УДК 524.387-735

ЗАВИСИМОСТЬ ФОРМЫ ПРОФИЛЯ ЛИНИИ ПОГЛОЩЕНИЯ И КРИВОЙ ЛУЧЕВЫХ СКОРОСТЕЙ ОПТИЧЕСКОЙ ЗВЕЗДЫ РЕНТГЕНОВСКОЙ ДВОЙНОЙ СИСТЕМЫ ОТ НАКЛОНЕНИЯ ОРБИТЫ И ОТНОШЕНИЯ МАСС КОМПОНЕНТОВ

© 2005 г. М. К. Абубекеров, Э. А. Антохина, А. М. Черепащук

Государственный астрономический институт им. П.К. Штернберга, Москва, Россия Поступила в редакцию 18.12.2004 г.; принята в печать 18.05.2005 г.

Выполнен расчет теоретических профилей линий поглощения и кривых лучевых скоростей приливнодеформированных оптических звезд рентгеновских двойных систем в ЛТР-приближении. Исследован эффект изменения формы профиля линии и кривой лучевых скоростей оптической звезды в зависимости от наклонения орбиты рентгеновской двойной системы. Показано, что зависимость формы кривой лучевых скоростей от наклонения орбиты i увеличивается с уменьшением отношения масс компонентов $q = m_x/m_v$. Вычислены интегральные профили линий и кривые лучевых скоростей оптической звезды в рентгеновской двойной системе Cyg X-1, по которым оценены наклонение орбиты и масса релятивистского объекта: $i < 43^{\circ}$ и $m_x = 8.2-12.8 M_{\odot}$. Эти оценки хорошо согласуются с результатами интерпретации кривой лучевых скоростей системы Cyg X-1, выполненными авторами ранее с использованием более простой модели ($i < 45^{\circ}$, $m_x = 9.0-13.2 M_{\odot}$).

1. ВВЕДЕНИЕ

Оптический компонент в рентгеновской двойной системе приливно деформирован и имеет сложное распределение температуры по поверхности, обусловленное гравитационным потемнением и эффектом рентгеновского прогрева. Эти эффекты взаимодействия компонентов вызывают орбитальную переменность профилей линий поглощения оптической звезды. Орбитальная переменность профилей линий поглощения приводит не только к зависимости полуамплитуды кривой лучевых скоростей от величины наклонения орбиты *i* и отношения масс компонентов $q = m_x/m_v$, но и к зависимости самой формы кривой лучевых скоростей от этих параметров рентгеновской двойной системы.

Впервые на зависимость формы кривой лучевых скоростей приливно-деформированной оптической звезды от параметров тесной двойной системы было обращено внимание в работе Вильсона и Софии [1]. В работе Антохиной и Черепащука [2] и Шабаза [3] был предложен новый метод определения отношения масс компонентов $q = m_x/m_v$ и наклонения орбиты *i* рентгеновской двойной системы по орбитальной переменности профилей линий поглощения в спектре оптической звезды. В работе Абубекерова и др. [4] выполнена оценка наклонения орбиты рентгеновской двойной системы Суд X-1 по высокоточной наблюдаемой кривой лучевых скоростей.

В данной статье приведены результаты теоретического моделирования кривой лучевых скоростей оптической звезды в модели Роша в ЛТР-приближении для различных значений наклонения орбиты в случае рентгеновских двойных систем с оптическими звездами малых, умеренных и больших масс. Исследованы изменения формы кривой лучевых скоростей при изменении наклонения орбиты i для разных значений q. Изучены соответствующие изменения формы профиля линии поглощения $H\gamma$.

2. СИНТЕЗ КРИВЫХ ЛУЧЕВЫХ СКОРОСТЕЙ ОПТИЧЕСКОЙ ЗВЕЗДЫ

Синтез теоретических профилей абсорбционных линий и кривых лучевых скоростей оптической звезды в рентгеновской двойной системе выполнен с использованием алгоритма, подробно описанного в работах Антохиной и др. [5, 6]. Здесь мы кратко напомним основы этого метода.

Рентгеновская двойная система состоит в модели Роша из оптической звезды и точечного рентгеновского источника. Звезда имеет приливнодеформированную форму и неоднородное распределение температуры по поверхности из-за эффекта гравитационного потемнения и эффекта прогрева поверхности звезды рентгеновским излучением релятивистского объекта.

Р, сут	5.0	Период
m_x, M_{\odot}	10	Масса компактного объекта
m_v, M_{\odot}	var^*	Масса оптической звезды
e	0.0	Эксцентриситет
і, град.	30, 60, 90	Наклонение орбиты
μ	1.0	Коэффициент заполнения полости Роша оптическим компонентом
f	1.0	Коэффициент асинхронности вращения оптического компонента
T_{eff},K	var^*	Эффективная температура оптического компонента
β	0.25^{**}	Коэффициент гравитационного потемнения
k_x	0.1	Отношение рентгеновской светимости релятивистского компонента

Таблица 1. Численные значения параметров, используемых для синтеза кривых лучевых скоростей оптического компонента в модели Роша

Примечание. * Параметр рентгеновской двойной системы менялся в ходе модельных расчетов.

 ** При массе оптической звезды $m_v=1\,M_\odot$ значение коэффициента гравитационного потемнения полагалось равным eta=0.08.

Коэффициент потемнения к краю

к болометрической светимости оптического компонента L_x/L_v

Коэффициент переработки рентгеновского излучения

Поверхность оптической звезды разбивается на ~2600 элементарных площадок, для каждой из которых вычисляется выходящее локальное излучение в ЛТР-приближении. Элементарной площадке соответствуют локальная температура T_{loc} , локальное ускорение силы тяжести gloc и параметр k_r^{loc}, равный отношению падающего рентгеновского потока к выходящему потоку излучения без учета внешнего облучения атмосферы. При этих значениях параметров в данной точке поверхности вычисляется модель атмосферы путем решения уравнений переноса излучения в линии при наличии падающего внешнего рентгеновского излучения. Таким образом для каждой локальной площадки вычисляется интенсивность выходящего излучения в линии и континууме. Для различных фаз орбитального периода вклады площадок в полное излучение суммируются с учетом эффекта Доплера и с учетом условий видимости площадок для наблюдателя, вычисляется интегральный поток излучения от звезды в направлении наблюдателя в континууме и уширенный вращением профиль спектральной линии, по которому определяется лучевая скорость звезды.

0.5

0.3

A

11

Наблюдаемые кривые лучевых скоростей OB-звезд получены преимущественно по линиям поглощения водорода бальмеровской серии, поэтому синтез теоретических кривых лучевых скоростей оптической звезды выполнен нами для линии H γ . Лучевая скорость в данной орбитальной фазе вычислялась по средней длине волны на

is meaning no epequeri gimite dovindi na CROVIDR

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 82 № 10 2005

уровне остаточных интенсивностей 1/3, 1/2 и 2/3 интегрального профиля линии поглощения.

