-18}	1.9×10^{10}	1.3332 ± 0.0020	[13, 15, 16]
B1913+16	59.0	8.6×10^{-18}	4.6×10^{10}	1.4408 ± 0.0006	[13, 17, 18]
B2127+11C	30.5	1.0×10^{-17}	3.5×10^{10}	1.349 ± 0.080	[13, 19]
J0737-3039(1)	22.7	1.7×10^{-18}	1.3×10^{10}	1.337 ± 0.010	[20]
J0737-3039(2)	2773.5	8.8×10^{-16}	3.2×10^{12}	1.250 ± 0.010	[20]

$$\simeq \frac{1}{4} (M_{opt} - M_{core}) \left(\frac{M_x}{M_{opt}}\right)^2,$$

где T_{hyper} — длительность стадии гипераккреции, R_G — радиус гравитационного захвата радиопульсара, a — начальное значение большой полуоси тесной двойной системы, M_{core} — масса ядра оптической звезды, M_{opt} — полная масса оптической звезды на начало стадии гипераккреции, M_x масса радиопульсара на начало стадии гипераккреции.

Подставляя в формулы (3), (4) и (6) наблюдаемые параметры рентгеновских двойных систем, получаем, что величина аккумулируемого в разных процессах аккреции вещества составляет от $\sim 0.1 M_{\odot}$ до $\sim 1 M_{\odot}$.

За последние несколько лет измерены массы более десятка нейтронных звезд. В среднем точность оценки массы нейтронной звезды составляет $\sim (0.3-0.5) M_{\odot}$. Таким образом, наблюдательный материал уже позволяет эмпирически проверить гипотезу об аккумуляции вещества нейтронной звездой.

3. НАБЛЮДАЕМЫЕ МАССЫ И МАГНИТНЫЕ ПОЛЯ НЕЙТРОННЫХ ЗВЕЗД

В работе рассмотрены двойные системы, в которых процесс обмена веществом уже завершен радиопульсары в парах с нейтронными звездами и белыми карликами.

Значения масс радиопульсаров и остальные наблюдаемые параметры содержатся в табл. 1 и 2 (см. далее рис. 2). Приведенные значения масс радиопульсаров являются динамическими оценками, произведенными по наблюдаемым кривым лучевых скоростей в модели двух точечных масс. Преимущественно массы радиопульсаров взяты из обзора Торсетта и Чакрабарти 1999 г. [13]. Ошибки масс радиопульсаров в парах с нейтронными звездами (табл. 1) приведены по уровню доверия 68%.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 82 № 4 2005

Ошибки масс радиопульсаров в парах с белыми карликами (табл. 2) приведены по уровню доверия 95%.

Известно, что наблюдаемый период вращения аккрецирующих нейтронных звезд является результатом двух конкурирующих процессов: ускорения нейтронной звезды за счет передачи углового момента веществом внутренних областей аккреционного диска и процесса торможения, являющегося результатом взаимодействия тороидальной компоненты магнитного поля нейтронной звезды с периферийными частями аккреционного диска [10]. Спустя время

$$t_{eq} \simeq \frac{I\omega}{\dot{M}\sqrt{GMR_c}} \simeq \frac{M_x}{\dot{M}} \left(\frac{R_x}{R_c}\right)^3 \ll \frac{M_x}{\dot{M}}$$

устанавливается равновесие между ускоряющим и тормозящим моментом сил. Равновесный период вращения аккрецирующей нейтронной звезды p_{eq} пропорционален ее магнито-дипольному моменту μ

Рис. 1. Зависимость между скоростью замедления собственного периода вращения \dot{p}_{spin} и периодом собственного вращения радиопульсара p_{spin} . Кружки — радиопульсар в паре с белым карликом; квадратики — радиопульсар в паре с нейтронной звездой.

Название системы	$p_{spin},$ мс	\dot{p}_{spin} , c/c	В, Гс	$m_{ m PSR}, M_{\odot}$	Ссылки
J0437-4715	5.76	1.0×10^{-20}	4.86×10^8	1.58 ± 0.18	[13, 21]
J0621+1002	28.9	4.70×10^{-20}	2.36×10^9	$1.70\substack{+0.59\\-0.63}$	[22, 23]
J1012+5307	5.26	1.20×10^{-20}	5.09×10^8	1.7 ± 1.0	[13]
J1141-6545	394	4.29×10^{-15}	2.63×10^{12}	1.30 ± 0.02	[24, 25]
J1713+0747	4.57	8.52×10^{-21}	4.00×10^8	1.65 ± 0.45	[13, 26, 27]
B1802-07	23.1	4.70×10^{-19}	$6.67 imes 10^9$	$1.26\substack{+0.15\\-0.67}$	[13]
B1855+09	5.36	1.78×10^{-20}	6.26×10^8	$1.57_{-0.20}^{+0.25}$	[13, 27]
B2303+46	1066.4	5.6×10^{-16}	1.57×10^{12}	1.34 ± 0.10	[13, 28]
J1740-5340	3.65	1.6×10^{-19}	1.55×10^9	1.53 ± 0.19	[29-31]

Таблица 2. Массы и периоды осевого вращения нейтронных звезд, входящих в двойную систему "радиопульсар + белый карлик (оптическая звезда)"

(см., например, работу [10]). Таким образом, для нейтронной звезды, прошедшей стадию аккреции, должна выполняться корреляция между ее магнитным полем и периодом собственного вращения. Поэтому для рассмотренных радиопульсаров нами построена зависимость между их наблюдаемыми периодами собственного вращения p_{spin} и скоростью замедления собственного периода вращения \dot{p}_{spin} . Наблюдаемая величина \dot{p}_{spin} пропорциональна значению квадрата магнито-дипольного момента радиопульсара μ (см. формулу (7)). Полученная зависимость представлена на рис. 1. Видно, что для рассматриваемых радиопульсаров наблюдается четкая корреляция между величинами \dot{p}_{spin} и *p_{spin}*. Это позволяет рассматривать радиопульсары, содержащиеся в табл. 1 и 2, как нейтронные звезды, прошедшие стадию аккреции.

Магнитные поля радиопульсаров получены в предположении магнито-дипольных потерь углового момента вращения нейтронной звезды. Расчет значения напряженности магнитного поля *В* произведен по формулам

$$\mu = \left(\frac{3Ic^3 p_{spin} \dot{p}_{spin}}{8\pi}\right)^{1/2},\tag{7}$$

$$B = 2\mu/R_*^3,$$
 (8)

в которых p_{spin} — период собственного вращения радиопульсара, \dot{p}_{spin} — скорость замедления собственного периода вращения радиопульсара, c — скорость света, I — момент инерции радиопульсара (принят равным 10^{45} гсм²), μ — магнитодипольный момент радиопульсара и R_* — радиус радиопульсара (принят равным 10^6 см).

