УДК 524.386-56

# АНАЛИЗ КРИВЫХ БЛЕСКА ЗАТМЕННЫХ СИСТЕМ С ЭКЗОПЛАНЕТАМИ. СИСТЕМА HD 209458

## © 2010 г. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук

Государственный астрономический институт им. П.К. Штернберга, МГУ им. М.В. Ломоносова, Москва, Россия Поступила в редакцию 31.05.2010 г.; принята в печать 01.07.2010 г.

Выполнен анализ высокоточных кривых блеска двойной системы с экзопланетой HD 209458. Показано, что параметры двойной системы HD 209458, полученные в разные эпохи и для разных длин волн, согласуются между собой при использовании метода доверительных областей для расчета интервалов ошибок. Продемонстрирована эффективность и надежность нового метода оценки интервалов ошибок. Даны надежные оценки линейного и квадратичного коэффициентов потемнения к краю звезды и их доверительных интервалов (ошибок). Выявлена зависимость коэффициентов потемнения к краю диска звезды от длины волны в диапазоне длин волн  $\lambda = 3201-9708$  Å, которая значимо отличается от соответствующей теоретической зависимости, следующей из моделей тонких звездных атмосфер.

## 1. ВВЕДЕНИЕ

В последние годы, благодаря космическим миссиям (HST, CoRoT, Kepler), получены уникальные по точности кривые блеска затмения звезд экзопланетами (см., например, [1–4]).

Анализ кривой блеска HD 209458, полученной на HST в 2000 г., выполнен в работе Брауна и др. [1]. Анализ многоцветных кривых блеска HD 209458, полученных на HST в 2003 г., выполнен в работе Кнутсона и др. [2]. В обеих работах были получены радиусы экзопланеты и звезды, наклонение орбиты и коэффициенты потемнения к краю для звезды. Наиболее детальное исследование данных рядов наблюдений с HST выполнил Соузворз [5]. Он получил значения радиусов экзопланеты и звезды, наклонение орбиты, а также значения коэффициентов потемнения к краю для звезды в различных законах потемнения. Как это часто бывает на практике, очень высокая точность наблюдательных данных позволила автору работы [5], с одной стороны, получить наиболее надежные значения параметров двойной системы, а с другой — обусловила некоторые трудности с интерпретацией наблюдений. Во-первых, центральные значения геометрических параметров модели, найденные для разных длин волн  $\lambda$ , показали значительный разброс, в несколько раз превышающий ошибки параметров, найденные методом Монте-Карло. Во-вторых, значения геометрических параметров, найденные из анализа кривых блеска для разных эпох наблюдений, в пределах ошибок оказались не вполне согласующимися между собой.

Вряд ли такие трудности интерпретации связаны с особенностями используемой модели ввиду того, что результаты, полученные в рамках разных моделей (модель двух сферических звезд [6] и модель двух двухосных эллипсоидов [5, 7, 8]), применительно к высокоточным кривым блеска HD 209458 хорошо согласуются между собой.

Скорее всего, описанные трудности с интерпретацией связаны с тем, что автор работы [5] для оценки ошибок искомых параметров использовал метод Монте-Карло, который, как известно (см., например [9–12]), позволяет получить лишь "внутренние" ошибки (основанные на статистике нормального распределения найденных центральных значений параметров при жестком предположении о том, что модель идеально верна), которые могут быть занижены в 3–5 раз [9].

Поэтому мы дополнительно проанализировали высокоточные кривые блеска HD 209458 из работ [1, 2]. При этом, помимо использования для оценки ошибок параметров метода дифференциальных поправок, мы применили метод доверительных областей (см., например [13]). Данный метод использует статистику "внешнего" распределения наблюдаемых значений кривой блеска, порожденную этими нормально распределенными величинами, — функционал невязки, линейно зависящий от квадратов разностей наблюдаемых и теоретических значений кривой блеска (статистику с законом распределения  $\chi^2_M$ , где M — число наблюдаемых точек на кривой блеска). В методе доверительных областей, в отличие от методов Монте-Карло и дифференциальных поправок (которые эквиваленты друг другу [11, 12]), поиск и центральных значений параметров, и их ошибок осуществляется в рамках одной и той же статистики (например, статистики с законом распределения  $\chi_M^2$ ). При этом находятся "внешние" ошибки параметров, которые не зависят от конкретного вида распределения центральных значений искомых параметров. Кроме того, использование статистики с законом распределения  $\chi_M^2$  позволяет избежать искусственного предположения о том, что используемая модель идеально верна.

С использованием значений ошибок параметров, найденных методом доверительных областей ("внешних" ошибок), нам удалось согласовать между собой результаты интерпретации как многоцветных кривых блеска HD 209458, так и кривых блеска, полученных в разные эпохи. Кроме того, мы подтвердили значимое расхождение между наблюдаемыми и теоретическими зависимостями коэффициентов потемнения диска звезды от длины волны, найденные в работе [5].

## 2. МЕТОД ИНТЕРПРЕТАЦИИ

Мы использовали модель двух сферических звезд на круговой орбите в отсутствие эффектов отражения и эллипсоидальности. Согласно данным, полученным для экзопланеты CoRoT-1b [3], орбитальный период которой ( $P_{orb} = 1.509^{d}$ ) вдвое короче, чем в системе HD 209458 ( $P_{orb} =$ = 3.52474859<sup>d</sup>), полная наблюдаемая амплитуда эффекта отражения от планеты не превышает  $\sim 0.0001^{m}$ , а амплитуда эффекта эллипсоидальности оптической звезды, по-видимому, в несколько раз меньшей этой величины. Отсюда следует, что в пределах затмения (длительность которого составляет для системы CoRoT-1b ~0.07 от орбитального периода) изменения блеска, обусловленные эффектом отражения и эллипсоидальности, не превышают 10<sup>-5</sup> зв. вел., что пренебрежимо мало. Учитывая неопределенность в форме планеты, связанную с возможным наличием у нее полупрозрачной атмосферы (протяженность которой может достигать  $\sim 5\%$  от ее радиуса [14]), неопределенность, связанную с возможным быстрым осевым вращением планеты и ее вращательной деформацией, а также малую степень заполнения планетой своей полости Роша (µ < 0.5), сферическое приближение для планеты можно считать вполне удовлетворительным.

При расчете кривой блеска в качестве функций распределения яркости по диску звезды использовался линейный закон потемнения к краю диска с линейным коэффициентом потемнения к краю x

$$I(\rho) = I_0 \left( 1 - x + x \sqrt{1 - \frac{\rho^2}{r^2}} \right), \qquad (1)$$

и квадратичный закон потемнения к краю диска, отличающийся от линейного дополнительным слагаемым, содержащим квадратичный коэффициент потемнения к краю *у* 

$$I(\rho) = I_0 \left[ 1 - x \left( 1 - \sqrt{1 - \frac{\rho^2}{r^2}} \right) - (2) - y \left( 1 - \sqrt{1 - \frac{\rho^2}{r^2}} \right)^2 \right].$$

Здесь  $\rho$  – полярное расстояние от центра диска звезды,  $I_0$  — яркость в центре диска, а r — радиус диска звезды. Яркость в центре диска компонента 1 (звезды) далее будем обозначать как  $I_0^{(1)}$ . Яркость  $I_0^{(2)}$  в центре компонента 2 (планеты) и соответственно яркость в любой точке ее диска предполагается равной нулю. Компонент 2 (планета) в орбитальной фазе  $\theta = \pi$  затмевает компонент 1 (звезду). Единицей длины в наших моделях является расстояние между центрами звезды и планеты a = 1; орбита считается круговой. "Третий свет" в модели отсутствует. Радиусы звезды и планеты обозначим как r<sub>1</sub>, r<sub>2</sub>, соответственно. Искомыми параметрами модели являются радиусы звезды и планеты  $r_1, r_2$ , соответственно, угол наклона орбиты *i*, коэффициент потемнения к краю  $x_1$ , а в случае квадратичного закона потемнения к краю также и коэффициент потемнения  $y_1$ .

Введем новые переменные

$$X_0^{(1)} = I_0^{(1)}(1 - x_1), \quad X_1^{(1)} = I_0^{(1)}x_1$$
 (3)

для линейного закона потемнения к краю и

$$X_0^{(1)} = I_0^{(1)}(1 - x_1 - 2y_1), \qquad (4)$$
  
$$= I_0^{(1)}(x_1 + 2y_1), \quad X_2^{(1)} = I_0^{(1)}y_1$$

для квадратичного закона потемнения к краю.

Тогда выражение для яркости в линейном за-коне потемнения к краю запишется как

$$I^{(1)}(\rho) = \left(X_0^{(1)} + X_1^{(1)}\sqrt{1 - \frac{\rho^2}{r_1^2}}\right), \quad (5)$$

а в квадратичном - как

 $X_{1}^{(1)}$ 

$$I^{(1)}(\rho) =$$

$$= \left( X_0^{(1)} + X_1^{(1)} \sqrt{1 - \frac{\rho^2}{r_1^2}} + X_2^{(1)} \frac{\rho^2}{r_1^2} \right).$$
(6)

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 87 № 12 2010

В таких переменных яркость в точке диска звезды линейно зависит от параметров  $X_0^{(1)}$ ,  $X_1^{(1)}$ ,  $X_2^{(1)}$ . При этом яркость в точке диска звезды для нелинейного закона потемнения отличается от соответствующей яркости для линейного закона потемнения одним слагаемым, содержащим коэф-фициент  $X_2^{(1)}$ . Компонент 2 в орбитальной фазе  $\theta = \pi$  затмевает компонент 1.

Полный блеск звезды (компонент 1), который совпадает с полным блеском системы вне затмения, равен

$$L^{full} = 2\pi \int_{0}^{r_1} I^{(1)}(\rho)\rho d\rho =$$
(7)

$$=\pi r_1^2 \left( X_0^{(1)} + \frac{2}{3} X_1^{(1)} \right) = \pi r_1^2 I_0^{(1)} \left( 1 - \frac{x_1}{3} \right)$$

в модели с линейным законом потемнения к краю и

$$L^{full} = 2\pi \int_{0}^{r_{1}} I^{(1)}(\rho)\rho d\rho =$$
(8)  
=  $\pi r_{1}^{2} \left( X_{0}^{(1)} + \frac{2}{3}X_{1}^{(1)} + \frac{1}{2}X_{2}^{(1)} \right) =$   
=  $\pi r_{1}^{2}I_{0}^{(1)} \left( 1 - \frac{x_{1}}{3} - \frac{y_{1}}{6} \right)$ 

в модели с квадратичным законом потемнения к краю.

Полный блеск звезды в модели с квадратичным законом потемнения к краю

$$L^{(s)} = 2\pi \int_{0}^{r} I^{(s)}(\rho)\rho d\rho =$$
  
=  $X_{0}^{(s)}\pi r_{s}^{2} + \frac{2}{3}X_{1}^{(s)}\pi r_{s}^{2} + \frac{1}{2}X_{2}^{(s)}\pi r_{s}^{2},$   
 $s = 1, 2.$ 

Здесь для универсализации внешнего вида расчетных формул минимумов кривой блеска и сокращения числа уравнений затмевающему компоненту (ближний компонент по отношению к земному наблюдателю) приписан индекс n, затмеваемому компоненту (дальний компонент по отношению к земному наблюдателю) — индекс f. При непосредственном расчете минимумов кривой блеска в диапазоне значений орбитальной фазы  $-\pi/2 < \theta < \pi/2$  (или  $\cos \theta > 0$ ) переменную  $r_n$  следует заменить на  $r_1$ , а переменную  $r_f$  — на  $r_2$ . В диапазоне значений орбитальной фазы  $\cos \theta < 0$  следует выполнить обратную замену: переменную  $r_f$  следует заменить на  $r_1$ , а переменную  $r_n$  — на  $r_2$ .

В новых обозначениях падение блеска при за-тмении составляет

$$L^{dec}(\Delta, r_f, r_n, X_0^{(f)}, X_1^{(f)}, X_2^{(f)}) =$$
(9)  
=  $\iint_{S(\Delta)} I^{(f)}(S) dS,$ 

где  $\Delta$  — расстояние между центрами дисков,  $S(\Delta)$  — область перекрытия дисков.