Также, с целью оценки погрешности моделирования, в данной работе для сравнения были параллельно сделаны расчеты тех же самых модельных задач с нашим предыдущим алгоритмом синтеза теоретических кривых лучевых скоростей, который использовался ранее для анализа кривых лучевых скоростей ОВ-сверхгигантов в рентгеновских двойных системах с нейтронными звездами [7] и в системе Суg X-1 [4]. Этот алгоритм был предложен Антохиной и Черепащуком [8] в 1994 г. Его главное отличие от нашего современного алгоритма [5, 6] состоит в том, что локальный профиль элементарной площадки находится не путем построения модели атмосферы и вычисления интенсивности выходящего излучения в линии и в континууме (с учетом переработки внешнего рентгеновского облучения), а с использованием вычисленных и затабулированных Куруцем профилей линий поглощения водорода бальмеровской серии для различных значений эффективных температур T_{eff} и ускорений сил тяжести g. При этом эффект прогрева атмосферы звезды рентгеновским излучением спутника учитывается в простейшей модели путем сложения выходящего и падающего потоков без учета переноса излучения в атмосфере звезды.

Помимо упрощенного учета "эффекта отражения", такой способ вычисления профилей линий поглощения водорода не совсем корректен, поскольку в таблицах Куруца [9] приведены теоре-

m_v, M_{\odot}	T_{eff}^{*}, \mathbf{K}	T_{eff}^{**} , K	$T_{eff}^{***}, { m K}$	Диапазон з по повер	S,%	
				$\lg g$	T_{eff},K	
1	_	5500	5500	2.02-3.15	2800-5930	89
5	14 000	12000	12000	2.02-3.16	6570-12820	93
10	17 000	15000	16000	2.13-3.22	9190-17 060	94
20	26 000	23000	23000	2.23-3.25	14 020-24 540	94
30	29 000	28000	29000	2.28-3.26	18390-31010	96

Таблица 2. Масса оптической звезды и соответствующая ей эффективная температура

Примечание. T_{eff}^* — температура оптической звезды согласно зависимости "масса—светимость"; из работы [11]; T_{eff}^{***} — температура оптической звезды согласно зависимости "масса—светимость"; из работы [12]; T_{eff}^{***} — температура оптической звезды, используемая при расчете кривой лучевых скоростей в данной работе; S — доля площади поверхности звезды, температура которой отличается от средней эффективной температуры T_{eff}^{***} не более чем на 10%.

тические профили линий в относительных потоках, а не в интенсивностях. Однако, поскольку мы используем полученные теоретические профили линий звезды не для сравнения с наблюдаемыми спектральными линиями, а для определения лучевых скоростей, мы сочли такое приближение возможным. Кроме того, для расчетов теоретических кривых лучевых скоростей с использованием описанного алгоритма на основе таблиц Куруца, требуются сравнительно небольшие затраты компьютерного времени. Использование же современного алгоритма [5, 6] с вычислением модели атмосферы для каждой локальной площадки требует существенно больших затрат компьютерного времени и стало возможным только сравнительно недавно с появлением компьютеров с частотой процессора не менее 1 ГГц.

Недостатком нового алгоритма расчета кривых лучевых скоростей является отсутствие вклада в интегральный профиль линии поглощения оптического спутника локальных профилей площадок края диска звезды (требование граничных условий [5, 6]). В то же время у реальных оптических звезд локальные профили площадок края диска не нулевые и вносят вклад в формирование интегрального профиля линии поглощения. Отметим, что старый алгоритм расчета свободен от эффекта "обнуления", вклада локальных профилей площадок края диска в интегральный профиль.

Таким образом, для всех модельных задач в нашей работе выполнены расчеты с использованием двух алгоритмов синтеза теоретических кривых лучевых скоростей. Результаты расчетов двумя методами сравниваются.

Параметры рентгеновской двойной системы, для которой выполнено моделирование, приведены

в табл. 1. Численные значения параметров моделируемой тесной двойной системы взяты на основе каталога [10] как наиболее характерные.

В работе выполнен синтез кривых лучевых скоростей оптических звезд с массами $m_v = 1, 5, 10, 20, 30 M_{\odot}$ (остальные параметры моделируемой двойной системы представлены в табл. 1). С целью исследования зависимости формы кривой лучевых скоростей от наклонения орбиты *i* в работе проведен синтез кривых лучевых скоростей для значений $i = 30^\circ, 60^\circ$ и 90°.

При моделировании кривых лучевых скоростей оптической звезды с массой $m_v = 30\,M_\odot$ с использованием таблиц Куруца [9] значение локального ускорения силы тяжести gloc и локальной температуры Т_{loc} на поверхности оптической звезды выходили за пределы диапазона значений в таблицах, т.е. для некоторого числа локальных площадок профили в таблицах отсутствуют. Число таких площадок невелико (около 10-20%) и все они находятся на "носике", заполняющего полость Роша оптического компонента. В этом случае профиль всех площадок полагался идентичным. В качестве локального профиля использовался профиль линии Ну для средней эффективной температуры и среднего значения ускорения силы тяжести на поверхности оптической звезды. Степень точности подобной аппроксимации проверена в нижеприведенном тестовом расчете (тестовый расчет 1).

Также следует оговорить ситуацию со значением средней эффективной температуры оптической звезды. Средняя температура звезды, заполняющей полость Роша, определяется выражением $T_{eff} = \int T_{loc} dS / \int dS$, где интегрирование проводится по всей поверхности приливнодеформированной звезды. В табл. 2 приведены оценки эффективной температуры по зависимостям "масса-светимость"; из работы Херреро [11]

Рис. 1. Тестовый расчет 1. (а) — Модельная кривая лучевых скоростей оптической звезды с $m_v = 10 M_{\odot}$ и $T_{eff} = 15\,000$ К при $i = 90^{\circ}$ (сплошная линия) и такая же модельная кривая лучевых скоростей, полученная в предположении о постоянстве формы локального профиля (штриховая линия). В данном масштабе кривые лучевых скоростей практически совпадают. Расчет кривых лучевых скоростей произведен на основе использования профиля линии Н γ (в потоках) из таблиц Куруца. (б) — Разность между модулями лучевых скоростей. Более подробно см. текст.

и Страйжиса [12]. Из табл. 2 видно, что эффективные температуры звезд, полученные разными методами, различаются. Поэтому с целью количественной оценки влияния значения эффективной температуры оптической звезды на теоретическую кривую лучевых скоростей в работе проведен тестовый расчет (тестовый расчет 2). В качестве средней эффективной температуры приливнодеформированной звезды использовалась средняя эффективная температура соответствующей равнообъемной сферической звезды. Результаты тестовых расчетов изложены ниже.

Также в табл. 2 приведен диапазон значений эффективной температуры и ускорения силы тяжести на поверхности оптической звезды в модели Роша. Отметим, что число локальных площадок, температура которых T_{loc} отличается от принятой эффективной температуры T_{eff}^{***} более, чем на 10%, крайне невелико (табл. 2).