Исследуя процесс аккреции, невозможно не упомянуть о рентгеновских пульсарах. Магнитные поля всех известных рентгеновских пульсаров *B*,

определенные как по гироскопическим линиям в рентгеновском спектре [32], так и по их рентгеновской светимости [10], превосходят 10¹² Гс. Массы рентгеновских пульсаров представлены в табл. 3. Ошибки масс рентгеновских пульсаров приведены по уровню доверия 95%. Однако рентгеновские пульсары нами в работе не рассматривались. Это было сделано по двум причинам. Во-первых, в этих системах процесс аккреции на нейтронные звезды только начат. Большинство рентгеновских пульсаров аккрецирует из звездного ветра оптической звезды (уверенное исключение составляет только рентгеновский пульсар Her X-1, аккрецирующий из диска). Следовательно, рентгеновские пульсары в ходе аккреции еще не могли значительно увеличить свою массу (имеется ввиду одна или несколько десятых масс Солнца). Во-вторых, оценки масс рентгеновских пульсаров еще недостаточно точны. Так, например, высокое значение массы нейтронной звезды $m_x = 1.93 M_{\odot}$ в системе Vela X-1, найденное по минимуму невязки, вообще ненадежно, поскольку модель не удовлетворяет наблюдательным данным (более подробно см. [37]). Опираясь на вышеизложенные причины, рентгеновские пульсары мы в работе не рассматривали.

Предполагалось, что диссипация магнитного поля нейтронных звезд подчиняется экспоненциальному закону, а также то, что магнитное поле диссипирует до определенного минимального значения $B_{min} = 8 \times 10^7$ Гс и далее не меняется:

$$B = \begin{cases} B_0 \exp(-t/t_d), & t < t_d \ln(B_0/B_{min}), \\ 8 \times 10^7, & t \ge t_d \ln(B_0/B_{min}). \end{cases}$$
(9)

В выражение (9) параметры B_0 и t_d – начальное значение напряженности магнитного поля и характерное время диссипации магнитного поля, соответственно. Величины B_0 и t_d неизвестны, поэтому

указать точный возраст нейтронных звезд не представляется возможным. Однако, характеристикой возраста нейтронной звезды может выступать само значение напряженности ее магнитного поля. В связи с этим в работе построена зависимость между магнитным полем и массой нейтронных звезд. Данная зависимость представлена на рис. 2 и З. В дальнейшем в работе она упоминается как диаграмма "магнитное поле — масса нейтронных звезд", или просто диаграмма "магнитное поле масса".

На рис. 2 представлены наблюдаемые массы радиопульсаров с их доверительными интервалами. Интервалы ошибок достаточно велики, что мешает восприятию разброса центральных значений наблюдаемых масс нейтронных звезд. Поэтому для большей демонстративности на рис. 3 представлены только центральные значения масс радиопульсаров.

Принимая во внимание центральные значения масс радиопульсаров, можно говорить о тенденции (рис. 3). Так на диаграмме "магнитное поле масса" можно выделить два возможных "рукава", эволюции нейтронных звезд: без увеличения массы нейтронной звезды с течением времени (вертикальная серая полоса на рис. 3) и с увеличением массы (наклонная серая полоса на рис. 3).

Наблюдательные данные (несмотря на их большие ошибки) уже требуют интерпретации. В связи с этим на "Машине сценариев" выполнен популяционный синтез [9]. Популяционный синтез позволил не только установить диапазон возможных наблюдаемых параметров нейтронных звезд, но и выявить качественные типы эволюционных треков тесных двойных систем, ведущих к увеличению массы нейтронных звезд.

4. ПОПУЛЯЦИОННЫЙ СИНТЕЗ

На "Машине сценариев" проведен популяционный синтез 19.5 млн. двойных систем [9]. Начальные массы компонентов M_1 и M_2 варьировались в диапазоне от $5M_{\odot}$ до $120M_{\odot}$. Распределение начальных отношений масс компонентов двойных систем полагалось равновероятным. Начальное значение большой полуоси двойной могло принимать любое значение из диапазона $(10-10^6)R_{\odot}$.

Из всего полученного множества двойных систем были выбраны те системы, результатом эволюции которых стали пары "радиопульсар + нейтронная звезда" (PSR+NS) и "радиопульсар + белый карлик" (PSR+WD). Именно радиопульсары в парах с вырожденными компонентами и явились объектом нашего исследования.

Из многообразия параметров образовавшихся двойных систем с радиопульсаром (PSR+NS и

Таблица 3. Массы и периоды осевого вращения нейтронных звезд, входящих в рентгеновские тесные двойные системы

Название системы	p_{spin}, c	m_{NS}, M_{\odot}	Ссылки
2A 1822-371	0.593	0.97 ± 0.24	[33, 34]
Her X-1	1.24	1.50 ± 0.30	[35, 36]
Cen X-3	4.8	$1.22\substack{+0.15 \\ -0.14}$	[37, 39]
LMC X-4	13.5	$1.63_{-0.47}^{+0.42}$	[37, 40, 41]
SMC X-1	0.71	$1.48^{+0.47}_{-0.42}$	[37, 42]
4U 1538-52	528.2	$1.18\substack{+0.29 \\ -0.27}$	[37, 42]
Vela X-1	283	$1.93_{-0.21}^{+0.19}$	[37, 44]

PSR+WD) нас интересовали магнитные поля радиопульсаров *B* и их массы m_{PSR} . Большая часть радиопульсаров в парах с вырожденными спутниками неизбежно проходила стадию аккреции и следовательно увеличила значение своей массы на величину ΔM (см. формулу (1)). Значения масс и напряженностей магнитного поля радиопульсаров в системах PSR+NS приведены на момент образования нейтронной звезды. Значения масс и напряженностей магнитного поля радиопульсаров в системах PSR+WD приведены на момент образования белого карлика. Иными словами, представлены магнитные поля и массы радиопульсаров "точек рождения", двойных систем PSR+NS и PSR+WD.

Характер эволюции двойной системы "радиопульсар+оптическая звезда" сильно зависит от величины напряженности магнитного поля B и времени его затухания t_d . Поскольку время диссипации магнитного поля t_d неизвестно, то мы провели популяционный синтез для различных времен диссипации магнитного поля $t_d = 10^7$, 5×10^7 и 10^8 лет. Моделирование проводилось в двух вариантах — с учетом гипераккреции и без. Принято, что все нейтронные звезды рождаются с массой $1.35M_{\odot}$ и начальным магнитным полем 2×10^{12} Гс. Напомним, что в работе полагался экспоненциальный закон затухания магнитного поля нейтронных звезд $B = B_0 \exp(-t/t_d)$ (см. формулу (9)).

