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ABSTRACT
We have developed a universal approach to compute accurately the brightness of eclipsing
binary systems during the transit of a planet in front of the stellar disc. This approach is
uniform for all values of the system parameters and applicable to most limb-darkening laws
used in astrophysics. In the cases of the linear and quadratic limb-darkening laws, we obtained
analytical expressions for the light curve and its derivatives in terms of elementary functions,
elliptic integrals and a piecewise-defined function of one variable. In the cases of the loga-
rithmic and square-root laws of limb darkening, the flux and its derivatives were expressed in
terms of integrals which can be efficiently computed using the Gaussian quadrature formula,
taking into account singularities of the integrand.

Key words: methods: analytical – methods: numerical – eclipses – binaries: eclipsing.

1 IN T RO D U C T I O N

Recently several authors have developed algorithms for the calcula-
tion of transit light curves (see e.g. Mandel & Agol 2002; Pal 2008;
2012). However, the problem of the calculation of the light curves is
still relevant, because the existing algorithms are not applicable to
all values of the system parameters for some limb-darkening laws.
Besides, they do not allow sufficiently accurate calculations of the
light curves for some limb-darkening laws. In addition, calculations
of derivatives of the light curve as a function of system parameters
are important, because they can be used to solve the inverse problem
of interpretation of the light curve.

The paper Mandel & Agol (2002) contains an analytical expres-
sion of the light curve by elliptic integrals, for the cases of the
linear and quadratic limb-darkening laws. In doing so, 13 variants
of relations between the parameters are considered. For other limb-
darkening laws (law of square root and its power) only an approx-
imate method of light-curve calculation at the radius of the planet
more than 10 times smaller than the radius of the star is being used.
In this case, the accuracy is 2 per cent of the depth of the eclipse.
In the paper Pal (2012), directly, there is only an expression of the
light curve in the linear and quadratic limb-darkening laws, and the
derivatives of the light curve are calculated by difference methods
which is less favourable in terms of the time and accuracy of the
computation. (This work contains no direct analytical expressions
for the derivatives.) In addition, none of the above works consid-
ered the logarithmic law of darkening, which is most preferred for
early-type stars (Klinglesmith & Sobieski 1970; Van Hamme 1993).

The approach presented in this paper allows us to calculate a
light curve and with almost machine accuracy for any values of the
parameters (including near singularities). Binary system parameters
are the radii of the components and the distance between the centres
of the components in the projection on the picture plane. In general,

� E-mail: marat@sai.msu.ru (MA); ngostev@sai.msu.ru (NG)

the algorithm is uniform for all values of the system parameters,
which significantly facilitates its implementation. We obtained ana-
lytical expressions for the transit light curve of the eclipsing binary
system and for its derivatives in the cases of the linear and quadratic
limb-darkening laws. These quantities are expressed in terms of a
piecewise-defined function of one variable and incomplete ellip-
tic integrals, which can be computed with methods proposed by
Carlson (1995). In the cases of the logarithmic limb-darkening law
and the square-root limb-darkening law, the light function is ex-
pressed through integrals that can be efficiently computed using the
Gaussian quadrature formula. In this respect, the computation time
of the light curve is not much more than the computation time by
analytical expressions.

2 M O D E L D E S C R I P T I O N

We considered the model of the eclipse of a spherically symmetric
star with a thin atmosphere by another spherical opaque component
(the other spherical star or a spherical planet).

Fig. 1 shows the geometry of the stellar disc in an eclipse.
The brightness at the point of the disc of the eclipsed star with

polar coordinate ρ is given by

J (ρ) = J (0)I

(
ρ

R∗

)
.