Для вычисления интеграла (9), также как это было сделано в [11], введем функции

$$\mathcal{A}x \equiv \begin{cases} \pi, & x < -1, \\ \arccos x, & -1 \le x \le 1, \\ 0, & x > 1 \end{cases}$$
(10)

И

=

$$\begin{aligned} \mathcal{Q}x &\equiv \begin{cases} \sqrt{x}, & x \ge 0, \\ 0, & x < 0, \end{cases} \\ \Psi(\Delta, x, y) &\equiv \mathcal{A}\left(\frac{x^2 + \Delta^2 - y^2}{2x\Delta}\right), \\ Q\left(\Delta, r_f, r_n\right) &\equiv \\ \mathcal{Q}\left[\left(r_f^2 - (\Delta - r_n)^2\right] \left[(\Delta + r_n)^2 - r_f^2\right)\right] \end{aligned}$$

а также полярную систему координат с началом в центре диска затмеваемой звезды и полярным углом  $\varphi$ , отсчитываемым в направлении от центра диска затмеваемого компонента "f" к центру диска затмевающего компонента "n". Тогда имеем:

$$L^{dec}(\Delta, r_f, r_n, X_0^{(f)}, X_1^{(f)}, X_2^{(f)}) = (11)$$

$$= \int_0^{r_f^2} \Psi(\Delta, \sqrt{\rho}, r_n) I^{(f)}(\sqrt{\rho}) d\rho =$$

$$= X_0^{(f)} L_0^{dec}(\Delta, r_f, r_n) + X_1^{(f)} L_1^{dec}(\Delta, r_f, r_n) +$$

$$+ X_2^{(f)} L_2^{dec}(\Delta, r_f, r_n).$$

Выражения для вычисления  $L_0^{dec}$  и  $L_1^{dec}$  получены в [11].

Для  $L_2^{dec}$ , аналогично тому, как в [11] было получено выражение для  $L_0^{dec}$ , имеем

$$L_{2}^{dec}(\Delta, r_{f}, r_{n}) = \frac{2}{r_{f}^{2}} \int_{0}^{r_{f}} \rho^{3} \Psi(\Delta, \rho, r_{n}) d\rho = (12)$$

$$=\Psi(\Delta, r_f, r_n)\frac{r_f^2}{2} + \frac{r_n^2}{2r_f^2}\left(2\Delta^2 + r_n^2\right)\Psi(\Delta, r_n, r_f) -$$

$$-\frac{1}{8r_f^2}\left(\Delta^2+5r_n^2+r_f^2\right)Q\left(\Delta,r_f,r_n\right).$$

Частные производные  $L_2^{dec}$  равны

$$\frac{\partial L_2^{dec}(\Delta, r_f, r_n)}{\partial \Delta} = \frac{2}{r_f^2} \Delta r_n^2 \Psi(\Delta, r_n, r_f) - (13)$$
$$-\frac{\Delta^2 + r_n^2 + r_f^2}{2\Delta r_f^2} Q(\Delta, r_f, r_n),$$

$$\frac{\partial L_2^{dec}(\Delta, r_f, r_n)}{\partial r_f} = 2r_f \Psi(\Delta, r_f, r_n) - (14) - \frac{2}{r_f} L_2^{dec}(\Delta, r_f, r_n),$$

$$\frac{\partial L_2^{dec}(\Delta, r_f, r_n)}{\partial r_n} = \frac{2}{r_f^2} r_n \left(\Delta^2 + r_n^2\right) \times$$
(15)
$$\times \Psi(\Delta, r_n, r_f) - \frac{2}{r_f^2} r_n Q(\Delta, r_f, r_n).$$

Для круговой орбиты расстояние между центрами дисков звезд  $\Delta$  зависит от фазы  $\theta$  и угла наклона орбиты i как

$$\Delta(\theta, i) = \sqrt{\cos^2 i + \sin^2 i \sin^2 \theta}.$$
 (16)

Кривая блеска двойной системы в модели с линейным законом потемнения к краю описывается функцией

$$L(\theta, r_1, r_2, i, X_0^{(1)}, X_1^{(1)}) =$$
(17)  
=  $X_0^{(1)} L_0^{(1)}(\theta, r_1, r_2, i) + X_1^{(1)} L_1^{(1)}(\theta, r_1, r_2, i),$ 

а в модели с квадратичным законом потемнения к краю — функцией

$$L(\theta, r_1, r_2, i, X_0^{(1)}, X_1^{(1)}, X_2^{(1)}) =$$
(18)

$$= X_0^{(1)} L_0^{(1)}(\theta, r_1, r_2, i) + X_1^{(1)} L_1^{(1)}(\theta, r_1, r_2, i) + X_2^{(1)} L_2^{(1)}(\theta, r_1, r_2, i).$$

Выражения для вычисления функций  $L_{0,1,2}^{(1)}$  получены в работах [11, 12]. Отметим, что в работе [12] в выражении (16) для  $L_2^{dec}$  была допущена опечатка — пропущен коэффициент  $1/r_f^2$  перед интегралом. Поэтому для вычисления  $L_2^{dec}$  и их производных следует использовать выражения (12)– (15) данной работы, а не выражения (16)–(19) из [12].

В наших моделях мы предполагаем полный блеск  $L^{full}$  известным (а при вычислениях нормированным на единицу). При этом мы исключаем с

помощью (7) параметр

$$X_1^{(1)} = \frac{3L^{full}}{2\pi r_1^2} - \frac{3}{2}X_0^{(1)}$$
(19)

в модели с линейным законом потемнения к краю и с помощью (8) параметр

$$X_2^{(1)} = \frac{2L^{full}}{\pi r_1^2} - 2X_0^{(1)} - \frac{4}{3}X_1^{(1)}$$
(20)

в модели с квадратичным законом потемнения к краю. Подставляя (19) и (20) соответственно в (17) и (18) получим выражения для кривых блеска при фиксированном полном блеске системы:

$$L(\theta, r_1, r_2, i, X_0^{(1)}) =$$
(21)  
$$= \frac{3L^{full}}{2\pi r_1^2} L_1^{(1)}(\theta, r_1, r_2, i) +$$
$$+ X_0^{(1)} \left( L_0^{(1)}(\theta, r_1, r_2, i) - \frac{3}{2} L_1^{(1)}(\theta, r_1, r_2, i) \right),$$
$$L(\theta, r_1, r_2, i, X_0^{(1)}, X_1^{(1)}) =$$
(22)  
$$= \frac{2L^{full}}{\pi r_1^2} L_2^{(1)}(\theta, r_1, r_2, i) + X_0^{(1)}(L_0^{(1)}(\theta, r_1, r_2, i) -$$

$$\pi r_1^2 = 2 \left( 2 \left( \theta, r_1, r_2, i \right) \right) + X_1^{(1)} \left( L_1^{(1)}(\theta, r_1, r_2, i) - \frac{4}{3} L_2^{(1)}(\theta, r_1, r_2, i) \right).$$

Также можно исключить  $I_0^{(1)}$  в (3) и (4), выразив его с помощью правых частей (7) и (8), соответственно. Тогда получим:

$$X_0^{(1)} = \frac{3L^{full}(1-x_1)}{\pi r_1^2(3-x_1)}$$
(23)

для линейного закона потемнения к краю и

$$X_0^{(1)} = \frac{6L^{full}(1 - x_1 - 2y_1)}{\pi r_1^2 (6 - 2x_1 - y_1)},$$

$$X_1^{(1)} = \frac{6L^{full}(x_1 + 2y_1)}{\pi r_1^2 (6 - 2x_1 - y_1)}$$
(24)

для квадратичного закона потемнения к краю. Выражениями, обратными (23) и (24), будут соответственно

$$x_1 = \frac{6L^{full}}{\pi r_1^2 X_0^{(1)} - 3L^{full}}$$
(25)

И

$$x_{1} = \frac{\pi r_{1}^{2} (12X_{0}^{(1)} + 11X_{1}^{(1)}) - 12L^{full}}{3\pi r_{1}^{2} (X_{0}^{(1)} + X_{1}^{(1)})}, \quad (26)$$
$$y_{1} = \frac{6L^{full} - \pi r_{1}^{2} (6X_{0}^{(1)} + 4X_{1}^{(1)})}{3\pi r_{1}^{2} (X_{0}^{(1)} + X_{1}^{(1)})}.$$

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 87 № 12 2010

1202

При поиске минимальных значений функционала невязки мы сначала минимизируем его по линейным параметрам  $X_0^{(1)}$  и  $X_1^{(1)}$ , поскольку за счет линейности такую минимизацию можно провести аналитически, т.е. получить аналитические выражения для величин  $X_0^{(1)}(r_1,r_2,i)$  и  $X_1^{(1)}(r_1,r_2,i)$ , которые доставляют минимум функционалу невязки при фиксированных  $r_1$ ,  $r_2$  и *i*, а также для их производных. Как известно, при минимизации по линейным параметрам не меняется вид статистического распределения минимальных невязок, а лишь уменьшается число степеней свободы этого распределения. Дальнейшая минимизация производится уже в отношении нелинейной функции трех переменных  $r_1$ ,  $r_2$ , *i*. При этом в методе дифференциальных поправок непосредственно находятся центральные значения  $r_1$ ,  $r_2$ , i,  $X_0^{(1)}$  и  $X_1^{(1)}$  и их ковариации. После этого осуществляется переход к параметрам  $r_1, r_2, i, x_1$  и  $y_1$  по формулам (25) и (26). При этом оценки для их дисперсий в методе дифференциальных поправок находятся как для модели, полученной путем соответствующей замены переменных [12]. Следует подчеркнуть, что минимизация по нелинейным параметрам изменяет вид статистического распределения минимальных невязок [10], которое лишь асимптотически (при  $M \to \infty$ ) стремится к распределению  $\chi^2_M$ . Поскольку в нашем случае число точек на кривых блеска HD 209458 велико ( $M\gtrsim 500$ ), можно считать, что процедура минимизации функционала невязки между наблюдаемой и теоретической кривыми блеска позволит получить надежные асимптотические доверительные области для искомых параметров модели. Далее по тексту мы коэффициенты потемнения в модели с линейным законом потемнения обозначаем как x без нижнего индекса "1", в модели же с квадратичным законом потемнения линейный и квадратичный коэффициент потемнения по-прежнему обозначаются как x<sub>1</sub> и  $y_1$ . Радиус звезды  $r_1$  и радиус планеты  $r_2$  мы далее в некоторых местах для наглядности обозначаем как  $r_s$  и  $r_p$ , соответственно.

## 3. НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

В нашей работе выполнен анализ высокоточных транзитных кривых блеска двойной системы с экзопланетой HD 209458 из работ [1, 2]. Кривые блеска были получены на Космическом телескопе имени Хаббла (HST).

Наблюдаемая кривая блеска, представленная в [1], получена на HST в апреле-мае 2000 г. Спектры получены с использованием спектрометра STIS со спектральной решеткой G750M. Наблюдения проводились в диапазоне 5813–6382 Å с разрешением  $R = \lambda/\Delta\lambda = 5440$  (более подробно см. работу [1]). Нормированная кривая блеска транзита экзопланеты по диску звезды представлена на рис. 1. Кривая блеска включает в себя 556 индивидуальных значений блеска двойной системы. Среднеквадратичная ошибка индивидуального измерения для разных точек кривой блеска находится в пределах от  $\sigma_i^{obs} = 1.13 \times 10^{-4}$  до  $\sigma_i^{obs} = 2.47 \times 10^{-4}$  (в долях внезатменной интенсивности). Величины относительных ошибок (в долях глубины затмения) лежат в пределах от  $\sim 7 \times 10^{-3}$  до  $\sim 1.5 \times 10^{-2}$ .

В работе [2] представлены данные, полученные на HST с 3 мая по 6 июля 2003 г. Спектры получены с использование спектрометра STIS со спектральными решетками G430L (диапазон 2930-5670 Å) и G750L (диапазон 5320-10190 Å). Привлечение двух спектральных решеток позволило охватить достаточно широкий волновой диапазон от 2900 А до 10300 А. Для дальнейшего анализа данный диапазон длин волн авторы работы [2] разделили на десять равных частей, что позволило получить кривые блеска в разных фотометрических полосах. Кривые блеска с центральными длинами волн 3201, 3750, 4300, 4849, 5398 А включают в себя по 505 индивидуальных значений блеска. Кривые блеска с центральными длинами волн 5802, 6779, 7755, 8732, 9708 А включают в себя по 548 индивидуальных значений блеска. Наблюдаемые транзитные кривые блеска из работы [2] представлены на рис. 2. Среднеквадратичная ошибка индивидуального измерения колеблется от  $\sigma_i^{obs} = 1.79 \times 10^{-4}$  до  $\sigma_i^{obs} = 6.09 \times 10^{-4}$  (по отношению к глубине затмения это составляет от  $\sim 10^{-2}$  до  $\sim 3 \times 10^{-2}$ ). Более детальная информация о наблюдательных данных и способе их обработки содержится в [2]. Мы предполагаем, что ошибки наблюдений описываются нормальным законом распределения, а систематические ошибки пренебрежимо малы.