Также в алгоритме популяционного синтеза полагалось, что скорость анизотропного толчка нейтронной звезды при образовании сверхновой подчиняется максвеллоподобному распределению с характерной величиной $v_0 = 180$ км/с [44], а направление толчка равновероятно. Масса Чандрасекара принята в работе равной $m_{Ch} = 1.4 M_{\odot}$. Предел Опенгеймера-Волкова был принят равным $m_{OV} = 2.5 M_{\odot}$.

Рис. 2. Зависимость между значением напряженности магнитного поля радиопульсара *B* и его массой *m*_{PSR} (с указанием интервалов ошибок *m*_{PSR}). Квадратики — радиопульсар в паре с нейтронной звездой (PSR++NS), кружки — радиопульсар в паре с белым карли-ком (PSR+WD).

Результаты популяционного синтеза, которыми являются магнитные поля и массы радиопульсаров на момент образования двойных систем PSR+ +NS и PSR+WD, приведены далее на рис. 4– 8. Рассмотрим подробно каждый из возможных сценариев эволюции массы и магнитного поля радиопульсаров в подобного типа системах.

Радиопульсары в двойных системах PSR+NS (популяционный синтез выполнен с учетом гипераккреции)

Популяционный синтез 19.5 млн. пар звезд привел к образованию ~7 × 10⁴ систем PSR+NS. Системы PSR+NS являются продуктом эволюции двойных звезд с начальным отношением масс $q = M_1/M_2 = 1-4$ при начальных значениях масс компонентов $M_1 \ge 10 M_{\odot}$, $M_2 \ge 10 M_{\odot}$ и начальной величине большой полуоси двойной системы $a \simeq (10-10^3) R_{\odot}$.

На рис. 4 представлены магнитные поля и массы радиопульсаров в двойных системах с нейтронными звездами. Напомним, что значения магнитного поля и массы радиопульсаров указаны на момент образования двойной системы PSR+NS. Результаты популяционного синтеза для времен диссипации магнитного поля $t_d = 10^8$, 5×10^7 и 10^7 лет представлены соответственно на рис. 4а, 4б и 4в. На каждом из трех графиков можно выделить четыре группы радиопульсаров. Качественно однородные (по типам аккреции) группы радиопульсаров условно обозначены буквами A, B, C и D.

Рис. 3. Зависимость между значением напряженности магнитного поля радиопульсара *B* и его массой *m*_{PSR} (без указания интервалов ошибок *m*_{PSR}). Квадратики — радиопульсар в паре с нейтронной звездой (PSR+NS), кружки — радиопульсар в паре с белым карликом (PSR+WD). Стрелки указывают "рукава" эволюции массы и магнитного поля радиопульсаров.

Радиопульсары группы A (рис. 4а, 4б, 4в) не проходят ни стадию аккреции, ни супераккреции, ни гипераккреции. Поэтому значение массы радиопульсара не меняется: $m_{\rm PSR} = 1.35 M_{\odot}$. Лишь уменьшается напряженность магнитного поля. Радиопульсары группы A образуются из двойной системы с начальными массами компонентов $M_1 \simeq$ $\simeq 14-40 M_{\odot}, M_2 \simeq 11-15 M_{\odot}$ при начальном значении большой полуоси $a \simeq 10^2 - 10^3 R_{\odot}$.

Радиопульсары группы В образуются в процессе эволюции двойных систем с начальными массами $M_1 \simeq 15-22 M_{\odot}, M_2 \simeq 14-19 M_{\odot}$ при начальной большой полуоси двойной $a \simeq 10-10^3 R_{\odot}$. Радиопульсары этой группы набирают массу на двух стадиях: супераккреции ($\Delta M \simeq 0.1-0.2 M_{\odot}$) и гипераккреции ($\Delta M \simeq 0.2-0.3 M_{\odot}$). При этом видно, что аккумуляция вещества происходит сравнительно быстро ($t < t_d$) — напряженность магнитного поля не успевает значительно измениться ($B \simeq$ $\simeq 2 \times 10^{12}$ Гс).

Радиопульсары группы С — продукт эволюции двойных двойных систем с близкими массами $(q \simeq 1)$ из диапазонов $M_1 \simeq 30-40 M_{\odot}, M_2 \simeq \simeq 30-35 M_{\odot}$. Начальная величина большой полуоси *а* колеблется от ~5 × $10 R_{\odot}$ до ~5 × $10^2 R_{\odot}$. Радиопульсары группы С проходят лишь стадию гипераккреции и увеличивают массу исключительно на ней ($\Delta M \simeq 0.15-0.20 M_{\odot}$). Отметим, что напряженность магнитного поля не успевает значительно измениться ($B \simeq 2 \times 10^{12}$ Гс), т.е. аккумуляция вещества происходит за времена $t < t_d$.

Рис. 4. Значения масс и напряженностей магнитного поля радиопульсаров в двойных системах PSR+NS ($\sim 7 \times 10^4$ систем), полученные по результатам популяционного синтеза 19.5 млн. двойных систем с учетом стадии гипераккреции. Подробное описание представленных групп радиопульсаров содержится в тексте.

Радиопульсары группы D, как и радиопульсары группы B, претерпели стадию супераккреции и гипераккреции. Однако от последних они отличаются низкой аккумуляцией вещества на стадии супераккреции. Так на стадии супераккреции масса радиопульсара группы D увеличивается не более чем на $0.03M_{\odot}$. На стадии гипераккреции величина ΔM составляет около $0.3M_{\odot}$. Начальные массы компонентов родительской двойной системы радиопульсаров группы D заключены в интервалах $M_1 = 13-52M_{\odot}, M_2 = 10-20M_{\odot}$. Начальное значение большой полуоси двойной $a \simeq (2-9) \times 10^2 R_{\odot}$.

Положение групп радиопульсаров A, B, C и D на рис. 4а, 46, 4в подобно. Радиопульсары отличаются лишь величиной магнитного поля вследствие разных времен диссипации t_d . Так на рис. 4в с наименьшим временем затухания поля $t_d = 10^7$ лет

точки по оси ординат, условно обозначающие радиопульсары, лежат ниже в сравнении с аналогичными точками на рис. 4а и 4в. Различное время диссипации магнитного поля t_d качественного изменения в схему эволюции двойной системы, приводящей к образованию систем PSR+NS, не вносит.

Видно, что по результатам популяционного синтеза радиопульсар за стадии супер- и гипераккреции может увеличить свою массу с $M \simeq 1.35 M_{\odot}$ до $M \simeq 1.70 M_{\odot}$. Причем это происходит за времена $t \leq t_d$.

Радиопульсары в двойных системах PSR+WD (популяционный синтез выполнен с учетом гипераккреции)

Популяционный синтез 19.5 млн. пар звезд привел к образованию ${\sim}16 \times 10^4$ двойных систем

Рис. 5. То же, что на рис. 4, для двойных систем PSR+WD (~16 × 10⁴ систем).