Тестовый расчет 1. Влияние аппроксимации локального профиля на теоретическую кривую лучевых скоростей

Напомним, что в этом тестовом расчете проверяется, насколько различаются лучевые скорости, вычисленные двумя различными способами

Рис. 2. То же, что на рис. 1, для параметров оптической звезды $m_v = 20 M_{\odot}$ и $T_{eff} = 23\,000$ К.

с использованием таблиц Куруца [9]. Выполнен синтез кривой лучевых скоростей для оптической звезды с массой $m_v = 10 \, M_\odot$ и средней эффективной температурой поверхности $T_{eff} = 15\,000$ К (остальные параметры двойной системы содержатся в табл. 1). В рамках ЛТР-приближения каждой локальной площадке ставится в соответствие ее истинный локальный профиль линии поглощения Ну согласно таблицам Куруца. Полученная кривая лучевых скоростей представлена сплошной линией на рис. 1а. Затем для оптической звезды нами построена кривая лучевых скоростей в предположении, что форма локального профиля всех площадок одинакова, но при сложении профилей по поверхности звезды учитывается нормировка на континуум. В качестве такого профиля использовался профиль линии поглощения водорода $H\gamma$ для средней эффективной температуры и силы тяжести оптической звезды. В случае звезды с $m_v = 10 \, M_\odot$ использовался профиль из таблиц Куруца [9], соответствующий $T_{loc} = 15\,000$ К и $\lg q_{loc} = 3.2$. Полученная кривая лучевых скоростей представлена пунктирной линией на рис. 1а. На рис. 1б показана разность между модулем лучевой скорости, полученной по "истинным", локальным профилям, и модулем лучевой скорости, полученной в предположение тождественности формы локальных профилей каждой площадки. Видно, что разность между кривыми лучевых скоростей не превышает 1.7 км/с, что составляет ~1% от полуамплитуды кривой лучевых скоростей. Аналогичный расчет выполнен для рентгеновской ТДС с массой оптической звезды $m_v = 20 \, M_{\odot}$. Полученные кривые лучевых скоростей показаны на рис. 2а. В этом случае расхождение между кри-

Рис. 3. Тестовый расчет 2. (а) — Модельная кривая лучевых скоростей оптической звезды с $m_v =$ = 10 M_{\odot} , $i = 90^{\circ}$, $T_{eff} = 10\,000$ K (сплошная линия) и модельная кривая лучевых скоростей при тех же параметрах и $T_{eff} = 17\,000$ K (штриховая линия). Расчет кривых лучевых скоростей произведен на основе использования профиля линии $H\gamma$ (в потоках) из таблиц Куруца. (б) — Разность между модулями лучевых скоростей $\Delta = |V_r(T_{eff} = 17\,000$ K)| — $- |V_r(T_{eff} = 10\,000$ K)|. Более подробно см. текст.

выми лучевых скоростей не превышало 2 км/с или 1.6% от полуамплитуды кривой лучевых скоростей (рис. 26).

Тестовый расчет 2. Влияние значения эффективной температуры оптической звезды на теоретическую кривую лучевых скоростей

Как отмечено выше, эффективная температура оптической звезды обычно точно неизвестна. Из табл. 2 видно, что наблюдаемая эффективная температура, определенная по зависимости "массасветимость", по данным разных авторов [11, 12] несколько различается. Поэтому мы провели тестовый расчет для оценки влияния значения температуры оптической звезды на теоретическую кривую лучевых скоростей. Для этого выполнен синтез кривой лучевых скоростей для тесной двойной системы с массой оптической звезды $m_v = 10\,M_\odot$ и наклонением орбиты $i = 90^\circ$ при $T_{eff} = 10\,000$ К и $T_{eff} = 17\,000$ К (специально выбран широкий диапазон изменения эффективной температуры). Полученные кривые лучевых скоростей представлены на рис. За (остальные параметры двойной системы содержатся в табл. 1). Поскольку расхождение между кривыми лучевых скоростей незначительно, то на рис. Зб представлена разность их модулей. Под разностью

Рис. 4. Теоретические профили линии поглощения CaI 6439 Å без учета влияния инструментального профиля (рассчитанные с новым алгоритмом [5, 6]) в орбитальной фазе $\phi = 0.0$ при наклонении орбиты $i = 30^{\circ}$ (сплошная линия) и в орбитальной фазе $\phi = 0.35$ при наклонении орбиты $i = 30^{\circ}$ (пунктирная линия), 60° (штрих-пунктирная линия) и 90° (штриховая линия). Модельные профили получены в ЛТР-приближении при массе оптической звезды $m_v = 1 M_{\odot}$ и $T_{eff} = 5500$ K (остальные параметры содержатся в табл. 1). Приведенные профили линии поглощения CaI 6439 Å для фазы 0.35 исправлены за орбитальное доплеровское смещение.

модулей лучевых скоростей понимается величина $\Delta = |V_r(T_{eff} = 17\,000 \text{ K})| - |V_r(T_{eff} = 10\,000 \text{ K})|,$ где $|V_r(T_{eff} = 17\,000 \text{ K})| -$ значение модуля лучевой скорости оптической звезды в модели Роша при средней эффективной температуре ее поверхности $T_{eff} = 17\,000 \text{ K}, a |V_r(T_{eff} = 10\,000 \text{ K})| -$ то же самое при средней эффективной температуре поверхности оптической звезды $T_{eff} = 10\,000 \text{ K}.$ Из рис. Зб видно, что максимальное расхождение модулей лучевых скоростей, полученных при $T_{eff} = 10\,000 \text{ K}$ и $T_{eff} = 17\,000 \text{ K},$ происходит на орбитальных фазах 0.35-0.45 и достигает 5 км/с или 2.6% от полуамплитуды кривой лучевых скоростей.

Из тестового расчета видно, что неоднозначность значения средней эффективной температуры оптической звезды ($\Delta T_{eff} \simeq 5000-7000$ K) приводит к уже заметной вариации формы кривой лучевых скоростей. Вариация формы кривой лучевых скоростей различна в разных орбитальных фазах (рис. 36). На фазах 0.35–0.45 она максимальна и может доходить до ~3% от полуамплитуды кривой лучевых скоростей. Как уже отмечено, неоднозначность эффективной температуры оптической звезды в тестовом расчете была искусственно завышена. Согласно табл. 2, максимальная неопределенность эффективной температуры не превышает

Рис. 5. То же, что на рис. 4, для линии поглощения $H\gamma$ и параметров оптической звезды $m_v = 20 M_{\odot}$, $T_{eff} = 23\,000$ К.

3000 К, поэтому неоднозначность кривой лучевых скоростей не превышает ~1%.

На основе наших расчетов можно сделать вывод, что в случае использования кривой лучевых скоростей для определения параметров двойной системы значение средней эффективной температуры оптической звезды T_{eff} должно быть известно с максимально возможной точностью.

3. ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ФОРМЫ КРИВОЙ ЛУЧЕВЫХ СКОРОСТЕЙ ОТ ОТНОШЕНИЯ МАСС *q* И НАКЛОНЕНИЯ ОРБИТЫ *i*

В работе выполнен расчет кривых лучевых скоростей как без учета влияния аппаратной функции на теоретический интегральный профиль, так и с учетом этого влияния.