## 4. ИНТЕРПРЕТАЦИЯ КРИВЫХ БЛЕСКА HD 209458 В РАМКАХ ЛИНЕЙНОГО ЗАКОНА ПОТЕМНЕНИЯ

При анализе наблюдаемых кривых блеска искомыми параметрами являлись радиус экзопланеты  $r_p$ , радиус звезды  $r_s$ , наклонение орбиты *i* и линейный коэффициент потемнения к краю для звезды x. Орбитальный период системы принят равным  $P_{orb} = 3.52474859^{\rm d}$  [2], отношение масс планеты и звезды  $q = m_p/m_s = 0.00055$  [2], орбита системы предполагалась круговой, радиус относительной орбиты принят равным единице.



Рис. 1. Наблюдаемая (точки) и теоретическая (сплошная линия) кривые блеска двойной системы с экзопланетой HD 209458 из работы [1]. Внизу показаны отклонения наблюдаемых значений блеска от теоретической кривой блеска, рассчитанной в рамках модели с нелинейным (квадратичным) законом потемнения к краю.

4.1. Кривая блеска из работы Брауна и др. [1]

В табл. 1 приведены центральные значения найденных параметров и их ошибки, полученные методом дифференциальных поправок (который, как уже отмечалось, эквивалентен методу Монте-Карло [11, 12]) и методом доверительных областей в статистике с законом распределения  $\chi_P^2$  (P число искомых параметров) и в статистике с законом распределения  $\chi_M^2$  (M — число наблюдаемых точек). Принят уровень доверия  $\gamma = 95\%$ , что в случае метода дифференциальных поправок соответствует  $2\sigma$ , где  $\sigma$  — стандартное отклонение.

Проверка адекватности модели наблюдательным данным показала, что отношение минимального значения невязки к M - P (которое распределено по закону приведенного хи-квадрат с M –  $-\,P$  степенями свободы)  $\chi^2_{red} = \chi^2_{M-P} \simeq 1.103.$  С использованием результатов работы [12] приходим к выводу, что наша модель может быть отвергнута на уровне значимости  $\alpha \lesssim 0.05889$  (уровень доверия, соответствующий полуинтервалу ~1.889*σ*). Таким образом, наша модель отвергается на весьма низком уровне значимости ( $\alpha = 6\%$ ) и поэтому является не очень хорошей, хотя и не безнадежно плохой, поскольку в нашем случае имеется возможность оценить доверительные интервалы для искомых параметров в рамках статистики с законом распределения  $\chi^2_M$  на уровне доверия  $\gamma = 0.95$  и дать наиболее консервативные оценки ошибок параметров. Отметим, что для данной наблюдаемой реализации кривой блеска ошибки параметров в рамках метода доверительных областей, полученные с использованием статистики с законом распределения  $\chi_P^2$ , оказываются больше, чем полученные с использованием статистики с законом распределения  $\chi_M^2$ . Вероятность такого события, рассчитанная с помощью формулы для закона распределения отношения этих интервалов из [12] (в предположении того, что модель идеально верна), весьма невелика — примерно 4%.

То, что наша модель оказалась не очень хорошей (отвергая модель, мы ошибаемся в менее чем в  $\sim 6\%$  случаев, а в более чем  $\sim 94\%$  случаев мы правы) не кажется удивительным. Во-первых, мы используем линейный закон потемнения, который лишь грубо описывает распределение яркости по диску звезды. Кроме того, в нашей модели мы не учитываем мелкой структуры на диске звезды пятен, факелов, активных областей, - размеры которых могут быть сравнимы с размерами затмевающей планеты. Также мы не учитываем возможную физическую микропеременность звезды. Это должно приводить к коротким нерегулярностям в изменении блеска звезды при затмении ее планетой, превышающим статистическую погрешность наблюдений. Такие нерегулярности видны, особенно в нижней части кривой блеска Брауна и др. (рис. 1). Здесь отклонения блеска от средней кривой достигают (а иногда и превышают) 5 ×  $\times 10^{-4}$  зв. вел., что в несколько раз больше статистической ошибки наблюдений. Именно то, что наша модель оказалась не очень хорошей, вынуждает нас брать уровень доверия 95%, а не 68%, как это принято делать в случае "хороших" моделей. За критерий "хорошей" модели удобно взять  $\chi^2_{red} =$ 

### АНАЛИЗ КРИВЫХ БЛЕСКА



**Рис. 2.** Наблюдаемые кривые блеска двойной системы с экзопланетой HD 209458 из работы [2], построенные для длин волн (снизу вверх) 3201, 3750, 4300, 4849, 5398, 5802, 6779, 7755, 8732 и 9708 Å. Внизу указаны соответствующие распределения невязок. Сплошные линии — теоретические кривые, полученные в рамках модели с нелинейным (квад-ратичным) потемнением к краю.

 $= \widetilde{\chi^2_{M-P}} \le 1 + 2t$ , где t — величина порядка  $\frac{P}{M}$  (из такого условия следует прохождение модели на уровне доверия  $\gamma \to 50\%$  при  $M \to \infty$ ).

В табл. 1 даны проекции асимптотической доверительной области D в пространстве четырех искомых параметров на оси параметров  $r_p$ ,  $r_s$ , i, x (доверительные интервалы). Вероятность накрытия точного значения параметра указанной проекцией доверительной области D — доверительным интервалом, — превышает 95%. Вероятность накрытия точного решения задачи асимптотической доверительной областью D гарантируется близкой к заданной вероятности 95% (поскольку число точек на кривой блеска велико — M > 500). Вероятность совместного накрытия точного решения точного решения точного решения точного решения всеми проекциями доверительной области D (соответствующая попаданию точного решения в параллелепипед

в пространстве параметров, объемлющий доверительную область D) превышает заданную вероятность 95%. Подчеркнем, что все эти утверждения по поводу вероятностей накрытия точного решения доказаны на строгом математическом уровне [13], а также подтверждены результатами конкретного численного моделирования [11, 12]. Таким образом, задавая в качестве ошибок параметров проекции доверительной области D на оси этих параметров (доверительные интервалы), мы заведомо гарантируем то, что вероятность накрытия точного решения доверительной областью D равна заданной вероятности 95%. Это и дает нам основания брать в качестве консервативных оценок ошибок искомых параметров проекции доверительной области D на оси этих параметров (табл. 1), которые можно считать "внешними" ошибками искомых параметров  $r_p, r_s, i, x$ .

**Таблица 1.** Результаты интерпретации наблюдаемой кривой блеска двойной системы с экзопланетой HD 209458 из работы [1] в рамках линейного закона потемнения к краю: ошибки параметров получены в рамках метода дифференциальных поправок и метода доверительных областей с использованием статистики распределенной по закону  $\chi^2_P$  (где P – число искомых параметров), а также в рамках статистики с законом распределения  $\chi^2_M$  (где M – число точек на кривой блеска)

| Параметр         | Метод<br>дифференциальных<br>поправок ( $2\sigma$ ) | Метод доверительных областей, $\chi^2_P  (95\%)$ | Метод доверительных областей, $\chi^2_M(95\%)$ | Значения параметров из работы Соузворза [5] $(1\sigma)$ |
|------------------|-----------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| $r_s, R_{\odot}$ | $0.11469 \pm 0.000759$                              | $0.1147 \pm 0.001186$                            | $0.1147 \pm 0.00079$                           | $0.11482 \pm 0.00035$                                   |
| $r_p, R_{\odot}$ | $0.014057 \pm 0.0001149$                            | $0.01406 \pm 0.0001808$                          | $0.01406 \pm 0.0001211$                        | $0.014076 \pm 0.000055$                                 |
| і, град          | $86.48\pm0.083$                                     | $86.48 \pm 0.1318$                               | $86.48 \pm 0.13$                               | $86.472 \pm 0.038$                                      |
| x                | $0.49452 \pm 0.009306$                              | $0.4944 \pm 0.01406$                             | $0.4945 \pm 0.00954$                           | $0.494 \pm 0.004$                                       |
| $\chi^2_{red}$   |                                                     | 1.103                                            |                                                | 1.1457                                                  |

Поясним метод построения проекции доверительной области D на ось параметра. Проекция четырехмерной доверительной области D на ось одного параметра (например, параметра  $r_p$ ) строится следующим образом. Невязка между наблюдаемой и теоретической кривыми блеска минимизируется по всем параметрам, кроме одного (например, параметра r<sub>p</sub>). Затем строится кривая (близкая к параболе) этих минимальных невязок как функция одного параметра (например, параметра  $r_p$ ). Эта кривая пересекается прямой (критическим уровнем), соответствующей заданному уровню значимости  $\alpha$  (в рамках выбранной статистики –  $\chi^2_M$ ,  $\chi^2_P$ ). Значения параметра  $r_p$ , для которых невязка, минимальная по всем остальным параметрам ( $r_s, i$ , x), меньше критического уровня, объединяются в доверительный интервал, который и является проекцией четырехмерной доверительной области D на ось параметра r<sub>p</sub>. Этот доверительный интервал накрывает точное значение параметра r<sub>p</sub> с вероятностью, большей, чем заданный уровень доверия  $\gamma = 1 - \alpha$ . При этом гарантируется, что точное решение задачи (совокупность точных значений параметров  $r_p, r_s, i, x$ ) накрывается четырехмерной доверительной областью D с заданной вероятностью  $\gamma = 1 - \alpha$ .

На рис. З приведена проекция доверительной области D на плоскость параметров  $r_p$ , *i*. Данная проекции характеризуют форму доверительной области D. Изобразить же всю многомерную область D на бумаге не представляется возможным. Прямоугольник изображает проекцию области, определяемой ошибками параметров (на уровне  $2\sigma$ ), найденными методом дифференциальных поправок. Ввиду того, что модель с линейным коэффициентом потемнения в применении к высокоточной кривой блеска Брауна и др. [1] отвергается на весьма низком уровне значимости

(см. выше), различие между габаритами проекций доверительных областей, построенных на основе метода дифференциальных поправок и метода доверительных областей, в данном случае не очень велико (см., однако, далее рис. 11 и 12).

Вероятность накрытия точного значения для каждого из параметров интервалом  $\pm 2\sigma$  соответствует заданной вероятности  $\gamma = 95\%$ . Однако вероятность совместного накрытия точного решения всеми интервалами, полученными в методе дифференциальных поправок, меньше (примерно ~1.5 раза) заданной вероятности  $\gamma = 95\%$ . Таким образом, указывая "внутренние" ошибки параметров, полученные методом дифференциальных поправок или методом Монте-Карло в предположении того, что модель идеально верна, мы заведомо занижаем вероятность одновременного попадания всех искомых параметров в соответствующую четырехмерную область ошибок (см., также далее рис. 11 и 12). Этим и объясняется то, что результаты интерпретации наблюдательных данных, полученных в разные эпохи, в пределах "внутренних" ошибок часто не согласуются между собой, а сами значения ошибок параметров, найденные методом дифференциальных поправок (или методом Монте-Карло), часто оказываются нереалистично малыми.

## 4.2. Многоцветные кривые блеска из работы Кнутсона и др. [2]

Кривые блеска системы HD 20945, полученные в работе [2] для  $\lambda = 3201$ , 3750, 4300, 4849, 5398, 5802, 6779, 7755, 8732, 9708 Å, приведены на рис. 2 (длина волны  $\lambda$  возрастает снизу вверх). В табл. 2–4 приведены результаты интерпретации этих кривых блеска с использованием разных методов оценки ошибок искомых параметров: методов доверительных областей в статистике  $\chi^2_M$ 



**Рис. 3.** Проекция доверительной области D (на уровне доверия 95%) на плоскость  $(r_p, i)$ , полученная при интерпретации кривой блеска из работы [1] в рамках модели с линейным законом потемнения. Малый "эллипс" (сплошная линия) соответствует доверительной области, полученной с использованием статистики с законом распределения  $\chi^2_M$ , большой "эллипс" (штриховая линия) — с использованием статистики с законом распределения  $\chi^2_P$ . Прямоугольник соответствует проекции доверительной области на уровне  $2\sigma_{est}$ , полученной методом дифференциальных поправок.

(табл. 2; здесь прочерки соответствуют вырождению "точной" доверительной области в пустое множество ввиду того, что модель отвергается на выбранном уровне значимости  $\alpha = 5\%$ ) и в статистике  $\chi_P^2$  (табл. 3), а также метода дифференциальных поправок (табл. 4; в статистике нормального распределения найденных центральных значений искомых параметров и для гипотезы о том, что модель идеально верна). Особенно велико значение приведенного  $\chi_{red}^2$  для кривой блеска  $\lambda = 5802$  Å ( $\chi_{red}^2 = 1.299$ ; соответствующий уровень значимости, по которому отвергается модель, очень мал:  $\alpha = 5.168 \times 10^{-6}$ ). По-видимому, в эту кривую блеска вкрались какие-то дополнительные источники ошибок. Для остальных длин волн значения  $\chi_{red}^2$  лежат в разумных пределах:  $\chi_{red}^2 =$ = 1.021–1.122.