PSR+WD. Значения масс и магнитных полей радиопульсаров в системах PSR+WD, получившихся в ходе популяционного синтеза, представлены на рис. 5. Указана напряженность магнитного поля и масса пульсара на момент рождения системы PSR+WD, т.е. на момент образования белого карлика. Популяционный синтез, как и в предыдущем случае, выполнен в предположение времен диссипации магнитного поля $t_d = 10^8$, 5×10^7 и 10^7 лет (рис. 5а, 56, 5в, соответственно).

В отличие от предыдущего расчета, вариация времени затухания магнитного поля радиопульсаров t_d привела не только к количественным изменениям результатов моделирования, но и к каче-

ственным. С уменьшением величины t_d в ходе синтеза возрастает число радиопульсаров с малыми магнитными полями. Это проявляется в изменении наклона полосы, образованной точками, которые условно обозначают радиопульсары (рис. 5а, 5б, 5в). Также уменьшение параметра t_d приводит к увеличению количества пульсаров с минимальным возможным магнитным полем (рис. 5а, 5в). Количественные изменения выражены в том, что на рис. 5а, 5б и 5в нет однозначного соответствия групп радиопульсаров. Это говорит о том, что от времени диссипации магнитного поля t_d зависит сценарий эволюции массы радиопульсара, ведущий к образованию двойной системы PSR+

+WD. Отметим, что для радиопульсаров в системах PSR+NS не происходило качественного изменения в случае вариации параметра t_d : группы радиопульсаров на рис. 4а, 46 и 4в подобны.

Рассмотрим подробно каждую из групп радиопульсаров, содержащихся на рис. 5а, 5б, 5в и ведущие к ним эволюционные треки.

Время затухания магнитного поля 10⁸ лет

Радиопульсары группы А и В (рис. 5а) являются результатом эволюции тесных двойных систем с начальными массами компонентов $M_1 \geq 10 M_{\odot}$, $M_2 \simeq 1.1 - 1.5 M_{\odot}$ (группа A), $M_2 \simeq 1.5 - 2.5 M_{\odot}$ (группа В) и величиной большой полуоси a = $= (6-7) \times 10^2 R_{\odot}$. Радиопульсары этих групп набирают массу исключительно на стадии аккреции. Вещество на них перетекает с маломассивной звезды донора через внутреннюю точку Лагранжа. Поэтому к моменту начала аккреции (маломассивный оптический спутник заполняет полость Роша в ядерной шкале времени $t \sim 10^8 - 10^9$ лет) поле радиопульсара успевает затухнуть до минимального значения и не препятствует выпадению вещества на поверхность радиопульсара. В процессе аккреции радиопульсары групп А и В способны увеличить свою массу на $\Delta M \simeq 0.02 - 1.2 M_{\odot}$ (рис. 5а).

Радиопульсары группы С (рис. 5а) — продукт эволюции двойных систем с начальными массами компонентов $M_1 \simeq 11-15M_{\odot}$ и $M_2 \simeq 5.5-9.5M_{\odot}$ при начальном значении большой полуоси $a = 2 \times \times 10^2 - 10^3 R_{\odot}$. Поскольку отношение масс компонентов близкое ($q \simeq 1.5-2$), а массы компонентов велики, то на момент образование в двойной белого карлика поле радиопульсара не успевает затухнуть. Радиопульсары этой группы не проходят ни стадии аккреции, ни супераккреции, ни гипераккреции. Большое значение магнитного поля радиопульсара $B \simeq 10^{12}$ Гс препятствует выпадению на него вещества со звезды донора. Поэтому значение массы радиопульсаров группы С остается прежним: $m_{\rm PSR} = 1.35M_{\odot}$ (рис. 5а).

Радиопульсары группы D (рис. 5а) — результат эволюции двойных систем с начальными значениями большой полуоси $a = 10^3 - 2 \times 10^3 R_{\odot}$ и начальными отношениями масс компонентов q = 4-6 при массах компонентов $M_1 \simeq 11-16 M_{\odot}$ и $M_2 \simeq 1.5-4 M_{\odot}$. Ядерная шкала эволюции первого компонента двойной на два порядка ($\sim 10^2$) короче ядерной шкалы второго компонента. Поэтому к моменту начала аккреции поле радиопульсара успевает упасть до $\sim 10^{10}$ Гс. Система проходит стадии аккреции и супераккреции, но поскольку поле нейтронной звезды еще велико ($\sim 10^{10}$ Гс), то на нейтронной зсояде оседает всего несколько сотых долей массы Солнца ($\Delta M \sim 0.01-0.02 M_{\odot}$).

Радиопульсары группы F (рис. 5а) образовались в ходе эволюции двойных систем с массами компонентов $M_1 \simeq 10{-}30 M_{\odot}, \ M_2 \simeq 5{-}8 M_{\odot}$ и с начальным расстоянием между ними $a = (1-3) \times$ $\times 10^2 R_{\odot}$. Радиопульсары данной группы незначительно увеличили массу на стадии супераккреции: $\Delta M \sim 0.01 M_{\odot}$. Бо́льшую часть массы они набрали на стадии гипераккреции: $\Delta M \simeq 0.3 - 0.7 M_{\odot}$. Обратим внимание, что величина ΔM , полученная на стадии гипераккреции тем больше, чем меньше масса оптического спутника. Так, например, радиопульсар в паре с оптической звездой массой $M_2 \simeq$ $\simeq 9 M_{\odot}$ за стадию гипераккреции набирает $\Delta M \simeq$ $\simeq 0.3 M_{\odot}$, а радиопульсар с оптической звездой массой $M_2 \simeq 6 M_{\odot}$ за стадию гипераккреции набирает $\Delta M \simeq 0.7 M_{\odot}$.

Радиопульсары группы G (рис. 5а) образовались в ходе эволюции двойных систем с массами звезд $M_1 \simeq 13-15 M_{\odot}$, $M_2 \simeq 5.5-6.5 M_{\odot}$ и начальной большой полуосью двойной $a = (5-9) \times 10^2 R_{\odot}$. Радиопульсары группы G проходили стадию аккреции и гипераккреции. На стадии аккреции они увеличили массу на $\Delta M \simeq 0.2 M_{\odot}$, на стадии гипераккреции — на $\Delta M \simeq 0.8 M_{\odot}$.

Радиопульсары группы Е (рис. 5а) возникают в ходе эволюции двойных систем с начальным разбросом значений большой полуоси a=2 imes $\times 10^2 - 2 \times 10^3 R_{\odot}$, и начальными массами компонентов $M_1 \simeq 10 - 15 M_{\odot}$ и $M_2 \simeq 2.5 - 4 M_{\odot}$. Радиопульсар увеличивает свою массу последовательно на стадиях аккреции, супераккреции и снова аккреции. На стадии супераккреции радиопульсар набирает сотые доли массы Солнца. Основная аккумуляция вещества радиопульсаром происходит на стадиях аккреции: $\Delta M \simeq 0.7 M_{\odot}$. На момент аккреции величина магнитного поля радиопульсаров группы E, равно как и радиопульсаров группы D, составляет $\sim 10^{10}$ Гс, но в отличие от радиопульсаров группы D, у радиопульсаров группы E расстояние между компонентами на порядок меньше. Это обстоятельство и позволяет им увеличить массу не на $\Delta M \simeq 0.01 - 0.02 M_{\odot}$, а на $\Delta M \simeq 0.7 M_{\odot}$.