Расчет кривых лучевых скоростей без учета влияния аппаратной функции на теоретический профиль линии поглощения

Нами в ЛТР-приближении в модели Роша выполнен синтез кривых лучевых скоростей оптических звезд с массами $m_v = 1, 5, 10, 20$ и $30 M_{\odot}$ (остальные модельные параметры рентгеновской двойной содержатся в табл. 1). Для оптической звезды с массой $m_v = 1 M_{\odot}$ синтез кривой лучевых скоростей выполнен по линии поглощения CaI 6439 Å. Синтез кривых лучевых скоростей оптических звезд с массами $m_v = 5, 10, 20$ и $30 M_{\odot}$ выполнен по линии поглощения $H\gamma$ двумя методами, описанными выше (первый метод — интенсивность локального профиля элементарной площадки вычисляется на основе построения модели атмосферы [5, 6], второй метод — профиль линии

Рис. 6. (а) - Теоретическая кривая лучевых скоростей оптической звезды с $m_v = 1 M_{\odot}, T_{eff} = 5500$ К, вычисленная без учета влияния аппаратной функции на модельный интегральный профиль линии поглощения Cal 6439 Å (остальные параметры ТДС представлены в табл. 1), при наклонении орбиты $i = 30^{\circ}$ (пунктирная линия), 60° (штрих-пунктирная линия) и 90° (сплошная линия). Кривые лучевых скоростей рассчитаны с новым алгоритмом [5, 6]. (б) - Те же кривые лучевых скоростей, нормированные на свое значение полуамплитуды кривой лучевых скоростей для $i = 30^{\circ}$ (пунктирная линия), 60° (штрих-пунктирная линия) и 90° (сплошная линия). В данном масштабе кривые почти совпадают. (в) - Разность модулей нормированных лучевых скоростей $\Delta_I = |V_{norm}(i)|$ $| = 90^{\circ}) | - |V_{norm}(i = 60^{\circ})|$ (штриховая линия) и $\Delta_I =$ $|V_{norm}(i=90^\circ)| - |V_{norm}(i=30^\circ)|$ (сплошная линия). Величина Δ_I указана в единицах полуамплитуды кривой лучевых скоростей К_v (более подробно см. текст).

вычисляется на основе профилей линий в потоках из таблиц Куруца [8, 13]). Теоретические интегральные профили линии поглощения Cal 6439 Å и Н γ представлены на рис. 4 и 5. Для каждого значения m_v выполнен синтез кривой лучевых скоростей оптического компонента для наклонения орбиты $i = 30^\circ$, $i = 60^\circ$ и $i = 90^\circ$. Полученные теоретические кривые лучевых скоростей оптических звезд с массами $m_v = 1 M_{\odot}$, 20 M_{\odot} и 30 M_{\odot} представлены на рис. 6а, 7а и 8а, соответственно.

С увеличением наклонения орбиты *i* также уве-

Рис. 7. (а) — Теоретическая кривая лучевых скоростей оптической звезды с $m_v = 20 M_{\odot}, T_{eff} = 23\,000$ K, вычисленная без учета влияния аппаратной функции на модельный интегральный профиль линии поглощения Ну (остальные параметры ТДС представлены в табл. 1), при наклонении орбиты $i = 30^{\circ}$ (пунктирная линия), 60° (штрих-пунктирная линия) и 90° (сплошная линия). Кривые лучевых скоростей рассчитаны со старым алгоритмом [8, 13] (с использованием профилей линий поглощения $H\gamma$ в потоках из таблиц Куруца). (б) — Те же кривые лучевых скоростей, нормированные на свое значение полуамплитуды кривой лучевых скоростей для $i = 30^{\circ}$ (пунктирная линия), 60° (штрих-пунктирная линия) и 90° (сплошная линия). (в) - Разность модулей нормированных лучевых скоростей $\Delta_F = |V_{norm}(i=90^\circ)| - |V_{norm}(i=1)|$ $= 60^{\circ})|$ (штриховая линия) и $\Delta_F = |V_{norm}(i = 90^{\circ})| -$ $-|V_{norm}(i=30^\circ)|$ (сплошная линия). Величина Δ_F указана в единицах полуамплитуды кривой лучевых скоростей K_v (более подробно см. текст).

личивается и значение полуамплитуды кривой лучевых скоростей K_v (рис. 6а, 7а, 8а). Поэтому каждая теоретическая кривая лучевых скоростей была пронормирована на свою величину K_v , за которую принималось максимальное значение лучевой скорости из интервала орбитальных фаз 0.0–0.5. Нормированные кривые лучевых скоростей оптических звезд с массами $m_v = 1, 20, 30 M_{\odot}$ представлены на рис. 6б, 76, 86. Поскольку эффект различая формы кривых лучевых скоростей сравнительно невелик (относительно полуамплитуды

Рис. 8. То же, что на рис. 6, для линии поглощения $H\gamma$ и параметров оптической звезды $m_v = 30 M_{\odot}$, $T_{eff} = 29\,000$ К.

кривых лучевых скоростей K_v), то нами вычислена разность модулей нормированных лучевых скоростей $\Delta = |V_{norm}(i = 90^\circ)| - |V_{norm}(i = 30^\circ)|$ и разность $\Delta = |V_{norm}(i = 90^\circ)| - |V_{norm}(i = 60^\circ)|,$ где $|V_{norm}(i = 90^\circ)|$, $|V_{norm}(i = 60^\circ)|$ и $|V_{norm}(i = 60^\circ)|$ = 30°) – модули нормированных лучевых скоростей для наклонения орбиты $i = 90^{\circ}, i = 60^{\circ}$ и $i = 30^{\circ}$, соответственно. Максимальное значение разности между нормированными кривыми лучевых скоростей, полученными двумя разными алгоритмами для оптических спутников с массами $m_v = 1, 20, 30 M_{\odot}$ представлена в табл. 3 и 4. Максимальное значение разности между нормированными кривыми лучевых скоростей достигается на орбитальных фазах 0.35-0.45 и 0.55-0.65. Обозначим через Δ_I максимальное значение эффекта изменения формы кривой лучевых скоростей при изменении наклонения орбиты, полученное с алгоритмом, в котором интенсивность выходящего излучения вычисляется на основе построения модели атмосферы локальной площадки [5, 6]. Величиной Δ_F обозначим максимальное значение эффекта изменения формы кривой лучевых скоростей при изменении наклонения орбиты, полученное с алгоритмом, в котором используются теоретиче-

Таблица 3. Максимальное значение эффекта изменения формы кривой лучевых скоростей в модели Роша при изменении наклонения орбиты с 60° на 90°

m_v, M_{\odot}	$\Delta_I,\%$	$\Delta_F, \%$
1	0.3	—
5	0.4	1.1
10	0.6	1.5
20	1.1	2.3
30	1.9	2.9

Примечание. Величина эффекта Δ_I и Δ_F выражена в единицах полуамплитуды K_v . Более подробное пояснение см. в тексте.

ские профили линий в потоках, взятые из таблиц Куруца [8, 13].