Проверка адекватности модели наблюдательным данным показала, что минимизированное значение невязки в рамках статистики приведенного хи-квадрат превышает единицу (табл. 3).

Использование статистики с законом распределения  $\chi_M^2$  при интерпретации кривых блеска на  $\lambda = 3201, 3750, 4849, 5398, 6779, 7755, 8732$  Å показало, что наша модель не отвергается по уровню значимости  $\alpha = 5\%$  (и может быть принята). Во всех этих случаях могут быть построены "точные" (т.е. накрывающие точное решение с заданной вероятностью  $\gamma = 95\%$ ) доверительные области D и получены проекции области D на оси параметров  $r_p, r_s, i, x$  (доверительные интервалы), которые можно считать наиболее консервативными "внешними" ошибками параметров (табл. 2). Для трех

кривых блеска ( $\lambda = 4300, 5802, 9708$  Å) наша модель отвергается по уровню значимости  $\alpha < 5\%$ и, таким образом, является "плохой". Для этих кривых блеска удается получить лишь "внешние" ошибки параметров (доверительные интервалы) в рамках статистики с законом распределения  $\chi_P^2$ , соответствующие асимптотической доверительной области D, а также "внутренние" ошибки параметров в рамках статистики нормального распределения найденных центральных значений параметров с применением метода дифференциальных поправок. Хотя, как отмечалось в работе [10], не следует забывать и о том, что на практике мы имеем дело не с полной случайной наблюдаемой функцией (кривой блеска), а лишь с ее конкретной реализацией. Поэтому не исключена и возможность того, что возникшие трудности с интерпретацией (модель отвергается на весьма низком уровне значимости, и доверительная область D в рамках статистики с законом распределения  $\chi^2_M$  вырождается в пустое множество) связаны не с недостатком модели, а со случайным уклонением наблюдаемой функции. Для другой реализации наблюдаемой функции, например, кривой блеска, полученной в другую эпоху, применяемая модель может оказаться вполне удовлетворительной и будет отвергаться на достаточно высоком уровне значимости, что позволит построить доверительную область D в рамках статистики с законом распределения  $\chi^2_M$ . Это и дает нам основания строить асимптотическую доверительную область в рамках статистики с законом распределения  $\chi^2_P$  (которая, по определению, никогда не вырождается в пустое множество) даже в том

#### АБУБЕКЕРОВ и др.

**Таблица 2.** Результаты интерпретации наблюдаемых многоцветных кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках линейного закона потемнения к краю: ошибки параметров получены в рамках метода доверительных областей с использованием статистики с законом распределения  $\chi^2_M$ ; уровень доверия принят равным  $\gamma = 0.95$ 

| $\lambda$ , Å | $r_s$    | $\Delta_M\left(r_s\right)$ | $r_p$     | $\Delta_{M}\left(r_{p}\right)$ | i        | $\Delta_{M}\left(i ight)$ | x        | $\Delta_{M}\left(x\right)$ |
|---------------|----------|----------------------------|-----------|--------------------------------|----------|---------------------------|----------|----------------------------|
| 3201          | 0.112422 | 0.00909003                 | 0.0136815 | 0.00168653                     | 87.0418° | $1.25441^{\circ}$         | 0.839899 | 0.112573                   |
| 3750          | 0.111096 | 0.00518492                 | 0.0135058 | 0.000908670                    | 87.0084  | 0.685166                  | 0.755113 | 0.0601379                  |
| 4300          | 0.113224 | —                          | 0.0138670 | —                              | 86.9607  | —                         | 0.702653 | —                          |
| 4849          | 0.113315 | 0.00215386                 | 0.0138638 | 0.000353872                    | 86.6501  | 0.257024                  | 0.617381 | 0.0267281                  |
| 5398          | 0.114474 | 0.00332352                 | 0.0140443 | 0.000534038                    | 86.5317  | 0.387603                  | 0.561101 | 0.0420762                  |
| 5802          | 0.114536 | —                          | 0.0141229 | —                              | 86.4712  | —                         | 0.534661 | —                          |
| 6779          | 0.115384 | 0.00210354                 | 0.0141542 | 0.000327598                    | 86.3841  | 0.240432                  | 0.436149 | 0.0332838                  |
| 7755          | 0.114060 | 0.00232615                 | 0.0139412 | 0.000348055                    | 86.5030  | 0.266790                  | 0.377645 | 0.0363709                  |
| 8732          | 0.115301 | 0.00451503                 | 0.0141478 | 0.000672640                    | 86.3800  | 0.515776                  | 0.317885 | 0.0829246                  |
| 9708          | 0.114814 | —                          | 0.0141637 | —                              | 86.3856  | —                         | 0.276457 | —                          |

**Таблица 3.** Результаты интерпретации наблюдаемых многоцветных кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках линейного закона потемнения к краю: ошибки параметров получены в рамках метода доверительных областей с использованием статистики с законом распределения  $\chi^2_P$ ; уровень доверия принят равным  $\gamma = 0.95$  (в последнем столбце указано значение приведенного  $\chi^2_{red}$  и соответствующего уровня значимости  $\alpha$ )

| $\lambda, \mathrm{\AA}$ | $r_s$    | $\Delta_P\left(r_s\right)$ | $r_p$     | $\Delta_{P}\left(r_{p}\right)$ | i        | $\Delta_{P}\left(i\right)$ | x        | $\Delta_{P}\left(x\right)$ | $\frac{\chi^2_{M-P}}{M-P}  (\alpha)$ |
|-------------------------|----------|----------------------------|-----------|--------------------------------|----------|----------------------------|----------|----------------------------|--------------------------------------|
| 3201                    | 0.112789 | 0.00564078                 | 0.0137580 | 0.00103572                     | 86.8383° | $0.721357^{\circ}$         | 0.833506 | 0.0703594                  | 1.103 (0.069)                        |
| 3750                    | 0.111132 | 0.00318612                 | 0.0135114 | 0.000556307                    | 86.9630  | 0.412798                   | 0.754423 | 0.0371808                  | 1.067 (0.174)                        |
| 4300                    | 0.113232 | 0.00197803                 | 0.0138682 | 0.000343468                    | 86.6565  | 0.241463                   | 0.702492 | 0.0233387                  | 1.121 (0.041)                        |
| 4849                    | 0.113315 | 0.00162566                 | 0.0138639 | 0.000267189                    | 86.6468  | 0.193893                   | 0.617462 | 0.0201586                  | 1.084 (0.118)                        |
| 5398                    | 0.114449 | 0.00171209                 | 0.0140408 | 0.000274972                    | 86.5227  | 0.198908                   | 0.561665 | 0.0217482                  | 1.046 (0.271)                        |
| 5802                    | 0.114557 | 0.00138946                 | 0.0141275 | 0.000228711                    | 86.4703  | 0.162999                   | 0.533942 | 0.0205499                  | $1.299(5.168 \times 10^{-6})$        |
| 6779                    | 0.115386 | 0.00125488                 | 0.0141545 | 0.000195295                    | 86.3806  | 0.143095                   | 0.436699 | 0.0198472                  | 1.061 (0.186)                        |
| 7755                    | 0.114069 | 0.00158054                 | 0.0139423 | 0.000236676                    | 86.4989  | 0.181210                   | 0.378139 | 0.0247354                  | 1.0739 (0.138)                       |
| 8732                    | 0.115295 | 0.00199596                 | 0.0141482 | 0.000297907                    | 86.3629  | 0.226904                   | 0.323146 | 0.0361643                  | 1.021 (0.403)                        |
| 9708                    | 0.114743 | 0.00268813                 | 0.0141555 | 0.000389998                    | 86.4012  | 0.301402                   | 0.275733 | 0.0483915                  | 1.122 (0.0334)                       |

случае, когда модель отвергается на весьма низком уровне значимости и является "плохой".

Интересно сравнить значения геометрических параметров системы HD 209458, полученные в разные эпохи. В табл. 5 приведены значения параметров и их ошибок для кривой блеска  $\lambda\lambda5813 - 6382$ ) Å, полученной Брауном и др. [1] в апреле-мае 2000 г. и для кривой блеска с центральной длиной волны  $\lambda6779$  Å ( $\Delta\lambda = 6279$  –

- 7279 Å), полученной Кнутсоном и др. [2] в мае-июле 2003 г. Полуинтервалы максимальных различий в центральных значениях параметров составляют  $\frac{|r_p^{(2000)} - r_p^{(2003)}|}{2} = 0.00004775,$  $\frac{|r_s^{(2000)} - r_s^{(2003)}|}{2} = 0.00034050, \frac{|i^{(2000)} - i^{(2003)}|}{2} = 0.0515^{\circ}$ . Эти различия не выходят за пределы "внутренних" ошибок 2 $\sigma$  и тем более не выходят

## 1208

| $\lambda, \text{\AA}$ | $r_s^c$  | $2\sigma_{\mathrm{est}}\left(r_{s}^{c} ight)$ | $r_p^c$   | $2\sigma_{\mathrm{est}}\left(r_{2}^{c} ight)$ | $i^c$             | $2\sigma_{\mathrm{est}}\left(i^{c} ight)$ | $x^c$    | $2\sigma_{\rm est}\left(x^c\right)$ |
|-----------------------|----------|-----------------------------------------------|-----------|-----------------------------------------------|-------------------|-------------------------------------------|----------|-------------------------------------|
| 3201                  | 0.113113 | 0.00424010                                    | 0.0138328 | 0.000794048                                   | $86.7178^{\circ}$ | $0.537230^{\circ}$                        | 0.828541 | 0.0505626                           |
| 3750                  | 0.111175 | 0.00224100                                    | 0.0135199 | 0.000396390                                   | 86.9333           | 0.292384                                  | 0.753992 | 0.025672                            |
| 4300                  | 0.113224 | 0.00127895                                    | 0.0138670 | 0.000220652                                   | 86.6507           | 0.154521                                  | 0.702653 | 0.0153839                           |
| 4849                  | 0.113302 | 0.00107659                                    | 0.0138618 | 0.000176852                                   | 86.6440           | 0.1282050                                 | 0.617614 | 0.0134061                           |
| 5398                  | 0.114456 | 0.00107583                                    | 0.0140421 | 0.000172042                                   | 86.5177           | 0.1239884                                 | 0.561705 | 0.0140619                           |
| 5802                  | 0.114535 | 0.00093831                                    | 0.0141229 | 0.000154114                                   | 86.4712           | 0.1097888                                 | 0.534661 | 0.0144226                           |
| 6779                  | 0.115394 | 0.00076714                                    | 0.0141560 | 0.000118926                                   | 86.3777           | 0.0869080                                 | 0.436943 | 0.0125312                           |
| 7755                  | 0.114035 | 0.00098878                                    | 0.0139372 | 0.000146933                                   | 86.4998           | 0.1119664                                 | 0.379030 | 0.0157685                           |
| 8732                  | 0.115326 | 0.00120960                                    | 0.0141535 | 0.000179209                                   | 86.3547           | 0.1355734                                 | 0.323969 | 0.0223688                           |
| 9708                  | 0.114814 | 0.00185497                                    | 0.0141637 | 0.000267488                                   | 86.3856           | 0.2046620                                 | 0.276457 | 0.0342494                           |

**Таблица 4.** Результаты интерпретации наблюдаемых кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках линейного закона потемнения к краю: ошибки параметров получены в рамках метода дифференциальных поправок; ошибка приведена на уровне  $2\sigma$ 

**Таблица 5.** Различия между значениями геометрических параметров, полученных по кривым блеска разных эпох: "внутренние" и "внешние" ошибки

| Максимальное<br>различие<br>параметров    | Различия в<br>центральных<br>значениях параметров | Метод<br>дифференциальных<br>поправок (2 <i>о</i> ) | Метод доверительных областей, $\chi^2_P  (95\%)$ | Метод доверительных областей, $\chi^2_M (95\%)$ |
|-------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------|
| $\frac{ r_p^{(2000)} - r_p^{(2003)} }{2}$ | 0.000048                                          | 0.00012                                             | 0.00018                                          | 0.00033                                         |
| $\frac{ r_s^{(2000)} - r_s^{(2003)} }{2}$ | 0.00034                                           | 0.00077                                             | 0.0012                                           | 0.0021                                          |
| $\frac{ i^{(2000)} - i^{(2003)} }{2}$     | $0.051^{\circ}$                                   | $0.087^{\circ}$                                     | $0.13^{\circ}$                                   | $0.24^{\circ}$                                  |

за пределы доверительных интервалов  $\Delta_M$  и  $\Delta_P$  (табл. 5).