Радиопульсары группы H (рис. 5а) в процессе эволюции двойной системы проходили лишь стадию гипераккреции, на которой увеличили массу на $\Delta M \simeq 0.8 M_{\odot}$. Родительские двойные системы радиопульсаров группы H имели разброс масс компонентов $M_1 \simeq 12 - 26 M_{\odot}$, $M_2 \simeq 3 - 4 M_{\odot}$. Начальное расстояние между компонентами колебалось в пределах $a \simeq (1-6) \times 10^2 R_{\odot}$.

Радиопульсары последней на рис. 5а группы I образовались из двойных систем с начальными массами компонентов $M_1 \simeq 10-11 M_{\odot}$, $M_2 \simeq 2 - 4 M_{\odot}$ и начальным значением большой полуоси $a \sim 3 \times 10^2 R_{\odot}$. Незначительная аккумуляция вещества радиопульсарами группы I происходит на

стадии супераккреции: $\Delta M \simeq 0.02 M_{\odot}$. Основной рост массы радиопульсаров этой группы осуществляется за счет обычной аккреции со звезды-донора через внутреннюю точку Лагранжа двойной: $\Delta M \simeq 20.3 - 0.4 M_{\odot}$.

Время затухания магнитного поля 5×10^7 лет

Как говорилось выше, при вариации величины t_d (см. формулу (9)), в эволюции тесных двойных систем, результатом которой являются двойные PSR+WD, помимо количественных изменений, происходили и качественные. Так исчезли некоторые "старые" группы радиопульсаров (имеются в виду группы радиопульсаров рис. 5а) и появились новые (рис. 5б). Для групп радиопульсаров, претерпевших только количественные изменения параметров при изменении времен t_d , буквенные обозначения оставлены прежними. Для качественно новых групп нами введены новые обозначения. Начнем с описания вновь появившихся групп и исчезнувших групп.

Группы радиопульсаров, обозначенные на рис. 5а буквами D и E, исчезли (рис. 5б). Таким образом, при величине $t_d = 5 \times 10^7$ лет сценарии эволюции двойной, ведущие к образованию радиопульсаров групп D и E, не реализуются. Зато при величине $t_d = 5 \times 10^7$ лет появились новые группы радиопульсаров: a_1 , b_1 , b_1 и K.

Радиопульсары группы a_1 (рис. 5б) рождаются из двойных звездных систем с начальными массами $M_1 \simeq 13 M_{\odot}$, $M_2 \simeq 2 - 3 M_{\odot}$ и начальным значением большой полуоси $a \simeq (1-2) \times 10^3 R_{\odot}$. Радиопульсары группы a_1 проходят только стадию супераккреции, на которой набирают $\Delta M \simeq \simeq 0.01 - 0.2 M_{\odot}$. В то же время примыкающая на рис. 5б к ним группа А увеличивает свою массу только на стадии аккреции.

Радиопульсары группы b₁ (рис. 56) происходят из двойных систем с начальными массами $M_1 \simeq$ $\simeq 17 M_{\odot}, M_2 \simeq 2 - 3 M_{\odot}$ и начальным значением большой полуоси $a \simeq (5-7) \times 10^2 R_{\odot}$. Массу радиопульсары этой группы увеличивают только за счет супераккреции ($\Delta M \simeq 0.5 - 0.7 M_{\odot}$).

Родительские двойные системы радиопульсаров группы h₁ (рис. 5б) имеют начальные массы $M_1 \simeq 25 M_{\odot}, M_2 \simeq 4 - 5 M_{\odot}$ и начальное значение большой полуоси $a \simeq 10^3 R_{\odot}$. Набирают массу радиопульсары группы h₁ на стадиях супераккреции ($\Delta M \simeq 0.03 M_{\odot}$) и гипераккреции ($\Delta M \simeq 0.6 M_{\odot}$).

Радиопульсары последней из вновь образованной группы К (рис. 5б) также проходили стадии супер- и гипераккреции. На стадии супераккреции их масса увеличивается на $\Delta M \simeq 0.1 M_{\odot}$. На стадии гипераккреции масса аккумулируемого вещества доходит до $\Delta M \simeq 1 M_{\odot}$. Столь высокий набор массы на стадии гипераккреции возможен благодаря малому начальному расстоянию между компонентами $a \simeq 10^2 R_{\odot}$. Начальные массы компонентов двойной близки к "родителям" группы радиопульсаров h₁: $M_1 \simeq 25 M_{\odot}$ и $M_2 \simeq 5 M_{\odot}$.

Радиопульсары групп А, С, В, І, F, H и G на рис. 5б отличаются от одноименных групп радиопульсаров на рис. 5а только величиной магнитного поля, изменившегося согласно формуле (9) при вариации t_d . Стадии аккреции, их хронология и величины $\Delta M \simeq 1 M_{\odot}$ у радиопульсаров перечисленных групп остались прежними. Можно лишь отметить, что радиопульсары группы F на рис. 56 в отличие от радиопульсаров группы F на рис. 56 в отличие от радиопульсаров группы F на рис. 5а на стадии супераккреции увеличивают массу не на $\Delta M \simeq 0.01 M_{\odot}$, а на $\Delta M \simeq 0.2 M_{\odot}$.

Время затухания магнитного поля 107 лет

Сравним группы радиопульсаров на рис. 56 и рис. 5в. Видно, что исчезли группы радиопульсаров а₁, а₂, h₁, I, H, K, G и появились качественно новые группы радиопульсаров f₁ и f₂.

Радиопульсары группы f₁ (рис. 5в) возникли в ходе эволюции двойной системы с начальными массами компонентов $M_1 \simeq 10 M_{\odot}$, $M_2 \simeq 10 M_{\odot}$ и начальным расстоянием между компонентами $a \simeq 10^2 R_{\odot}$. Радиопульсары группы f₁ проходили лишь стадию супераккреции, на которой увеличили свою массу на $\Delta M \simeq 0.3 M_{\odot}$.