Разность модулей нормированных лучевых скоростей для масс оптических звезд $m_v = 1, 20, 30 M_{\odot}$, представлена на рис. 6в, 7в, 8в. Из рисунков также видно, что максимальное различие формы кривых лучевых скоростей, полученных при разных значениях *i*, происходит на орбитальных фазах 0.35–0.45 и 0.55–0.65.

Из расчетов следует, что величина эффекта вариации формы кривой лучевых скоростей зависит не только от наклонения орбиты i, но и от отношения масс компонентов $q = m_x/m_v$. Так, например, максимальная величина изменения формы кривой (в единицах полуамплитуды кривой лучевых скоростей) при вариации наклонения орбиты с $i = 30^{\circ}$ на $i = 90^{\circ}$ для звезд с массами $m_v = 1, 5, 10, 20$ и $30 M_{\odot}$ составляет $\Delta_F = 0.9, 3.2, 4.6, 5.7$ и 8%, соответственно.

Таким образом, эффект изменения формы кривой лучевых скоростей с наклонением орбиты более ярко выражен в системах с малым отношением масс компонентов $q = m_x/m_v$. Это связано с тем, что при q < 1 центр масс двойной системы лежит в теле оптической звезды, поэтому при орбитальном движении области поверхности звезды, лежащие вблизи внутренней точки Лагранжа, движутся в том же направлении, что и релятивистский объект. Это приводит к сильному искажению суммарного профиля линии поглощения, зависящему от наклонения орбиты *i* и отношения масс компонентов *q*.

Расчет кривых лучевых скоростей с учетом влияния аппаратной функции на теоретический профиль линии поглощения

Как и в предыдущем случае синтез кривых лучевых скоростей был выполнен для оптических звезд с массами $m_v = 1, 5, 10, 20$ и $30 M_{\odot}$ (остальные параметры двойной системы представлены в табл. 1).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 82 № 10 2005

Таблица 4. Максимальное значение эффекта изменения формы кривой лучевых скоростей в модели Роша при изменении наклонения орбиты с 30° на 90°

m_v, M_{\odot}	$\Delta_I,\%$	$\Delta_F,\%$
1	0.9	—
5	1.5	3.2
10	2.5	4.6
20	4.2	5.7
30	6.5	8.0

Примечание. Величина эффекта Δ_I и Δ_F выражена в единицах полуамплитуды K_v . Более подробное пояснение см. в тексте.

За аппаратную функцию спектрографа принята гауссиана. Свертка профиля линии CaI 6439 Å осуществлялась с аппаратной функцией с величиной FWHM = 1 Å (FWHM – полная ширина на половине интенсивности). При синтезе кривых лучевых скоростей звезд с массами $m_v = 5$, 10, 20 и 30 M_{\odot} производилась свертка теоретического профиля линии поглощения H γ с аппаратной функцией с величиной FWHM = 7 Å. Свернутые теоретические профили линии поглощения СаI 6439 Å и линии поглощения водорода H γ представлены на рис. 9 и 10, соответственно.

Нами проведено аналогичное описанному выше исследование изменения формы кривой лучевых скоростей с вариацией наклонения орбиты. Максимальное изменение формы кривой лучевых скоростей по-прежнему происходит на фазах 0.35-0.45. Величина эффекта изменения формы кривой лучевых скоростей при изменении наклонения орбиты с $i = 60^{\circ}$ на $i = 90^{\circ}$, полученная двумя разными

Рис. 9. То же, что на рис. 4, для случая учета влияния инструментального профиля с FWHM = 1 Å.

Таблица 5. Максимальное значение эффекта изменения формы кривой лучевых скоростей в модели Роша при изменении наклонения орбиты с 60° на 90° с учетом влияния аппаратной функции на теоретический интегральный профиль линии поглощения

m_v, M_{\odot}	$\Delta_I, \%$	$\Delta_F,\%$
1	0.3	—
5	0.4	1.1
10	0.6	1.4
20	1.1	1.7
30	2.0	3.0

Примечание. Величина эффекта Δ_I и Δ_F выражена в единицах полуамплитуды K_v . Более подробное пояснение см. в тексте.

алгоритмами, содержится в табл. 5. Аналогичные величины для случая изменения наклонения орбиты с $i = 30^{\circ}$ на $i = 90^{\circ}$ содержатся в табл. 6. Сравнение табл. 3, 4 и табл. 5, 6 показывают, что результаты, полученные без учета инструментального профиля и с его учетом, в пределах возможных ошибок вычисления интегральных профилей линий практически совпадают.

Таким образом, эффект изменения формы кривой лучевых скоростей с наклонением орбиты не "замывается" аппаратной функцией спектрографа, что говорит о возможности оценки наклонения орбиты двойной системы по высокоточной наблюдаемой кривой лучевых скоростей. Возможность оценки наклонения орбиты двойной системы с той или иной массой оптической звезды сводится лишь к необходимой точности наблюдаемой кривой лучевых скоростей. Так для двойных систем с массивными оптическими звездами $m_v = 20-30 M_{\odot}$ (близкими к заполнению своей полости Роша)

Рис. 10. То же, что на рис. 5, для случая учета влияния инструментального профиля с FWHM = 7 Å.

Таблица 6. Максимальное значение эффекта изменения формы кривой лучевых скоростей в модели Роша при изменении наклонения орбиты с 30° на 90° с учетом влияния аппаратной функции на моделируемый интегральный профиль линии поглощения

m_v, M_{\odot}	$\Delta_I,\%$	$\Delta_F, \%$
1	0.9	—
5	1.6	3.3
10	2.4	4.2
20	4.2	5.5
30	6.8	8.7

Примечание. Величина эффекта Δ_I и Δ_F выражена в единицах полуамплитуды K_v . Более подробное пояснение см. в тексте.

точность наблюдаемой кривой лучевых скоростей должна быть лучше 7-8% от полуамплитуды кривой лучевых скоростей К_v. В случае оценки наклонения орбиты по наблюдаемой кривой лучевых скоростей для систем с массами звезд $m_v =$ $= 1 - 10 \, M_{\odot}$ (близкими к заполнению своей полости Роша) ее точность должна быть лучше 1-4% от полуамплитуды кривой лучевых скоростей К_v. Например, в работе [4] проведена оценка наклонения орбиты двойной системы Суд Х-1 по высокоточной кривой лучевых скоростей. Точность σ_{Vr} наблюдаемой кривой лучевых скоростей системы Cyg X-1 составляла ~3% от величины ее полуамплитуды K_v . При массе оптической звезды $m_v \simeq 20 \, M_{\odot}$ это позволило наложить ограничение на наклонение орбиты ($i < 45^{\circ}$) двойной системы на основе лишь наблюдаемой кривой лучевых скоростей.