Интересно также сравнить значения геометрических параметров  $(r_p, r_s, i)$  для кривых блеска HD 209458, полученных Кнутсоном и др. [2] в одну эпоху (в мае—июле 2003 г.), но для разных длин волн. Результаты этого сравнения приведены в табл. 6. Видно, что в пределах "внутренних" ошибок  $2\sigma$  значения геометрических параметров  $r_p, r_s, i$ , полученные для разных  $\lambda$ , не вполне согласуются между собой. В то же время при использовании "внешних" ошибок  $\Delta_P$ , и особенно  $\Delta_M$ , эти значения геометрических параметров хорошо согласуются.

#### 5. ЗАВИСИМОСТЬ ЛИНЕЙНОГО КОЭФФИЦИЕНТА ПОТЕМНЕНИЯ ОТ ДЛИНЫ ВОЛНЫ

Поскольку простая модель с линейным законом потемнения в применении к кривым блеска Брауна

и др. [1] и Кнутсона и др. [2] не является безнадежно "плохой" и отвергается на уровне значимости  $\alpha$ в несколько процентов (за исключением кривой блеска  $\lambda = 5802$  Å), имеет смысл проанализировать зависимость коэффициента потемнеия x в линейном законе потемнения от длины волны  $\lambda$  и сравнить эту зависимость с соответствующей теоретической зависимостью, следующей из модели тонких звездных атмосфер.

В табл. 7 приведены найденные нами значения линейного коэффициента потемнения x и их ошибок ( $2\sigma$ ,  $\Delta_P$ ,  $\Delta_M$ ) как функции  $\lambda$ . Минимизация функционала невязки для каждого значения  $\lambda$  проводилась по четырем параметрам  $r_p$ ,  $r_s$ , i, x. Прочерки соответствуют случаям, когда модель отвергается на уровне значимости  $\alpha < 5\%$ . Как видно из табл. 7, в случае наиболее консервативной оценки "внешних" ошибок параметра x (метод, основанный на статистике  $\chi^2_M$ ), коэффициент потемнения x определяется с относительной погреш-

#### АБУБЕКЕРОВ и др.

| Таблица 6. Интервалы разброса найденных центральных значений искомых геометрических параметров, по    | элу- |
|-------------------------------------------------------------------------------------------------------|------|
| ченных по 10 кривым блеска для разных длин волн (в скобках указано отношение полуинтервала (max-min), | /2 к |
| соответствующим средним значениям интервалов ошибки из табл. 2, 3, 4)                                 |      |

| Параметр      | Максимальный<br>разброс центральных<br>значений (min — max) | Метод<br>дифференциальных<br>поправок (2 <i>о</i> ) | Метод доверительных<br>областей, $\chi^2_P  (95\%)$ | Метод доверительных областей, $\chi^2_M(95\%)$ |
|---------------|-------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| $r_s$         | 0.111096-0.115394                                           | 0.112373-0.115507(1.37)                             | 0.112076-0.115984 (1.10)                            | 0.109620-0.117820 (0.52)                       |
| $r_p$         | 0.0135058 - 0.0141542                                       | 0.0137074-0.0142326 (1.23)                          | 0.013667-0.014293 (1.04)                            | 0.013220-0.014600 (0.47)                       |
| $k = r_p/r_s$ | 0.121609-0.123362                                           | 0.121876-0.123264 (1.26)                            | 0.12157-0.12357 (0.88)                              | 0.12077-0.124219 (0.47)                        |
| і, град       | 86.3547-87.0400                                             | 86.36-86.74 (1.82)                                  | 86.31-86.77 (1.49)                                  | 86.13-87.15 (0.67)                             |

**Таблица 7.** Коэффициенты потемнения к краю звездного диска, полученные в предположение линейного закона потемнения: центральные значения и интервалы ошибки получены в рамках метода дифференциальных поправок (ошибка приведена на уровне  $2\sigma$ ) и метода доверительных областей с использованием статистик с законами распределения  $\chi^2_P$  и  $\chi^2_M$  (уровень доверия принят равным  $\gamma = 0.95$ )

| $\lambda$ , Å | $x^c$    | $2\sigma_{\mathrm{est}}\left(x^{c} ight)$ | x        | $\Delta_{P}\left(x\right)$ | x        | $\Delta_{M}\left(x\right)$ |
|---------------|----------|-------------------------------------------|----------|----------------------------|----------|----------------------------|
| 3201          | 0.828541 | 0.0505626                                 | 0.833506 | 0.0703594                  | 0.839899 | 0.112573                   |
| 3750          | 0.753992 | 0.0256720                                 | 0.754423 | 0.0371808                  | 0.755113 | 0.0601379                  |
| 4300          | 0.702653 | 0.0153839                                 | 0.702492 | 0.0233387                  | _        | —                          |
| 4849          | 0.617614 | 0.0134061                                 | 0.617462 | 0.0201586                  | 0.617381 | 0.0267281                  |
| 5398          | 0.561705 | 0.0140619                                 | 0.561665 | 0.0217482                  | 0.561101 | 0.0420762                  |
| 5802          | 0.534661 | 0.0144226                                 | 0.533942 | 0.0205499                  | _        | —                          |
| 6779          | 0.436943 | 0.0125312                                 | 0.436699 | 0.0198472                  | 0.436149 | 0.0332838                  |
| 7755          | 0.379030 | 0.0157685                                 | 0.378139 | 0.0247354                  | 0.377645 | 0.0363709                  |
| 8732          | 0.323969 | 0.0223688                                 | 0.323146 | 0.0361643                  | 0.317885 | 0.0829246                  |
| 9708          | 0.276457 | 0.0340324                                 | 0.275733 | 0.0483915                  | —        | —                          |

ностью 8%-13% для синего конца спектра ( $\lambda = 3201-3750$  Å), 4%-8% для видимого диапазона ( $\lambda = 4849-6779$  Å) и 8%-26% для красного конца спектра ( $\lambda = 7755-8732$  Å).

Графически зависимость линейного коэффициента x (в линейном законе потемнения к краю) от длины волны  $\lambda$  представлена на рис. 4 и 5. В качестве теоретической зависимости изменения коэффициента x с длиной волны использованы результаты работы Кларэ [15] для фотометрических систем *ugriz* и *UBVRIJ*. Использование разных фотометрических систем позволяет выяснить, насколько зависимость  $x(\lambda)$  обусловлена выбором соответствующей фотометрической системы (необходимость такой проверки подчеркивалась в работе [5]).

На рис. 4 представлены найденные нами центральные значения линейного коэффициента потемнения x и их "внутренние" ошибки на уровне  $2\sigma$ , полученные методом дифференциальных поправок. В целом наши результаты хорошо согласуются с результатами, полученными в работе Соузворза [5]. Из рис. 4 видно, что значения линейного коэффициента потемнения x, полученные из анализа наблюдаемых кривых блеска, расходятся с теоретическими значениями.

На рис. 5 приведены центральные значения линейного коэффициента потемнения x и наиболее консервативные оценки "внешних" ошибок, которые были получены методом доверительных областей, опирающемся на статистику с законом распределения  $\chi_M^2$ . Напомним, что принятый нами уровень доверия  $\gamma = 95\%$ . Здесь же даны соответствующие теоретические зависимости  $x(\lambda)$  из работы Кларэ [15]. Несмотря на увеличение интервала ошибок коэффициента потемнения x в 2–4 раза по сравнению с "внутренними" ошибками

#### 1210



Рис. 4. Зависимость коэффициента потемнения к краю *x* звезды HD 209458 в предположении линейного закона потемнения к краю от длины волны. Значения коэффициента потемнения к краю получены на основе анализа кривых блеска из работы [2]. Ошибки коэффициентов потемнения к краю получены на основе метода дифференциальных поправок. Ошибка приведена на уровне  $2\sigma$ . Теоретические значения коэффициентов потемнения к краю в фотометрических системах *ugriz* и *UBV RIJ* приведены из работы [15].

на уровне  $2\sigma$ , расхождение между наблюдаемыми и теоретическими значениями коэффициентов потемнения  $x(\lambda)$  остается значимым. Наблюдаемые значения  $x(\lambda)$  систематически меньше теоретических, и это различие нарастает по мере увеличения длины волны. Данный результат имеет большое значение для уточнения современных моделей тонких звездных атмосфер.

В табл. 2-4 приведены значения  $x(\lambda)$  и их ошибки, полученные путем минимизации функционала невязки между наблюдаемой и теоретической кривыми блеска по четырем параметрам r<sub>p</sub>,  $r_s, i, x.$  В этом случае каждому значению x для данной длины волны  $\lambda$  соответствует свой набор геометрических параметров  $r_p, r_s, i.$  В то же время ясно, что значение параметра і не должно зависеть от длины волны  $\lambda$ . Значение радиуса планеты, изза наличия у нее атмосферы, может зависеть от  $\lambda$ , но этот эффект мал и выявляется лишь для очень высокоточных кривых затмения (см., например, [16]). Поэтому мы выполнили определение коэффициентов потемнения к краю  $x(\lambda)$  при фиксированных геометрических параметрах  $r_p$ ,  $r_s$ , i, общих для всех  $\lambda$ . В качестве таковых были взяты средние арифметические значения параметров  $r_p$ ,  $r_s, i$  из всех значений, найденных для разных  $\lambda$ :  $\overline{r}_p = 0.0139657, \overline{r}_s = 0.113937, \overline{i} = 86.55^{\circ}.$ 



**Рис. 5.** То же, что на рис. 4, для случая, когда ошибки коэффициентов потемнения к краю получены на основе метода доверительных областей с использованием статистики с законом распределения  $\chi^2_M$ ; уровень доверия составляет  $\gamma = 0.95$ .

Значения коэффициентов потемнения  $x(\lambda)$  и их ошибок, найденные путем минимизации функционала невязки при фиксированных значениях геометрических параметров  $\overline{r}_p$ ,  $\overline{r}_s$ ,  $\overline{i}$ , представлены в табл. 8. Можно полагать, что эти значения  $x(\lambda)$ наиболее надежно отражают зависимость коэффициента потемнения x от длины волны  $\lambda$ , которая приведена на рис. 6. Здесь в качестве "внешних" ошибок приведены значения  $\Delta_P$ , полученные с использованием статистики с законом распределения  $\chi^2_P$ . В рамках статистики с законом распределения  $\chi^2_M$  модель в большинстве случаев отвергается по уровню значимости  $\alpha < 5\%$  ввиду того, что в данном случае используются более жесткие модельные предположения об одинаковом значении геометрических параметров для всех длин волн. Лишь для трех длин волн ( $\lambda\lambda$ 4849, 5398, 8732 Å) в этом случае модель может быть принята на уровне значимости  $\alpha = 5\%$ . В табл. 8 приведены соответствующие центральные значения  $x(\lambda)$  и наиболее консервативные оценки "внешних" ошибок, полученные в рамках статистики с законом распределения  $\chi^2_M$ .

#### 6. ИНТЕРПРЕТАЦИЯ КРИВЫХ БЛЕСКА НD 209458 В РАМКАХ КВАДРАТИЧНОГО ЗАКОНА ПОТЕМНЕНИЯ

В работе [5] из анализа многоцветных кривых блеска HD 209458 [2] были определены также коэффициенты квадратичного потемнения к краю. Автор подчеркивает, что в случае наиболее точной

#### АБУБЕКЕРОВ и др.

**Таблица 8.** Результаты интерпретации наблюдаемых кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках линейного закона потемнения к краю при фиксированных значениях параметров  $\overline{r}_p$ ,  $\overline{r}_s$  и  $\overline{i}$ , средних для всех длин волн: ошибки параметров получены в рамках метода доверительных областей с использованием статистики с законом распределения  $\chi^2_P$  и статистики с законом распределения  $\chi^2_M$ ; ошибка приведена на уровне доверия  $\gamma = 0.95$ 

| $\lambda, \mathrm{\AA}$ | x        | $\Delta_{P}\left(x\right)$ | x        | $\Delta_{M}\left(x ight)$ | $\chi^2_{red}$ |
|-------------------------|----------|----------------------------|----------|---------------------------|----------------|
| 3201                    | 0.805194 | 0.0196023                  | _        | —                         | 1.127          |
| 3750                    | 0.732868 | 0.0117864                  | —        | —                         | 1.208          |
| 4300                    | 0.697317 | 0.00718819                 | —        | —                         | 1.190          |
| 4849                    | 0.608848 | 0.00705112                 | 0.608828 | 0.00992982                | 1.103          |
| 5398                    | 0.552146 | 0.00778080                 | 0.552016 | 0.0194529                 | 1.068          |
| 5802                    | 0.552724 | 0.00662294                 | —        | —                         | 1.420          |
| 6779                    | 0.445318 | 0.00680517                 | —        | —                         | 1.214          |
| 7755                    | 0.395653 | 0.00922067                 | —        | —                         | 1.354          |
| 8732                    | 0.352846 | 0.0125393                  | 0.352893 | 0.00567959                | 1.110          |
| 9708                    | 0.329928 | 0.0181280                  | _        | _                         | 1.158          |

кривой блеска, полученной Брауном и др. [1], модель с линейым законом потемнения может быть отвергнута. При этом автор работы [5] отмечает, что в данном случае модель с линейным законом потемнения "может быть отвергнута на высоком уровне значимости (более, чем 99.99%)". Этот вывод автора [5] качественно согласуется с нашими результатами (см. выше), однако в данном случае имеются количественные расхождения. Обычно



**Рис. 6.** То же, что на рис. 5, при фиксированных значениях  $\overline{r}_p = 0.0139657$ ,  $\overline{r}_s = 0.113937$ ,  $\overline{i} = 86^{\circ}.555243$ , средних для всех длин волн, и использования статистики с законом распределения  $\chi_P^2$ .