Радиопульсары группы f2 (рис. 5в) набирали массу, как и радиопульсары группы F, в ходе супераккреции ($\Delta M \simeq 0.01 - 0.1 M_{\odot}$) и гипераккреции ($\Delta M \simeq 0.5 - 1 M_{\odot}$). Однако в отличие от радиопульсаров группы F значение напряженности магнитного поля радиопульсаров группы f₂ упало до минимального значения (рис. 5в). Это объясняется тем, что оптическая звезда-донор была менее массивная ($M_2 \simeq 3 M_{\odot}$) в сравнении со звездой-донором радиопульсаров группы $F(M_2 \simeq$ $\simeq 5 - 8 M_{\odot}$). Поэтому за ядерное время эволюции донора (~10⁹ лет) магнитное поле радиопульсаров группы f₂ успевает затухнуть. Масса первого компонента родительской двойной системы группы ${
m f}_2$ лежит в диапазоне $M_1\simeq 12{-}14M_{\odot},$ а большая полуось системы $a \simeq (4-5) \times 10^2 R_{\odot}$.

Остальные группы радиопульсаров, представленных на рис. 5в, а именно A, B, C и F, качественно идентичны одноименным группам на рис. 5а и 5б. У радиопульсаров групп A, B, C и F на рис. 5в изменяется только величина напряженности магнитного поля согласно формуле (9) при новом значении параметра $t_d = 10^7$ лет.

Таким образом, согласно модельным расчетам с учетом стадии общей оболочки (гипераккреции)

Рис. 6. То же, что на рис. 4, без учета стадии гипераккреции.

масса радиопульсара в паре с белым карликом может лежать в диапазоне $m_{\rm PSR} \simeq 1.35 - 2.5 M_{\odot}$. Столь значительное увеличение массы радиопульсаров может происходить как за счет гипераккреции вещества, так и за счет простой аккреции с маломассивного оптического донора. Отметим, что радиопульсар способен увеличить свою массу до предела Опенгеймера–Волкова $m_{\rm OV} \simeq 2.5 M_{\odot}$.

Радиопульсары в двойных системах PSR+NS (популяционный синтез выполнен без учета гипераккреции)

Стадия гипераккреции недостаточно хорошо изучена. Точно неизвестна ни длительность стадии гипераккреции, ни темп выпадения вещества на поверхность нейтронной звезды в ходе нее. Поэтому нами дополнительно выполнен популяционный

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 82 № 4 2005

синтез без учета стадии гипераккреции, т.е. радиопульсары в этом варианте популяционного синтеза могли увеличивать свою массу только на стадии обычной аккреции и супераккреции.

Как и в предыдущем случае, выполнен популяционный синтез 19.5 млн. звездных пар. Диапазоны вариации начальных параметров двойных систем оставлены прежними. В процессе синтеза были получены $\sim 7 \times 10^4$ двойных систем PSR+NS. Значения масс радиопульсаров $m_{\rm PSR}$ и напряженностей магнитного поля B для времен диссипации $t_d = 10^8, 5 \times 10^7$ и 10^7 лет представлены соответственно на рис. 6а, 6б и 6в. Видно, что положение групп радиопульсаров рис. 6а, 66, 6в подобно. Вариация параметра t_d внесла лишь количественные изменения, выразившиеся в уменьшении величины магнитного поля с уменьшением t_d .

Рис. 7. То же, что на рис. 4, для двойных систем PSR+WD ($\sim 16 \times 10^4$ систем) без учета стадии гипераккреции.

Проследим, как изменилось положение ранее выделенных групп радиопульсаров A, B, C и D (рис. 4) в варианте популяционного синтеза без учета стадии общей оболочки (рис. 6). Из сравнительного анализа рис. 4 и 6 видно, что массы радиопульсаров групп B, C и D уменьшились на $\Delta M \simeq 0.5 M_{\odot}$. Произошла миграция радиопульсаров этих групп по шкале абцисс в сторону ее меньших значений. Положение радиопульсаров группы A не изменилось по причине того, что радиопульсары группы A в ходе эволюции двойной системы не проходят ни стадии аккреции, ни супераккреции, ни гипераккреции. Начальные параметры родитель-

ских двойных систем радиопульсаров групп А, В, С и D на рис. 6 идентичны начальным параметрам родительских двойных систем одноименных групп радиопульсаров на рис. 4, значения которых приведены выше.

Радиопульсары групп В, С и D увеличивают свою массу только на стадии супераккреции. Из рис. 6 видно, что масса аккумулируемого радиопульсаром вещества на стадии супераккреции может колебаться в пределах $\Delta M \simeq 0.01 - 0.20 M_{\odot}$. Аккумуляция вещества происходит за времена $t \leq t_d$.

Радиопульсары в двойных системах PSR+WD (популяционный синтез выполнен без учета стадии общей оболочки)

По результатам популяционного синтеза без стадии общей оболочки (гипераккреции) из 19.5 млн. двойных систем образуется $\sim 16 \times 10^4$ систем PSR+WD. Массы и напряженности магнитного радиопульсаров данных систем для времен затухания магнитного поля $t_d = 10^8$, 5×10^7 и 10^7 лет представлены на рис. 7а, 76 и 7в, соответственно.

Сравним положение групп радиопульсаров на рис. 7 и 5. Так на рис. 7а группы радиопульсаров F и H, преимущественно набиравшие массу на стадиях гипераккреции, сместились по оси абсцисс в сторону меньших значений масс относительно радиопульсаров одноименных групп на рис. 5а. На рис. 76 в сторону меньших значений масс мигрировали группы радиопульсаров F, K и h₁ (относительно одноименных групп радиопульсаров на рис. 56), на рис. 7в — группы радиопульсаров F и f_1 (относительно одноименных групп радиопульсаров на рис. 5в). Радиопульсары остальных групп, осуществлявшие аккумуляцию вещества на стадиях аккреции и супераккреции, остались на прежних местах (рис. 5 и 7). Параметры родительских двойных систем групп радиопульсаров, представленных на рис. 7, приведены выше.

Отметим, что радиопульсар может увеличить массу вплоть до предела Опенгеймера—Волкова $m_{\rm OV} \simeq 2.5 M_{\odot}$, не проходя стадии общей оболочки. Рост массы радиопульсара до значений $m_{\rm PSR} \simeq 2.5 M_{\odot}$ возможен только за счет длительной аккреции с маломассивного оптического донора (радиопульсары группы В и группы I; рис. 7).