4. ИНТЕРПРЕТАЦИЯ НАБЛЮДАЕМОЙ КРИВОЙ ЛУЧЕВЫХ СКОРОСТЕЙ СИСТЕМЫ Суд X-1

В работе [4] интерпретация средней кривой лучевых скоростей системы Суд Х-1 была выполнена с более ранним алгоритмом, в котором в качестве локальных профилей элементарных площадок на звезде использовались профили линии Ну из таблиц Куруца [9], выраженные в потоках. Однако, как видно из табл. 3-6, эффекты вариации формы кривых лучевых скоростей, вычисленных со старым и с новым алгоритмом, несколько различаются. В связи с этим нами выполнена интерпретация высокоточной усредненной кривой лучевых скоростей работы [4] с новым алгоритмом, в котором интегральный профиль линии поглощения Ну рассчитывается в интенсивностях на основе построения модели атмосферы локальных площадок [5, 6]. Согласно результатам расчетов со старым алгоритмом масса компактного объекта в двойной

Рис. 11. (а) — Зависимости массы компактного объекта рентгеновской двойной Суд X-1 от массы оптической звезды для наклонений орбиты $i = 30^{\circ}$, 35° , 40° , 45° , 55° и 65° полученные в модели Роша при интерпретации усредненной высокоточной кривой лучевых скоростей двойной системы Суд X-1 из работы [4]. Наклонение орбиты указано около соответствующей кривой. (б) — То же, что на графике (а), с учетом влияния аппаратной функции с FWHM = 7 Å на моделируемый интегральный профиль линии Н γ оптического спутника. При вычислении интегрального профиля линии Н γ и кривых лучевых скоростей использовался новый алгоритм [5, 6].

системе Суд X-1 заключена в диапазоне $m_x = 9.0-13.2 M_{\odot}$ [4]. Ни одна модель двойной системы с наклонением орбиты $i < 45^{\circ}$ не удовлетворяет высокоточной наблюдаемой кривой лучевых скоростей [4].

Для проверки адекватности модели наблюдательным данным использовался статистический критерий Фишера. Метод подробно изложен в работе Абубекерова и др. [4] и поэтому здесь не приводится. Как и в предыдущей нашей работе [4], проверка адекватности модели наблюдательным данным осуществлялась по уровню значимости $\alpha = 5\%$.

Интерпретация высокоточной кривой лучевых скоростей с новым алгоритмом проведена с учетом и без учета влияния аппаратной функции на модельный интегральный профиль линии поглощения $H\gamma$ оптической звезды. Ширина аппаратной функции FWHM принята равной 7 Å. Анализ высокоточной наблюдаемой кривой лучевых скоростей двойной системы Cyg X-1 проведен для значений массы оптического спутника $m_v = 20, 30, 40, 50$ и 60 M_{\odot} . Остальные параметры модели содержатся в табл. 2 работы [4]. Результатом анализа явилась зависимость между массой оптической

звезды и релятивистского объекта для наклонения орбиты $i = 30^{\circ}, 35^{\circ}, 40^{\circ}, 45^{\circ}, 55^{\circ}, 65^{\circ}.$ Зависимости представлены на рис. 11.

Согласно результатам расчета наклонения орбиты $i < 45^{\circ}$ по-прежнему отвергаются по 5% уровню значимости. Полученные оценки массы приведены в табл. 7 и 8.

массе оптической При звезды $m_v =$ $= 22 M_{\odot}$ [4, 11] наклонение орбиты *i* не превышает 43° (рис. 11). Принимая во внимание результаты анализа фотометрической кривой блеска, накладывающие ограничение на наклонение орбиты снизу $i > 31^{\circ}$ [14], можно сделать вывод, что масса релятивистского спутника в двойной системе Cyg X-1 (при массе оптической звезды $m_v = 22 \, M_{\odot}$) заключена в пределах $m_x =$ $= 8.4 - 12.8 M_{\odot}$ (рис. 11а) и $m_x = 8.2 - 12.6 M_{\odot}$ (рис. 11б). Напомним, что согласно результатам нашей предыдущей интерпретации кривой лучевых скоростей Суд X-1 [4], наклонение орбиты $i < 45^{\circ}$, масса релятивистского объекта $m_x = 9.0 - 13.2 M_{\odot}$ (при массе оптической звезды $m_v = 22 \, M_{\odot}$). Таким образом, результаты интерпретации наблюдательных данных с новым (более корректным)

Таблица 7. Масса релятивистского компонента в зависимости от массы оптического компонента, полученная в модели Роша для наклонения орбиты $i = 30^{\circ}$, 35° , 40° , 45° , 55° и 65° без учета влияния аппаратной функции на модельный интегральный профиль линии Н γ

m_v, M_{\odot}	m_x, M_{\odot}						
	$i = 30^{\circ}$	$i = 35^{\circ}$	$i = 40^{\circ}$	$i = 45^{\circ}$	$i = 55^{\circ}$	$i = 65^{\circ}$	
20	$12.75_{-0.30}^{+0.25}$	$10.55_{-0.17}^{+0.19}$	$9.03\substack{+0.02\\-0.02}$	8.0	6.60	5.80	
30	$15.97^{+0.36}_{-0.32}$	$13.35_{-0.25}^{+0.20}$	$11.47_{-0.07}^{+0.08}$	10.15	8.45	7.40	
40	$18.85_{-0.40}^{+0.40}$	$15.75_{-0.25}^{+0.30}$	$13.65_{-0.15}^{+0.10}$	12.05	10.05	8.80	
50	$21.45_{-0.40}^{+0.50}$	$18.03\substack{+0.32\\-0.33}$	$15.60^{+0.15}_{-0.15}$	13.85	11.50	10.10	
60	$23.95_{-0.55}^{+0.50}$	$20.10_{-0.35}^{+0.35}$	$17.43_{-0.23}^{+0.22}$	15.50	12.90	11.30	

Примечание. Доверительные интервалы для массы релятивистского объекта m_x для наклонения орбиты $i = 45^{\circ}$, 55° и 65° не указаны, так как в этих случаях модель двойной системы отвергается по уровню значимости $\alpha = 5\%$.

Таблица 8. Масса релятивистского компонента в зависимости от массы оптического компонента, полученная в модели Роша для наклонения орбиты $i = 30^{\circ}, 35^{\circ}, 40^{\circ}, 45^{\circ}, 55^{\circ}$ и 65° с учетом влияния на интегральный профиль линии Н γ аппаратной функции с FWHM = 7 Å

m_v, M_{\odot}	m_x, M_{\odot}						
	$i = 30^{\circ}$	$i = 35^{\circ}$	$i = 40^{\circ}$	$i = 45^{\circ}$	$i = 55^{\circ}$	$i = 65^{\circ}$	
20	$12.60_{-0.28}^{+0.30}$	$10.45_{-0.20}^{+0.20}$	$8.95_{-0.10}^{+0.10}$	7.9	6.50	5.70	
30	$15.83_{-0.38}^{+0.37}$	$13.18_{-0.23}^{+0.27}$	$11.35_{-0.10}^{+0.15}$	10.05	8.30	7.30	
40	$18.70_{-0.45}^{+0.40}$	$15.65\substack{+0.30\\-0.30}$	$13.48^{+0.17}_{-0.13}$	11.95	9.90	8.60	
50	$21.30_{-0.45}^{+0.50}$	$17.85_{-0.35}^{+0.35}$	$15.43_{-0.18}^{+0.17}$	13.65	11.30	9.90	
60	$23.75_{-0.55}^{+0.50}$	$19.95\substack{+0.35 \\ -0.40}$	$17.25_{-0.22}^{+0.23}$	15.30	12.65	11.10	

Примечание. Доверительные интервалы для массы релятивистского объекта m_x для наклонения орбиты $i = 45^{\circ}$, 55° и 65° не указаны, так как в этих случаях модель двойной системы отвергается по уровню значимости $\alpha = 5\%$.