под уровнем значимости  $\alpha$  статистического критерия (см., например, [13]) понимается количество ошибок 1-го рода, которое мы совершаем при применении этого критерия. Под ошибкой 1-го рода понимается ситуация, когда модель верна, но она отбрасывается по статистическому критерию. Если, согласно [5], модель может быть отвергнута на уровне значимости более, чем 99.99%, то это означает, что, отбрасывая модель, мы в 9999 случаев из 10000 совершаем ошибку 1-го рода, то есть отбрасываем верную модель. Лишь в одном случае из 10000, отбрасывая модель, мы правы (т.е. отбрасываем неверную модель). Поэтому в данном случае у нас нет оснований отбросить модель, и модель может быть принята. Приводя величину 99.99%, автор [5], по-видимому, имел ввиду не уровень значимости  $\alpha$ , а уровень доверия  $\gamma =$  $= 1 - \alpha$ . С учетом этой путаницы можно сказать, что в работе [5] модель с линейным законом потемнения в применении к высокоточной кривой блеска Брауна и др. [1] отвергается на очень низком уровне значимости  $\alpha < 0.01\%$ . Отметим, что минимальное значение невязки в рамках приведенного хи-квадрат в случае линейного закона потемнения (и кривой блеска Брауна и др. [1]), согласно [5], составляет  $\chi^2_{red} = 1.1457$ , что, как следует из работы [12], соответствует уровню значимости, при котором модель может быть отвергнута,  $\alpha = 1\%$  (а не  $\alpha < 0.01\%$ , как это утверждается в работе [5]). Согласно результатам нашей интерпретации, модель с линейным законом потемнения в применении к высокоточной кривой блеска Брауна [1] отвергается на низком уровне значимости ( $\alpha \sim$ 

~ 6%), что согласуется с величиной минимального приведенного хи-квадрат  $\chi^2_{red} = \chi^2_{M-P}/(M - P) \simeq 1.103$  [12]. Поэтому, как отмечалось выше, модель с линейным законом потемнения является не очень хорошей, но и не безнадежно "плохой", поскольку в данном случае имеется возможность оценить "консервативные" ошибки параметров на уровне доверия  $\gamma = 95\%$ .

Мы выполнили интерпретацию наиболее точной кривой блеска Брауна и др. [1] с использованием квадратичного закона потемнения. Минимизация функционала невязки проводилась по пяти параметрам:  $r_p$ ,  $r_s$ , i,  $x_1$ ,  $y_1$ . Здесь  $x_1$ ,  $y_1$  — коэффициенты в законе потемнения

$$I(\mu) = I_0 \left[ 1 - x_1(1-\mu) - y_1(1-\mu)^2 \right],$$

где  $\mu = \cos \omega$  ( $\omega -$ угол между нормалью к поверхности звезды и лучом зрения). Результаты представлены в табл. 9. Здесь даны центральные значения параметров  $r_p, r_s, i, x_1, y_1$  и их ошибки  $\Delta$ , полученные методом дифференциальных поправок и методом доверительных областей на уровне доверия  $\gamma = 95\%$ . Там же дано значение приведенного хи-квадрат ( $\chi^2_{red} = 1.01340$ ), которое оказалось существенно меньше приведенного хиквадрат для случая линейного потемнения к краю  $(\chi^2_{red} = 1.103)$ . В рамках квадратичного закона потемнения наша модель отвергается на уровне значимости  $\alpha > 46\%$ , поэтому имеется возможность оценить "внешние" ошибки параметров на уровне доверия  $\sim 95\%$  как в статистике  $\chi^2_P$ , так и в статистике  $\chi^2_M$ . Таким образом, модель с квадратичным законом потемнения в применении к высокоточной кривой блеска Брауна и др. [1], является "хорошей" (отвергая модель, мы более чем в 46% случаев совершаем ошибку 1-го рода, т.е. отвергаем правильную модель). Это дает нам основания предпочесть нелинейный (квадратичный) закон потемнения по сравнению с линейным (см. выше). Более того, модель с нелинейным (квадратичным) законом потемнения оказалась настолько хороша, что в данном случае можно оценить консервативные "внешние" ошибки параметров  $x_1, y_1$  на уровне доверия  $\gamma = 1 - \alpha =$ = 68%. Эти ошибки приведены в табл. 10.

Консервативная оценка "внешних" ошибок параметров  $x_1$ ,  $y_1$  на уровне доверия 95% показывает, что найденные значения  $x_1$ ,  $y_1$  находятся на пределе обнаружения (табл. 9; см. также далее табл. 13). Если ограничиться лишь "внутренними" ошибками параметров  $x_1$ ,  $y_1$  (табл. 9) или консервативными "внешними" ошибками на уровне доверия 68% (табл. 10), то значения коэффициентов потемнения к краю  $x_1$ ,  $y_1$  можно считать реальными.



Рис. 7. Зависимость коэффициента потемнения к краю  $x_1$  звезды HD 209458 в предположении квадратичного закона потемнения к краю от длины волны. Значения коэффициентов потемнения к краю получены на основе анализа кривых блеска из работы [2]. Ошибки коэффициентов потемнения к краю получены на основе метода дифференциальных поправок. Ошибка приведена на уровне  $2\sigma$ . Теоретические значения коэффициентов потемнения к краю в фотометрических системах ugriz и UBVRIJ приведены из работы [15].



**Рис. 8.** То же, что на рис. 7, для коэффициента потемнения к краю  $y_1$ .

Мы также применили модель с квадратичным законом потемнения к интерпретации многоцветных кривых блеска Кнутсона и др. [2]. В табл. 11— 13 приведены соответствующие результаты интерпретации. Как следует из табл. 11, величина  $\chi^2_{red}$ в данном случае в среднем меньше, чем в случае модели с линейным законом потемнения (табл. 3). На рис. 7—10 приведены значения коэффициентов

## 1214

## АБУБЕКЕРОВ и др.

**Таблица 9.** Результаты интерпретации наблюдаемой кривой блеска двойной системы с экзопланетой HD 209458 из работы [1] в рамках нелинейного (квадратичного) закона потемнения к краю: ошибка параметров получена в рамках метода дифференциальных поправок и метода доверительных областей с использованием статистики, распределенной по закону  $\chi^2_P$  (где P – число искомых параметров), а также в рамках статистики с законом распределения  $\chi^2_M$  (где M – число точек на кривой блеска); в нижней строке дано значение приведенного  $\chi^2_{red}$ 

| Параметр                     | Метод<br>дифференциальных<br>поправок ( $2\sigma$ ) | Метод доверительных областей, $\chi^2_P(95\%)$ | Метод доверительных областей, $\chi^2_M(95\%)$ |
|------------------------------|-----------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $r_1$                        | 0.113836                                            | 0.113845                                       | 0.113776                                       |
| $\Delta\left(r_{1}\right)$   | 0.000853921                                         | 0.00145205                                     | 0.00324496                                     |
| $r_2$                        | 0.0137654                                           | 0.0137679                                      | 0.0137456                                      |
| $\Delta\left(r_{2}\right)$   | 0.000144763                                         | 0.000250444                                    | 0.000562880                                    |
| $i^c$ , град                 | 86.6756                                             | 86.6789                                        | 86.7196                                        |
| $\Delta\left(i ight)$ , град | 0.108695                                            | 0.189625                                       | 0.429125                                       |
| $x_1$                        | 0.294517                                            | 0.296029                                       | 0.297905                                       |
| $\Delta\left(x_{1}\right)$   | 0.0546122                                           | 0.0927646                                      | 0.207913                                       |
| $y_1$                        | 0.344130                                            | 0.343221                                       | 0.352285                                       |
| $\Delta\left(y_{1} ight)$    | 0.0955230                                           | 0.163519                                       | 0.366437                                       |
| $\chi^2_{red}$               | 1.01340                                             |                                                |                                                |

**Таблица 10.** Результаты интерпретации наблюдаемой кривой блеска двойной системы с экзопланетой HD 209458 из работы [1] в рамках нелинейного (квадратичного) закона потемнения к краю: ошибка параметров получена в рамках метода дифференциальных поправок и метода доверительных областей с использованием статистики, распределенной по закону  $\chi^2_P$  (где P – число искомых параметров), а также в рамках статистики с законом распределения  $\chi^2_M$  (где M – число точек на кривой блеска); уровень доверия выбран равным  $\gamma = 0.68$ 

| Параметр                     | Метод<br>дифференциальных<br>поправок ( <i>σ</i> ) | Метод доверительных областей, $\chi^2_P(68\%)$ | Метод доверительных областей, $\chi^2_M(68\%)$ |
|------------------------------|----------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $r_1$                        | 0.113836                                           | 0.113840                                       | 0.113844                                       |
| $\Delta\left(r_{1} ight)$    | 0.000426960                                        | 0.00104013                                     | 0.00155419                                     |
| $r_2$                        | 0.0137654                                          | 0.0137677                                      | 0.0137676                                      |
| $\Delta\left(r_{2}\right)$   | 0.0000723814                                       | 0.000179204                                    | 0.000268077                                    |
| і, град                      | 86.6756                                            | 86.6765                                        | 86.6799                                        |
| $\Delta\left(i ight)$ , град | 0.0543473                                          | 0.135610                                       | 0.203029                                       |
| $x_1$                        | 0.294517                                           | 0.295082                                       | 0.296223                                       |
| $\Delta\left(x_{1}\right)$   | 0.0273061                                          | 0.0662467                                      | 0.0993592                                      |
| $y_1$                        | 0.344130                                           | 0.343627                                       | 0.343281                                       |
| $\Delta\left(y_{1} ight)$    | 0.0477615                                          | 0.116747                                       | 0.175127                                       |

 $x_1, y_1$  как функции длины волны  $\lambda$ . Там же приведены теоретические значения  $x_1, y_1$ , взятые из работы Кларе [15]. Видно, что нелинейный коэффициент  $y_1$  для HD 209458 согласуется с теоретической зависимостью в пределах ошибок. Однако наблюдаемые значения линейного коэффициента x<sub>1</sub> для квадратичного закона потемнения к краю значимо расходятся с теоретическими значениями (как и