Радиопульсары в двойных системах PSR+NS и PSR+WD (популяционный синтез выполнен с разбросом начальных параметров радиопульсаров, с учетом всех видов аккреции)

В вышеизложенном алгоритме популяционного синтеза начальная напряженность магнитного поля и начальное значение массы полагались соответственно равными $B = 2 \times 10^{12}$ Гс и $m_{\rm PSR} =$ $= 1.35 M_{\odot}$. Поскольку начальные значения масс и магнитного поля радиопульсаров могут варьироваться, то нами дополнительно проведен популяционный синтез 72 млн. двойных систем. В новом варианте популяционного синтеза полагалось, что начальное значение напряженности магнитного поля радиопульсара может колебаться от $B = 2 \times 10^{11}$ Гс до $B = 2 \times 10^{14}$ Гс, а начальная масса радиопульсара может принимать любые значения из диапазона $m_{\rm PSR} = 1.25 - 1.40 M_{\odot}$. Диапазон начальных масс радиопульсаров выбран

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 82 № 4 2005

на основании массы нейтронной звезды в двойной системе B1913+16 и массы радиопульсара в двойной системе J0737–3039. В двойной системе B1913+16 (радиопульсар Халса–Тейлора; PSR+ +NS) масса нейтронной звезды, заведомо не проходившей стадию аккреции с оптического донора, составляет $m_{NS} = 1.3873 \pm 0.0006 M_{\odot}$ [13]. В системе J0737–3039, являющейся двойной системой PSR+PSR, масса радиопульсара не проходившего стадию аккреции с оптического спутника равна $m_{\rm PSR} = 1.250 \pm 0.010 M_{\odot}$ [20].

Образовавшиеся в ходе популяционного синтеза двойные системы PSR+NS ($\sim 24 \times 10^4$ систем) и PSR+WD ($\sim 43 \times 10^4$ систем) представлены на рис. 8а и 86, соответственно.

Радиопульсары группы A в двойных системах PSR+NS (рис. 8а) не увеличивали массу в процессе эволюции двойной. Разброс массы радиопульсаров группы A обусловлен только разбросом начальных масс радиопульсаров. Рост массы радиопульсаров группы B (рис. 8а) преимущественно происходил за счет гипераккреции $\Delta(M > > 0.1 M_{\odot})$, и в существенно меньшей степени за счет супераккреции ($\Delta M \simeq 0.01 - 0.1 M_{\odot}$).

Радиопульсары группы А в двойных системах PSR+WD (рис. 86) не проходили ни стадии аккреции, ни супераккреции, ни гипераккреции. Разброс их масс обусловлен только искусственным разбросом начальных масс радиопульсаров. Радиопульсары группы В (рис. 86) набирали массу ($\Delta M \simeq 0.2 - 1.2 M_{\odot}$) на стадиях аккреции, супери гипераккреции с оптических звезд массы $M_2 \simeq 5 - 10 M_{\odot}$. Радиопульсары группы С (рис. 86) увеличили свою массу посредством аккреции с маломассивного ($M_2 \simeq 1 - 3 M_{\odot}$) оптического спутника ($\Delta M \simeq 0.1 - 1.2 M_{\odot}$).

На нижних графиках (рис. 8в, 8г) приведены двойные системы PSR+NS и PSR+WD с учетом эффекта наблюдательной селекции. Наблюдательная селекция произведена согласно длительности стадий существования двойных PSR+NS и PSR+WD. После учета наблюдательной селекции осталось ~900 систем PSR+NS (рис. 8в) и ~600 систем PSR+WD (рис. 8г).

Согласно популяционному синтезу, исправленному за наблюдательную селекцию, массы радиопульсаров в двойных системах PSR+NS лежат в пределах начальных масс радиопульсаров — в данном случае от $1.25M_{\odot}$ до $1.44M_{\odot}$ (рис. 8в). В результате поправки за наблюдательную селекцию радиопульсары, набиравшие массу в ходе гипераккреции, исчезают (рис. 8а, 8в). После учета наблюдательной селекции двойных PSR+WD остались все прежние группы радиопульсаров (рис. 8б, 8г). Лишь сократилось число радиопульсаров каждой

Рис. 8. (а) — Значения масс и напряженностей магнитного поля радиопульсаров в двойных системах PSR+NS (~24 × $\times 10^4$ систем), полученные по результатам популяционного синтеза 72 млн. двойных с учетом стадии гипераккреции и разбросом начальных масс и начальных магнитных полей радиопульсаров в пределах $m_{\rm PSR} = 1.25 - 1.40 M_{\odot}$ и $B = 2 \times \times 10^{11} - 2 \times 10^{14}$ Гс. (б) — То же для радиопульсаров в системах PSR+WD (~43 $\times 10^4$ систем). (в) — Значения масс и напряженностей магнитного поля радиопульсаров в двойных системах PSR+WD (~600 систем). (г) — То же для радиопульсаров в двойных системах PSR+WD (~600 систем).

группы. Согласно популяционному синтезу наблюдаемая масса радиопульсаров в парах с белыми карликами может лежать в пределах $m_{\rm PSR} =$ $= 1.25 M_{\odot} - 2.5 M_{\odot}$.

5. ЗАКЛЮЧЕНИЕ

Результаты популяционного синтеза качественно и количественно согласуются с наблюдаемыми параметрами радиопульсаров в двойных системах с вырожденными компонентами (рис. 2, 3 и 8).

Популяционный синтез показал, что в двойных системах PSR+NS могут находиться радиопульсары с массами, превышающими предел Чандрасекара ($M_{Ch} \simeq 1.4 M_{\odot}$). Рост массы радиопульсаров в двойных системах PSR+NS преимущественно происходит за счет гипераккреции вещества с массивного оптического донора ($M_2 > 10-15 M_{\odot}$). Однако наблюдения массивных радиопульсаров в двойных системах PSR+NS затруднительно (рис. 8в) по причине достаточно непродолжительной стадии существования двойных систем PSR+NS с "тяжелыми" радиопульсарами ($m_{\rm PSR} > 1.4 M_{\odot}$). Согласно модельным расчетам радиопульсары с массами $m_{\rm PSR}$, заметно превышающими предел Чандрасекара $M_{Ch} \simeq$

 $\simeq 1.4 M_{\odot}$, следует искать в двойных системах PSR+WD (рис. 8г).

Механизм аккумуляции вещества радиопульсарами в системах PSR+WD более разнообразен. Рост массы радиопульсара в процессе эволюции двойной может происходить за счет гипераккреции, супераккреции и аккреции. Наибольшую массу радиопульсары в системах PSR+WD набирают за счет аккреции с маломассивного оптического спутника ($M_2 = 1 - 3M_{\odot}$). Согласно популяционному синтезу эти радиопульсары обладают малым магнитным полем $B \simeq 10^8$ Гс (радиопульсары группы С на рис. 8в, 8г) вследствие того, что маломассивный оптический спутник заполняет свою полость Роша в ядерной шкале времени $t \simeq 10^9$ лет. К моменту начала аккреции поле радиопульсара успевает упасть на 2-3 порядка. К данной группе можно отнести наблюдаемые радиопульсары J1012+5307 и J1713+0747 (табл. 2, рис. 2, 3). Отметим, что аккумуляция вещества с маломассивных оптических доноров посредством аккреции способна увеличить массу радиопульсара вплоть до предела Опенгеймера-Волкова $M_{\rm OV} \simeq 2.5 M_{\odot}$.