алгоритмом [5, 6] и старым алгоритмом [8, 13] находятся в хорошем согласии.

На примере двойной системы Cyg X-1 видно, что точности усредненной наблюдаемой кривой лучевых скоростей 3% (от полуамплитуды ~75 км/с) оказалось достаточно, чтобы с помощью одной кривой лучевых скоростей наложить ограничение на наклонение орбиты двойной звездной системы и оценить массу черной дыры.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Модельные расчеты показали, что эффект изменения формы кривой лучевых скоростей оптической звезды при вариации наклонения орбиты более ярко выражен в двойных системах с массивными оптическими спутниками (или малым значением отношения масс компонент $q = m_x/m_v$). Также было показано, что для оптических звезд малых, умеренных и больших масс эффект изменения формы кривой лучевых скоростей с изменением наклонения орбиты качественно подобен — максимальное изменение формы кривой лучевых скоростей (в единицах полуамплитуды K_v) происходит в интервале орбитальных фаз 0.35–0.45 и 0.55–0.65.

Эффект изменения формы кривой лучевых скоростей связан с изменением формы профиля линии поглощения, по которой определяется лучевая скорость. Напомним, что лучевая скорость определяется по среднему значению длины волны, найден-

Рис. 12. Оптическая звезда рентгеновской двойной системы в модели Роша с q = 1 при степени заполнения полости Роша $\mu = 1$ и наклонении орбиты $i = 30^\circ$, 60° , 90° в орбитальных фазах 0.0, 0.35, 0.5. При $i = 90^\circ$ проекция звезды на картинную плоскость сильно меняется (от круговой до "грушевидной"). "Носик" звезды то затмевается, то нет, что приводит к сильному искажению профиля линии и кривой лучевых скоростей. При $i = 30^\circ$ форма проекции звезды на картинную плоскость почти не меняется – меняется лишь позиционный угол фигуры, что не влияет на форму кривой лучевых скоростей.

ному с использованием трех уровней: 1/3, 1/2 и 2/3 от максимальной глубины линии поглощения. Форма профиля линии поглощения оптической звезды в тесной двойной системе претерпевает изменения как в случае ее орбитального движения, так и в случае изменения угла зрения стороннего наблюдателя на двойную систему. Зависимость формы профиля линии поглощения оптической звезды, вызванная ее орбитальным движением, уже обсуждалась в работах [1–3]. Она связана с изменением фигуры проекции оптической звезды на картинную плоскость наблюдателя. Теперь рассмотрим, как влияет на форму профиля линии поглощения и кривую лучевых скоростей изменение наклонения орбиты двойной системы i.

Оптическая звезда, близкая к заполнению своей полости Роша, в двойной системе приливно деформирована и имеет сложное распределение поля скоростей, температуры и ускорения силы тяжести по поверхности. Поэтому при изменении накло-

нения орбиты і двойной системы на картинную плоскость наблюдателя с точки зрения параметров поверхности звезды проецируются качественно другие области оптического спутника (рис. 12). Вследствие этого форма профиля линии поглощения также претерпевает изменения. В результате изменения формы профиля линии поглощения с наклонением орбиты меняется и форма кривой лучевых скоростей. На рис. 4 и 5 соответственно представлены профили интегральной линии поглощения CaI 6439 А и профиль интегральной линии поглощения водорода Ну, полученные без учета влияния инструментального профиля, при наклонении орбиты двойной системы $i = 30^{\circ}, 60^{\circ}$ и 90° . Из рисунков видно, что форма профилей, полученных для разных наклонений орбиты, различна. Профили заметно асимметричны, и эта асимметрия усиливается с увеличением наклонения орбиты *i*.

Зависимость формы профиля линии поглощения и, как следствие, формы кривой лучевых скоростей от наклонения орбиты і возрастает с уменьшением отношения масс компонентов q. Возвращаясь к результатам расчетов, видим, что при отношении масс компонентов q = 1 - 10эффект изменения формы кривой лучевых скоростей составляет ~1-4% (рис. 6). При значении q = 0.3 - 0.5 эффект изменения формы кривой лучевых скоростей составляет ~4-8% (рис. 7 и 8). Видно, что величина эффекта зависимости формы кривой лучевых скоростей от *i* растет с уменьшением отношения масс компонентов q = $= m_x/m_v$. Это связано с пространственным расположением центра масс двойной системы относительно тела оптической звезды. С уменьшением отношения масс компонентов q барицентр двойной системы смещается к оптическому спутнику. При отношениях масс компонентов q < 1 центр масс двойной системы лежит уже в теле оптической звезды. В этом случае (q < 1) "носик" оптической звезды движется в том же направлении по орбите, что и релятивистский объект, внося максимальное искажение в суммарный профиль линии поглощения оптической звезды. Вследствие этого форма кривой лучевых скоростей при отношении масс компонентов q < 1 более чувствительна к наклонению орбиты по сравнению со случаем q > 1.

При орбитальном движении оптической звезды размер ее проекции на картинную плоскость наблюдателя меняется. Степень асимметрии формы линии поглощения зависит не только от асимметрии поля скоростей элементарных площадок и асимметрии распределения параметров T_{loc} и $\lg g_{loc}$ относительно геометрического центра проекции, но и от градиента этих параметров по поверхности проекции оптического спутника. Наиболее экстремальной областью с точки зрения физических параметров и их градиента является "носик" оптической звезды (близкой к заполнению своей полости Роша). В орбитальных фазах 0.35-0.45 и 0.55-0.65 большая часть "носика" оптического спутника открыта для наблюдателя. Поэтому распределение параметров T_{loc} , $\lg g_{loc}$ и их градиента относительно геометрического центра проекции звезды максимально асимметрично. Это делает форму интегрального профиля линии поглощения оптической звезды на фазах 0.35-0.45 и 0.55-0.65 максимально асимметричной и максимально чувствительной к изменению наклонения орбиты по сравнению с другими орбитальными фазами (рис. 4 и 5).

Таким образом, наиболее сильная орбитальная переменность профиля линий поглощения в спектре оптической звезды наблюдается при наклонения орбиты $i \simeq 90^{\circ}$ и отношении масс компонентов q < 1, так как для стороннего наблюдателя в процессе орбитального движения "носик" оптической звезды затмевается ее телом. Фигура звезды в проекции на картинную плоскость при $i = 90^{\circ}$ меняется очень сильно: проекция звезды становится то почти круглой, то "грушевидной", что вызывает максимальную асимметрию кривой лучевых скоростей. При наклонении орбиты $i \ll 90^{\circ}$ затмения "носика" звезды в процессе ее орбитального движения не происходит. Фигура проекции звезды, а также области ее поверхности, проектирующиеся на картинную плоскость, остаются почти неизменными (меняется лишь ориентация этой фигуры в картинной плоскости), что делает профиль линии менее чувствительным к орбитальным перемещениям оптической звезды. Рисунок 12 поясняет сказанное.