**Таблица 11.** Результаты интерпретации наблюдаемых кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках квадратичного закона потемнения к краю: ошибка параметров получена в рамках метода дифференциальных поправок; ошибка приведена на уровне  $2\sigma$  (в двух последних столбцах приведены значения приведенного хи-квадрат и соответствующего уровня значимости  $\alpha$ 

| $\lambda, \text{\AA}$ | $r_1^c$ | $2\sigma_{\mathrm{est}}\left(r_{1}^{c} ight)$ | $r_2^c$ | $2\sigma_{\mathrm{est}}\left(r_{2}^{c} ight)$ | $i^c$  | $2\sigma_{\rm est}\left(i^c\right)$ | $x_1^c$  | $2\sigma_{\mathrm{est}}\left(x_{1}^{c} ight)$ | $y_1^c$  | $2\sigma_{\mathrm{est}}\left(y_{1}^{c} ight)$ | $\chi^2_{red}$ | α                     |
|-----------------------|---------|-----------------------------------------------|---------|-----------------------------------------------|--------|-------------------------------------|----------|-----------------------------------------------|----------|-----------------------------------------------|----------------|-----------------------|
| 3201                  | 0.1128  | 0.003574                                      | 0.01407 | 0.0007801                                     | 86.59° | $0.46^{\circ}$                      | 1.024    | 0.1965                                        | -0.3706  | 0.3530                                        | 1.062          | 0.205                 |
| 3750                  | 0.1113  | 0.002223                                      | 0.01360 | 0.0004571                                     | 86.88  | 0.31                                | 0.7978   | 0.1074                                        | -0.08720 | 0.2086                                        | 1.068          | 0.181                 |
| 4300                  | 0.1133  | 0.001312                                      | 0.01388 | 0.0002658                                     | 86.64  | 0.18                                | 0.7105   | 0.07557                                       | -0.01514 | 0.1408                                        | 1.123          | 0.0409                |
| 4849                  | 0.1133  | 0.001122                                      | 0.01385 | 0.0002147                                     | 86.65  | 0.15                                | 0.6119   | 0.07144                                       | 0.01035  | 0.1274                                        | 1.086          | 0.118                 |
| 5398                  | 0.1138  | 0.001222                                      | 0.01381 | 0.0002279                                     | 86.67  | 0.16                                | 0.4286   | 0.07723                                       | 0.2419   | 0.1426                                        | 1.023          | 0.410                 |
| 5802                  | 0.1142  | 0.001034                                      | 0.01400 | 0.0001969                                     | 86.55  | 0.14                                | 0.4551   | 0.08225                                       | 0.1389   | 0.1418                                        | 1.293          | $8.55 \times 10^{-6}$ |
| 6779                  | 0.1149  | 0.0008532                                     | 0.01399 | 0.0001520                                     | 86.49  | 0.11                                | 0.3066   | 0.07529                                       | 0.2183   | 0.1250                                        | 1.042          | 0.292                 |
| 7755                  | 0.1134  | 0.001130                                      | 0.01374 | 0.0001909                                     | 86.64  | 0.15                                | 0.2035   | 0.09479                                       | 0.2899   | 0.1580                                        | 1.048          | 0.257                 |
| 8732                  | 0.1144  | 0.001424                                      | 0.01388 | 0.0002411                                     | 86.54  | 0.19                                | 0.07225  | 0.1369                                        | 0.4119   | 0.2265                                        | 0.9966         | 0.574                 |
| 9708                  | 0.1136  | 0.002296                                      | 0.01380 | 0.0003744                                     | 86.64  | 0.30 -                              | -0.07901 | 0.2096                                        | 0.5815   | 0.3519                                        | 1.100          | 0.0702                |

**Таблица 12.** Результаты интерпретации наблюдаемых кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках квадратичного закона потемнения к краю: ошибка параметров получена в рамках метода доверительных областей с использованием статистики с законом распределения  $\chi_P^2$ ; уровень доверия принят равным 95%

| $\lambda$ , Å | $r_1$  | $\Delta_{p}\left(r_{1}\right)$ | $r_2$   | $\Delta_{p}\left(r_{2}\right)$ | i               | $\Delta_{p}\left(i\right)$ | $x_1$ | $\Delta_{p}\left(x_{1}\right)$ | $y_1$ | $\Delta_{p}\left(y_{1}\right)$ |
|---------------|--------|--------------------------------|---------|--------------------------------|-----------------|----------------------------|-------|--------------------------------|-------|--------------------------------|
| 3201          | 0.1128 | 0.0053                         | 0.01439 | 0.00140                        | $86.53^{\circ}$ | $0.81^{\circ}$             | 1.04  | 0.30                           | -0.52 | 0.67                           |
| 3750          | 0.1112 | 0.0034                         | 0.01359 | 0.00068                        | 86.93           | 0.49                       | 0.80  | 0.16                           | -0.07 | 0.32                           |
| 4300          | 0.1133 | 0.0023                         | 0.01388 | 0.00051                        | 86.66           | 0.34                       | 0.72  | 0.13                           | -0.02 | 0.26                           |
| 4849          | 0.1133 | 0.0018                         | 0.01385 | 0.00035                        | 86.66           | 0.25                       | 0.62  | 0.12                           | 0.01  | 0.21                           |
| 5398          | 0.1138 | 0.0021                         | 0.01380 | 0.00039                        | 86.69           | 0.29                       | 0.43  | 0.13                           | 0.25  | 0.24                           |
| 5802          | 0.1142 | 0.0016                         | 0.01402 | 0.00031                        | 86.55           | 0.22                       | 0.46  | 0.13                           | 0.13  | 0.22                           |
| 6779          | 0.1149 | 0.0014                         | 0.01399 | 0.00026                        | 86.49           | 0.19                       | 0.31  | 0.13                           | 0.22  | 0.21                           |
| 7755          | 0.1134 | 0.0018                         | 0.01374 | 0.00030                        | 86.64           | 0.24                       | 0.21  | 0.15                           | 0.29  | 0.25                           |
| 8732          | 0.1144 | 0.0023                         | 0.01388 | 0.00039                        | 86.56           | 0.31                       | 0.07  | 0.22                           | 0.42  | 0.37                           |
| 9708          | 0.1133 | 0.0038                         | 0.01374 | 0.00063                        | 86.73           | 0.53                       | -0.08 | 0.34                           | 0.60  | 0.57                           |

для случая линейного закона потемнения к краю.) На рис. 11, 12 приведены проекции доверительной области D на плоскости параметров  $x_1$ ,  $y_1$  и  $r_s$ ,  $r_p$ , соответственно. Прямоугольники здесь изображают проекции области, определяемой ошибками параметров (на уровне  $2\sigma$ ), найденными методом дифференциальных поправок.

## 7. ПРИМЕНЕНИЕ ПРИБЛИЖЕННОГО МЕТОДА ОЦЕНКИ "ВНЕШНИХ" ОШИБОК ПАРАМЕТРОВ, ПРЕДЛОЖЕННОГО В РАБОТЕ [12]

Оценки "внешних" ошибок параметров системы HD 209458, приведенные выше, проводились нами путем прямого перебора по параметрам и по-

#### АБУБЕКЕРОВ и др.

**Таблица 13.** Результаты интерпретации наблюдаемых кривых блеска двойной системы с экзопланетой HD 209458 из работы [2] в рамках квадратичного закона потемнения к краю: ошибка параметров получена в рамках метода доверительных областей с использованием статистики с законом распределения  $\chi^2_M$ ; уровень доверия принят равным 95%

| $\lambda, \text{\AA}$ | $r_1$  | $\Delta_{M}\left(r_{1}\right)$ | $r_2$   | $\Delta_{M}\left(r_{2}\right)$ | i               | $\Delta_{M}\left(i ight)$ | $x_1$ | $\Delta_{M}\left(x_{1}\right)$ | $y_1$ | $\Delta_{M}\left(y_{1} ight)$ |
|-----------------------|--------|--------------------------------|---------|--------------------------------|-----------------|---------------------------|-------|--------------------------------|-------|-------------------------------|
| 3201                  | 0.1174 | 0.0141                         | 0.01428 | 0.00249                        | $86.96^{\circ}$ | $1.61^{\circ}$            | 0.91  | 0.43                           | -0.19 | 1.40                          |
| 3750                  | 0.1109 | 0.0051                         | 0.01356 | 0.00110                        | 87.01           | 0.81                      | 0.81  | 0.26                           | -0.08 | 0.50                          |
| 4300                  | _      | _                              | _       | _                              | _               | _                         | _     | _                              | _     | —                             |
| 4849                  | 0.1133 | 0.0022                         | 0.01385 | 0.00043                        | 86.67           | 0.30                      | 0.62  | 0.14                           | 0.01  | 0.25                          |
| 5398                  | 0.1136 | 0.0044                         | 0.01373 | 0.00085                        | 86.79           | 0.65                      | 0.42  | 0.26                           | 0.28  | 0.52                          |
| 5802                  | _      | _                              | _       | _                              | _               | _                         | _     | _                              | _     | _                             |
| 6779                  | 0.1148 | 0.0027                         | 0.01399 | 0.00050                        | 86.51           | 0.36                      | 0.32  | 0.24                           | 0.21  | 0.40                          |
| 7755                  | 0.1133 | 0.0033                         | 0.01373 | 0.00056                        | 86.67           | 0.44                      | 0.21  | 0.28                           | 0.29  | 0.46                          |
| 8732                  | 0.1136 | 0.0056                         | 0.01380 | 0.00105                        | 86.72           | 0.86                      | 0.09  | 0.58                           | 0.44  | 0.95                          |
| 9708                  | 0.1134 | 0.0031                         | 0.01376 | 0.00051                        | 86.70           | 0.42                      | -0.08 | 0.28                           | 0.60  | 0.47                          |

строения соответствующей поверхности функционала невязки в многомерном пространстве параметров. Процедура перебора по параметрам весьма трудоемкая, хотя в нашей простой модели (две сферические звезды на круговой орбите) она решается сравнительно легко. Однако для других, более сложных моделей процедура перебора по параметрам может оказаться весьма обременительной. Поэтому в нашей работе [12] предложен приближенный метод оценки "внешних" ошибок



**Рис. 9.** То же, что на рис. 7, для случая, когда ошибки коэффициентов потемнения к краю получены на основе метода доверительных областей с использованием статистики с законом распределения  $\chi_P^2$ ; уровень доверия составляет  $\gamma = 0.95$ .

параметров модели, который легко реализуется на практике. Нами даны таблицы и приведены соответствующие графики, с помощью которых можно вычислить коэффициент перехода ( $t_{\rm max}$  для одномерной задачи или  $k_p t_{p\rm max}$  для многомерной задачи) от "внутренних" ошибок параметра, найденных методом Монте-Карло или методом дифференциальных поправок, к "внешним" ошибкам, получаемым методом доверительных областей в рамках статистики, распределенной по закону  $\chi^2_M$  [12]. Поэтому, вычислив "внутренние" ошибки  $\delta_1(\gamma)$  параметров задачи и убедившись, что используемая модель адекватна наблюдениям (для чего достаточно вы-



**Рис. 10.** То же, что на рис. 9, для коэффициента потемнения к краю *у*<sub>1</sub>.

## 1216



**Рис. 11.** Проекция доверительной области D (на уровне доверия 95%) на плоскость  $(x_1, y_1)$  в модели с квадратичным законом потемнения к краю. Малый "эллипс" (штриховая кривая) соответствует области, полученной с использованием статистики с законом распределения  $\chi^2_P$ , большой "эллипс" — с использованием статистики с законом распределения  $\chi^2_M$ . Прямоугольник соответствует проекции доверительной области на уровне  $2\sigma_{est}$ , полученной методом дифференциальных поправок. Проекция доверительной области D получена на основе наблюдаемой кривой блеска из работы [1].



Рис. 12. То же, что на рис. 11, для проекции доверительной области D (на уровне доверия 95%) на плоскость ( $r_p$ ,  $r_s$ ).

числить лишь минимальное значение функционала невязки и рассчитать значение приведенного  $\chi^2_{red}$ ), можно путем домножения "внутренних" ошибок на коэффициент  $k_p t_{max}$  [12] найти наиболее консервативные оценки "внешних" ошибок параметров в рамках статистики, распределенной по закону  $\chi^2_M$ .

В табл. 14 приведены значения  $\frac{\Delta_M(\gamma,\xi)}{\delta_1(\gamma)}$ , вычисленные на основе полученных в данной работе интервалов ошибок (содержащихся в табл. 2 и 4). Здесь  $\delta_1 = 2\sigma_{est}$  — ошибка, полученная методом дифференциальных поправок. Отметим, что для разных реализаций кривой блеска истинное отношение  $\frac{\Delta_M(\gamma,\xi)}{2\sigma_{est}}$  может значительно меняться (см. функцию плотности распределения в работе [12]). Однако данная теоретическая функция обладает экстремумом, и в предлагаемом методе работы [12] речь идет о наиболее вероятном значении отношения  $\frac{\Delta_M(\gamma,\xi)}{2\sigma_{est}}$ . Для реализации кривой блеска из работы [2] наблюдаемое отношение  $\frac{\Delta_M(\gamma,\xi)}{2\sigma_{est}}$ должно составлять ~2.6. Опираясь на предложенный метод расчета [12], можно заключить, что наиболее вероятное теоретическое значение отно-

**Таблица 14.** Значение наблюдаемого отношения величины интервала ошибок  $\Delta_M$ , полученного в рамках метода доверительных областей с использованием статистики с законом распределения  $\chi^2_M$  ( $\gamma = 0.95$ ) к величине ошибки  $2\sigma_{est}$ , полученной методом дифференциальных поправок: представлено наблюдаемое отно-

шение  $rac{\Delta_M(\gamma,\xi)}{2\sigma_{est}}$  для параметров  $k=r_s/r_p, i, r_p$  и  $r_s$ 

|                  | _    |       |       |      |
|------------------|------|-------|-------|------|
| $\lambda, A$     | k    | $r_s$ | $r_p$ | i    |
| 3201             | 2.13 | 2.14  | 2.12  | 2.13 |
| 3750             | 2.30 | 2.31  | 2.29  | 2.30 |
| 4300             | —    | —     | —     | —    |
| 4849             | 2.00 | 2.00  | 2.00  | 2.00 |
| 5398             | 3.10 | 3.09  | 3.10  | 3.10 |
| 5802             | _    | —     | —     | —    |
| 6779             | 2.75 | 2.74  | 2.75  | 2.75 |
| 7755             | 2.36 | 2.35  | 2.37  | 2.36 |
| 8732             | 3.74 | 3.73  | 3.75  | 3.74 |
| 9708             | —    | —     | —     | —    |
| Среднее значение | 2.63 | 2.62  | 2.63  | 2.63 |

шения  $\frac{\Delta_M(\gamma,\xi)}{2\sigma_{est}}$  составляет ~4. Данное значение в ~1.5 раза превышает определенное из наблюдений расхождение между ошибками, полученными в рамках метода дифференциальных поправок и метода доверительных областей (с использованием статистики с законом распределения  $\chi^2_M$ ). Тем не менее использование наиболее вероятного теоретического отношения интервалов  $t_{max1} =$  $= \frac{\delta_M(\gamma,\xi)}{\delta_1(\gamma)}$  [12] позволит избежать рассогласования значений параметров, полученных по разным наблюдаемым реализациям исследуемого процес-

наблюдаемым реализациям исследуемого процесса, к которому зачастую приводит метод дифференциальных поправок (или метод Монте-Карло), указать доверительные интервалы искомых параметров, заведомо отвечающие выбранному уровню доверия, а также значительно сэкономить время расчетов самих интервалов ошибок.