Опираясь на результаты популяционного синтеза, можно ожидать, что наблюдаемые массы радиопульсаров в двойных системах PSR+NS и PSR+WD будут иметь значительный разброс (от $1.3M_{\odot}$ до $M_{\rm OV}$), вызванный аккумуляцией вещества оптической звезды радиопульсаром. Наблюдаемые центральные значения масс радиопульсаров (табл. 1, 2 и рис. 3) подтверждают результаты популяционного синтеза.

Авторы выражают благодарность А.Г. Куранову, К.А. Постнову и М.Е. Прохорову за ценные замечания и советы. Работа была поддержана Российским фондом фундаментальных исследований (код проекта 02-02-17524) и грантом "Ведущие научные школы России" НШ-388.2003.2.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. М. Черепащук, Усп. физ. наук 166, 809 (1996).
- 2. А. М. Черепащук, Усп. физ. наук 173, 345 (2003).
- 3. Я. Б. Зельдович, Докл. АН СССР 155, 67 (1964).
- 4. E. E. Salpeter, Astrophys. J. 140, 796 (1964).
- 5. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
- 6. J. E. Pringle and M. J. Rees, Astron. and Astrophys. **21**, 1 (1972).
- 7. I. D. Novikov and K. S. Thorne, in *Black Holes*, eds C. De Witt, B. S. De Witt (London: Gordon and Breach, 1973), p. 343.
- 8. R. A. Chevalier, Astrophys. J. 411, L.33 (1993).
- V. M. Lipunov, K. A. Postnov, M. E. Prokhorov, *The Scenario Machine: Binary Star Population Synthesis*, ed. R. A. Sunyaev (Astrophysics and Space Physics Reviews, Harwood academic publishers, 1996), Vol. 9.

- 10. В. М. Липунов, Астрон. журн. 59, 888 (1982).
- 11. Я. Б. Зельдович, Л. Н. Иванова, Д. К. Надежин, Астрон. журн. **49**, 253 (1972).
- 12. M. M. Basko and R. A. Sunyaev, Astron. and Astrophys. **42**, 311 (1975).
- S. E. Thorsett and D. Chakrabarty, Astrophys. J. 512, 288 (1999).
- 14. D. J. Nice, R. W. Sayer, and J. H. Taylor, Astrophys. J. **466**, L.87 (1996).
- M. Konacki, A. Wolszczan, and I. H. Stairs, Astrophys. J. 589, 495 (2003).
- I. H. Stairs, S. E. Thorsett, J. H. Taylor, and A. Wolszczan, Astrophys. J. 581, 501 (2002).
- 17. J. M. Weisberg and J. H. Taylor, astro-ph/0211217.
- 18. N. Wex, V. Kalogera, and M. Kramer, Astrophys. J. **528**, 401 (2000).
- 19. Z. Arzoumanian, M. Cordes, and I. Wasserman, Astrophys. J. **520**, 696 (1999).
- 20. A. G. Lyne, M. Burgay, M. Kramer, *et al.*, astroph/0401086.
- 21. W. Straten, M. Bailes, M. C. Britton, *et al.*, Nature **412**, 158.
- 22. E. M. Splaver, D. J. Nice, Z. Arzoumanian, *et al.*, Astrophys. J. **581**, 509 (2002).
- 23. F. Camilo, D. J. Nice, J. A. Shrauner, and J. H. Taylor, Astrophys. J. (Lett.) **469**, L.819 (1996).
- 24. M. Bailes, S. M. Ord, H. S. Knight, and A. W. Hotan, astro-ph 0307468.
- 25. V. M. Kaspi, A. G. Lyne, R. N. Manchester, *et al.*, Astrophys. J. **543**, 321 (2000).
- 26. D. J. Nice, in *Young Neutron Stars and Their Environments*, eds F. Camilo and B. M. Gaensler, IAU Symp. No. 218; astro-ph/0311296.
- D. J. Nice, in *Radio Pulsars*, eds M. Bailes, D. J. Nice, and S. E. Thorsett, Astron. Soc. Pacif. Conf. Ser., vol. 302; astro-ph/0210637.
- 28. M. H. van Kerkwijk and S. R. Kulkarni, Astrophys. J. (Lett.) **516**, L.25 (1999).
- 29. J. Kaluzny, S. M. Rucinski, and I. B. Thompson, Astron. J. **125**, 1546 (2003).
- 30. N. D'Amico, A. G. Lyne, R. N. Manchester, *et al.*, Astrophys. J. (Lett.) **548**, L.17 (2001)1.
- 31. N. D'Amico, A. Possenti, R. N. Manchester, *et al.*, Astrophys. J. (Lett.) **561**, L.89 (2001).
- 32. W. Coburn, W. A. Heindl, R. E. Rothschild, *et al.*, Astrophys. J. **580**, 394 (2002).
- P. G. Jonker, M. van der Klis, and P. J. Groot, Monthly Notices Roy. Astron. Soc. 339, 663 (2003).
- P. G. Jonker and M. van der Klis, Astrophys. J. 553, L.43 (2001).
- A. P. Reynolds, H. Quaintrell, M. D. Still, *et al.*, Monthly Notices Roy. Astron. Soc. 288, 43 (1997).
- H. Tananbaum, H. Gursky, E. Kellogg, *et al.*, Astrophys. J. (Lett.) **174**, L.143 (1972).
- 37. М. К. Абубекеров, Э. А. Антохина, А. М. Черепащук, Астрон. журн. **81**, 108 (2004).
- 38. R. Giacconi, Gursky H., Kellogg E., *et al.*, Astrophys. J. (Lett.) **167**, L.67 (1971).
- 39. R. L. Kelley, J. G. Jernigan, A. Levine, *et al.*, IAU Circ. № 3632(2)(1981).

- 40. A. La Barbera, L. Burderi, T. Di Salvo, *et al.*, Astrophys. J. **553**, 375 (2001).
- 41. P. Kahabka and X.-D. Li, Astron. and Astrophys. **345**, 117 (1999).
- 42. N. R. Robba, L. Burdert, T. Di Salvo, *et al.*, Astrophys. J. **562**, 950 (2001).
- 43. J. E. McClintock, S. Rappaport, P. C. Joss, *et al.*, Astrophys. J. **206**, 99 (1976).
- 44. V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Monthly Notices Roy. Astron. Soc. **288**, 245 (1997).

Evolution of the Masses of Neutron Stars in Binary Systems

A. I. Bogomazov, M. K. Abubekerov, V. M. Lipunov, and A. M. Cherepashchuk

We study the growth of the masses of neutron stars in binary systems due to the accumulation of mass from the optical donors on the neutron-star surface. Possible scenarios for this accretion are considered. The masses and magnetic-field strengths for radio pulsars derived using population-synthesis methods are compared to the observational data. The population-synthesis analysis shows that a neutron star can increase its mass from the standard value of $m_x \simeq 1.35 M_{\odot}$ to the Oppenheimer–Volkoff limit, $m_x \simeq 2.5 M_{\odot}$, due to accretion.