6. ЗАКЛЮЧЕНИЕ

Основным результатом работы является количественная оценка эффекта вариации формы кривой лучевых скоростей оптической звезды в тесной двойной системе в зависимости от наклонения орбиты i и отношения масс q для звезд разных масс и температур (табл. 3–6).

Также важным результатом работы является повторная интерпретация высокоточной кривой лучевых скоростей оптической звезды в рентгеновской двойной системе Суд X-1 с новым, более корректным алгоритмом синтеза теоретической кривой лучевых скоростей (на основе вычисления модели атмосферы для каждой площадки [5, 6]). Как показали расчеты, точности кривой лучевых скоростей (~3% от полуамплитуды кривой лучевых скоростей K_v) достаточно, чтобы наложить ограничение на наклонение орбиты: $i < 43^{\circ}$ при использовании лишь одной кривой лучевых скоростей.

Согласно результатам тестовых расчетов величина эффекта изменения формы кривой лучевых скоростей при вариации наклонения орбиты і растет с массой оптической звезды (табл. 3-6). Наибольшее значение этот эффект имеет в двойных системах с отношением масс компонентов q < 1(табл. 3-6). За оценку необходимой точности наблюдаемой кривой лучевых скоростей Δ для определения наклонения орбиты наблюдаемых двойных звездных систем можно принять величину эффекта изменения формы кривой лучевых скоростей, приведенную в табл. 3-6. Таким образом, в первую очередь оценка наклонения орбиты возможна в рентгеновских двойных системах с массивными оптическими спутниками ($m_v > 10 \, M_{\odot}$ при наличии в качестве релятивистского компаньона черной дыры массой $m_x \simeq 10 \, M_{\odot}$). Требуемая точность наблюдаемой кривой лучевых скоростей должна быть лучше 4-8%. Заметим, что все расчеты нами проводились для массы релятивистского объекта

 $m_x = 10 \ M_{\odot}$. Поскольку эффект вариации формы кривой лучевых скоростей преимущественно определяется отношением масс компонентов $q = m_x/m_v$, то основные выводы статьи применимы и для рентгеновских двойных систем с нейтронными звездами с $m_x \simeq 1.4 \ M_{\odot}$. В этом случае величина обсуждаемого эффекта может быть достаточно велика для оценки наклонения орбиты при массах оптического спутника $m_v \gtrsim 1 \ M_{\odot}$.

Подчеркнем, что синтез кривых лучевых скоростей по линии поглощения водорода Ну и линии Cal 6439 А выполнен нами в ЛТР-приближении. Известно, что ЛТР-приближение не годится для горячих звезд с $T_{eff} > 20000-30000$ К [11]. В случае синтеза кривой лучевых скоростей в не-ЛТР приближении величина эффекта изменения формы кривой лучевых скоростей при вариации наклонения орбиты может измениться. Однако следует отметить, что наши тестовые расчеты с использованием постоянного по форме локального профиля линии поглощения Ну на всей поверхности звезды (рис. 1, 2) показывают, что изменения формы интегрального профиля линии чувствительны главным образом к "геометрии" фигуры звезды (к положению "носика" звезды относительно барицентра двойной системы). Поэтому можно надеяться, что, хотя в случае высоких T_{eff} использование не-ЛТР приближения может существенно изменить эквивалентную ширину линии Ну, изменения формы интегрального профиля линии Ну с фазой орбитального периода будут слабо различаться в случае ЛТР и не-ЛТР моделей атмосферы оптической звезды. В дальнейшем мы планируем провести соответствующие расчеты в не-ЛТР приближении.

Авторы благодарят Л.И. Машонкину за ценные замечания.

Работа поддержана Российским фондом фундаментальных исследований (код проекта 02-02-17524) и грантом "Ведущие научные школы России" НШ-388.2003.2.

СПИСОК ЛИТЕРАТУРЫ

- S. Sofia and R. E. Wilson, Astrophys. J. 203, 182 (1976).
- Э. А. Антохина, А. М. Черепащук, Письма в "Астрон. журн." 23, 889 (1997).
- T. Shahbaz, Monthly Notices Roy. Astron. Soc. 298, 153 (1998).
- М. К. Абубекеров, Э. А. Антохина, А. М. Черепащук, Астрон. журн. 81, 606 (2004).
- Э. А. Антохина, А. М. Черепащук, В. В. Шиманский, Изв. АН. Сер. физ. 67 (3), 293 (2003).
- 6. Э. А. Антохина, А. М. Черепащук, В. В. Шиманский, Астрон. журн. **82**, 131 (2005).
- М. К. Абубекеров, Э. А. Антохина, А. М. Черепащук, Астрон. журн. 81, 108 (2004).
- Э. А. Антохина, А. М. Черепащук, Астрон. журн. 71, 420 (1994).
- 9. R. L. Kurucz, CD-ROMs (1992).
- A. M. Cherepashchuk, N. A. Katysheva, Khruzina, and C. Yu. Shugarov, *Highly Evolved Close Binary Stars: Catalog* (Netherland Gordon and Breach Science Publishers SA., 1996a), Vol. 1, Pt. 1, p. 82.
- A. Herrero, A Massive Star Odyssei: from Main Sequence to Supernova (IAU Symp. No. 212, Eds. Karel A. van der Hucht, Artemio Herrero, and Cesar Esteban) (Publ. The Astronomical Society of the Pasific, 2003), p. 3.
- 12. В. Страйжис, Звезды с дефицитом металлов (Вильнюс: Изд-во "МОКСЛАС", 1982).
- 13. Э. А. Антохина, Астрон. журн. 73, 532 (1996).
- Н. И. Балог, А. В. Гончарский, А. М. Черепащук, Письма в "Астрон. журн." 7, 605 (1981).

Dependence of the Absorption-Line Profiles and Radial-Velocity Curve of the Optical Star in an X-ray Binary on the Orbital Inclination and Component-Mass Ratio

M. K. Abubekerov, E. A. Antokhina, and A. M. Cherepashchuk

Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars in X-ray binary systems are calculated in the approximation of LTE. The variations in the profile shapes and radial-velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary system. The dependence of the shape of the radial-velocity curve on the orbital inclination *i* increases with decreasing component-mass ratio $q = m_x/m_v$. The integrated line profiles and radial-velocity curves of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital inclination and mass of the relativistic object: $i < 43^{\circ}$ and $m_x = 8.2-12.8 M_{\odot}$. These estimates are in good agreement with the results of fitting the radial-velocity curve of Cyg X-1 carried out earlier using a simpler model ($i < 45^{\circ}$, $m_x = 9.0-13.2 M_{\odot}$).