#### 8. ЗАКЛЮЧЕНИЕ

В работе определены параметры системы HD 209458 из анализа высокоточных спутниковых кривых блеска при затмении звезды экзопланетой. Определены радиусы экзопланеты и звезды, наклонение орбиты, а также значения линейных и нелинейных коэффициентов потемнения к краю звезды. При этом выполнен всесторонний анализ ошибок найденных параметров, рассмотрены как "внутренние", так и "внешние" ошибки параметров, которые получаются в 2–4 раза больше "внутренних". С учетом "внешних" ошибок нам удалось согласовать значения геометрических параметров, которые соответствуют наблюдениям, полученным в разных длинах волн.

Относительный радиус экзопланеты в системе HD 209458 (в долях радиуса относительной орбиты системы) равен  $r_p = 0.01386$  (приведено среднее значение по данным табл. 12). Оптическая звезда в системе HD 209458 - карлик спектрального класса GOV. Абсолютный радиус этой звезды  $R_s = 7.98 \times 10^{10}$  см (согласно работе [2] в предположении значений массы звезды и планеты  $M_s = 1.101 M_{\odot}$  и  $M_p = 0.64 M_{Jup}$ , соответственно). Следовательно, абсолютный радиус планеты равен  $R_p = 9.70 \times 10^9$  см. Масса планеты равна [17]  $M_p = 1.215 \times 10^{30}$ г, средняя плотность планеты равна  $\bar{\rho_p} = 0.318 \ r/cm^3$ . Используя формулу, связывающую ускорение силы тяжести на поверхности планеты  $g_p$  с полуамплитудой кривой лучевых скоростей звезды  $K_s$  [5],

$$p_p = \frac{2\pi}{P_{orb}} \frac{\left(1 - e^2\right)^{1/2} K_s}{r_p^2 \sin i}$$

и подставляя e = 0,  $K_s = 85.1 \pm 1.0$  м/с [18],  $P_{orb} = 3.52474859^{d}$ ,  $i = 86.65^{\circ}$  (табл. 12), находим ускорение силы тяжести  $g_p = 8.61$  м/с<sup>2</sup>, что близко к ускорению силы тяжести на поверхности Земли.

Отношение масс планеты и звезды  $q = m_p/m_s = 0.00055$ , относительный радиус планеты  $r_p = \frac{R_p}{a} = 0.01386$ . Для проверки нашего предположения о сферичности планеты, вычислим средний относительный радиус полости Роша для планеты, используя аппроксимационные формулы [19]

$$R_R = 0.49a \frac{q^{2/3}}{0.62q^{2/3} + \ln(1+q^{1/3})},$$
 (27)

$$R_R = 0.46a \left(\frac{M_2}{M_1 + M_2}\right)^{1/3}.$$
 (28)

В табл. 15 приведены значения среднего относительного радиуса полости Роша  $R_R/a$  (a — радиус относительной орбиты системы) для различных значений отношений масс планеты и звезды  $q = m_p/m_s$  в диапазоне q = 0.00055-2. Видно, что величины  $R_R/a$ , рассчитанные по формулам (27) и (28), хорошо согласуются между собой, что говорит о надежности оценки среднего относительного радиуса полости Роша для планеты. При радиусе планеты  $r_p = 0.01386$  и радиусе полости Роша для

#### АНАЛИЗ КРИВЫХ БЛЕСКА

|         | q        |          |          |         |         |         |         |         |         |  |
|---------|----------|----------|----------|---------|---------|---------|---------|---------|---------|--|
| Формула | 0.00055  | 0.001    | 0.01     | 0.05    | 0.1     | 0.3     | 0.5     | 1       | 2       |  |
|         | $R_R/a$  |          |          |         |         |         |         |         |         |  |
| (27)    | 0.039785 | 0.048366 | 0.10201  | 0.16833 | 0.20677 | 0.28103 | 0.32079 | 0.37892 | 0.44000 |  |
| (28)    | 0.037727 | 0.045985 | 0.098776 | 0.16673 | 0.20684 | 0.28215 | 0.31895 | 0.36510 | 0.40185 |  |

**Таблица 15.** Зависимость среднего относительного радиуса полости Роша от отношения масс компонентов, вычисленного по формулам (27), (28)

нее  $R_R/a = 0.039785$  степень заполнения планетой своей полости Роша составляет  $\mu = 0.35$ , что значительно меньше, чем 0.5. Поэтому наше предположение о сферичности планеты вполне обосновано (если пренебречь некоторой сплюснутостью планеты, обусловленной ее осевым вращением). То же самое можно сказать и об оптической звезде.

Очень ценная информация получается о потемнении к краю диска звезды. Из анализа высокоточных спутниковых многоцветных кривых блеска в данных наблюдений Кнутсона и др. [2] удается получить зависимость от длины волны как линейного коэффициента потемнения  $x(\lambda)$ , так и нелинейных коэффициентов потемнения  $x_1(\lambda), y_1(\lambda)$  в квадратичном законе. Нами подтверждено обнаруженное в работе Соузворза [5] различие между наблюдаемой и теоретической зависимостями линейного коэффициента потемнения x от длины волны. Новым результатом является то, что даже с использованием наиболее консервативных оценок "внешних" ошибок определения коэффициента потемнения x (в рамках статистики с законом распределения  $\chi^2_M$ ), остается значимое расхождение между наблюдаемой и теоретической зависимостями  $x(\lambda)$ . Наблюдаемые значения  $x(\lambda)$  оказываются систематически меньше теоретических, причем это различие увеличивается с увеличением длины волны, так что в области  $\lambda \approx 9000$  А наблюдаемый линейный коэффициент потемнения примерно в 1.5 раза меньше теоретического. Таким образом, диск звезды в красном диапазоне спектра оказывается значительно более однородным, чем это предсказывает теория тонких звездных атмосфер. Зависимость от  $\lambda$  коэффициента потемнения  $x_1$ в квадратичном законе также значимо отличается от соответствующей теоретической зависимости: наблюдаемые значения x<sub>1</sub> систематически меньше теоретических, причем это различие нарастает по мере увеличения длины волны λ. Важно подчеркнуть, что данное различие сохраняется даже при использовании консервативных "внешних" ошибок определения значений  $x_1$  в рамках статистики с законом распределения  $\chi^2_P$ . Зависимость от  $\lambda$  коэффициента потемнения  $y_1$  в квадратичном законе в пределах ошибок определения согласуется с соответствующей теоретической зависимостью.

До последнего времени проверка моделей звездных атмосфер проводилась, в основном, путем сравнения наблюдаемого и теоретического спектров излучения от всего диска звезды. Высокоточные спутниковые многоцветные наблюдения покрытий звезд экзопланетами дают новую и уникальную возможность независимой проверки моделей звездных атмосфер по угловому распределению выходящего из атмосферы звезды излучения на разных  $\lambda$ . Важным преимуществом затмений звезд экзопланетами для определения коэффициентов потемнения к краю звезд является пренебрежимая малость эффектов отражения и эллипсоидальности, а также кольцевой характер затмения при относительно малом радиусе затмевающей планеты. Поэтому, несмотря на то, что относительная точность кривых затмения в данном случае не экстремально высока (в случае спутниковых наблюдений она составляет ~1%-2% по отношению к глубине затмения), перечисленные благоприятные обстоятельства позволяют уверенно находить коэффициенты потемнения как в линейном, так и в нелинейном законе потемнения. В связи с этим данные исследования важны не только для определения фундаментальных характеристик экзопланет, но и для дальнейшего развития теории звездных атмосфер.

Отметим, что впервые на возможность обнаружения затмения звезд экзопланетами указал Тутуков [20, 21].

Авторы выражают особую благодарность Хезеру Кнутсону (Н.А. Knutson) за предоставление наблюдательных данных по HD 209458. Выражаем благодарность за финансовую поддержку работы грантом Российского фонда фундаментальных исследований 08-02-01220, грантом Программы государственной поддержки ведущих научных школ РФ НШ-7179.2010.2, грантом Президента РФ для государственной поддержки молодых российских ученых-кандидатов наук (МК-206.2009.2) и грантом аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы" РНП-2.1.1.2906.

## СПИСОК ЛИТЕРАТУРЫ

- T. M. Brown, D. Charbonneau, R. L. Gilliland, *et al.*, Astrophys. J. **552**, 699 (2001).
- H. A. Knutson, D. Charbonneau, R. W. Noyes, *et al.*, Astrophys. J. **655**, 564 (2007).
- I. A. G. Shellen, E. J. W. de Mooij, and S. Albrecht, Nature 459, 543 (2009).
- 4. *The CoRoT space mission: early results*, eds C. Bertout, T. Forveille, N. Langer, S. Shore, Astron. and Astrophys. **506**, 1 (2009).
- 5. J. Southworth, Monthly Not. Roy. Astron. Soc. **386**, 1644 (2008).
- 6. A. Gimenez, Astron. and Astrophys. **450**, 1231 (2006).
- D. M. Popper and P. B. Etzel, Astron. J. 86, 102 (1981).
- 8. J. Southworth, P. F. L. Maxted, and B. Smalley, Monthly Not. Roy. Astron. Soc. **351**, 1277 (2004).
- 9. D. M. Popper, Astron. J. 89, 132 (1984).

- 10. А. М. Черепащук, Астрон. журн. 70, 1157 (1993).
- 11. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. **85**, 121 (2008).
- 12. М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук, Астрон. журн. **86**, 778 (2009).
- 13. С. Уилкс, *Математическая статистика* (М.: Наука, 1967).
- 14. A. Burrows, I. Hubeny, J. Budai, and W. B. Hubbard, Astrophys. J. **661**, 502 (2007).
- 15. A. Claret, Astron. and Astrophys. 428, 1001 (2004).
- 16. F. Pont, H. Knutson, R. L. Gilliland, *et al.*, **385**, 109 (2008).
- 17. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. (Letters) **529**, L45 (2000).
- 18. D. Naef, M. Mayor, J. L. Beurit, *et al.*, Astron. and Astrophys. **414**, 351 (2004).
- 19. P. P. Eggleton, Astrophys. J. 268, 368 (1983).
- 20. А. В. Тутуков, Астрон. журн. 69, 1275 (1992).
- 21. А. В. Тутуков, Астрон. журн. 72, 400 (1995).

Примечание при корректуре

Когда наша статья была сдана в печать, мы познакомились со статьей А. Claret (Astron. and Astrophys. **506**, 1335 (2009)), в которой заново пересчитаны коэффициенты потемнения к краю звездных дисков на базе моделей Куруца. Новые теоретические значения коэффициентов в линейном и нелинейном законах потемнения близки к прежним значениям (A. Claret, Astron. and Astrophys. **428**, 1001 (2004)). Тем самым подтверждено расхождение между наблюдениями HD 209458 и теорией. Наша работа дополнительно показывает, что даже если использовать наиболее консервативные оценки "внешних" ошибок параметров, расхождение между наблюдаемыми и теоретическими коэффициентами потемнения к краю звезды HD 209458 остается значимым.