Here J(0) is the brightness at the centre of this stellar disc,

I (r) = (1 − f (μ(r))),

μ(r) =
√

1 − r2 ,

f (μ) =
∑

k

�kfk(μ), (1)

where the functions fk are such that fk(1) = 0, defined by the law
of limb darkening in question, and �k are the coefficients of limb-
darkening.
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Figure 1. A model of the eclipsing binary system. The projection is on the picture plane. Here the smaller component is a star or an exoplanet. The geometry
of stellar discs in an eclipse. Here R∗ is the radius of the eclipsed star, Ro is the radius of the eclipsing component, D is the distance between the centres of the
discs of the components, and ρ and � are, respectively, the polar radius and the polar angle of a point on the disc of the eclipsed star. The origin is located at the
centre of the eclipsed star and the polar angle is measured counterclockwise from the radius vector connecting centres of the star and the transiting component.

In this paper, we consider the following frequently used limb-
darkening laws:

(i) Linear limb-darkening law, for which f(μ)s = �lfl(μ) =
�l(1 − μ)

(ii) Square law of limb darkening, which is characterized by the
presence of the term �qfq(μ) = �q(1 − μ)2 in the expression for f

(iii) Logarithmic limb-darkening law, which is characterized by
the presence of the term �LfL(μ) = − �Lμln μ in the expression
for f

(iv) Square-root limb-darkening law, which is characterized by
the presence of the term �QfQ(μ) = �Q(1 − √

μ) in the expres-

sion for f.
√

μl where l is a positive integer.

Corresponding results can be easily extended to the case when
the expression for the brightness contains a term.

3 G E N E R A L I N T E G R A L F O R M U L A
F O R TH E F L U X

The decrease of the flux of the binary system due to the eclipse is

LF − L(D, R∗, Ro) = �L(D, R∗, Ro) =
∫ ∫
S(D)

J (|R|) dR, (2)

where LF is the unobscured flux of the binary system, L is the
obscured flux of the binary system, i.e. the light-curve value, S(D)
is the area of overlapping discs and R is the radius vector of the
point on the stellar disc.

To calculate the integral (2), we introduce the following func-
tions:

A x ≡

⎧⎪⎨
⎪⎩

π, x < −1

arccos x, −1 ≤ x ≤ 1
0, x > 1

(3)

and

Q x ≡
{√

x, x ≥ 0

0, x < 0.
(4)

Then,

dA x

d x
= Q

(
1

1 − x2

)
. (5)

The relation (5) is obtained naturally by noting that A z =
Re arccos z, Q x = Re

√
z for a complex number z with Im z = 0

and for the functions of the complex argument arccos and
√· that

are analytic continuations of the inverse cosine and square root of a
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real argument. The analyticity region is such that −π < arg z ≤ π

for each z.
In the polar coordinate system, the region of the integration S(D)

is given by

S(D) =

⎧⎪⎨
⎪⎩

ρ < R∗
−π < ϕ ≤ π

ρ2+ D2 − R2
o

2ρD
≤ cos ϕ .

(6)

In the case of integration (2) with respect to the coordinate ϕ, for

the values of ρ, which satisfy
∣∣∣ ρ2+D2−R2

o

2ρD

∣∣∣ ≤ 1, the variable ϕ takes

the values such that

ρ2 + D2 − R2
o

2ρD
≤ cos ϕ ⇔ |ϕ| ≤ arccos

(
ρ2 + D2 − R2

o

2ρD

)
.

Hence, the integration over ϕ is from − arccos
(

ρ2+D2−R2
o

2ρD

)
to

arccos
(

ρ2+D2−R2
o

2ρD

)
.

For the values of ρ for which ρ2+D2−R2
o

2ρD
< −1, the inequality

ρ2 + D2 − R2
o

2ρD
< cos ϕ

holds for every value of ϕ. In this case, the integration with respect
to ϕ runs from −π to π.

For the values of ρ, for which ρ2+D2−R2
o

2ρD
> 1, the last in-

equality (6) is not satisfied for any values of ϕ. Formally, at
these values of ρ both integration limits by ϕ are set equal to
zero.

Next, using the notation (3) and introducing the function

�(D, x, y) ≡ A
(

x2 + D2 − y2

2 x D

)
,

the integral in (2) can be rewritten as

�L(D,R∗, Ro) =
∫ R∗

0
ρdρ

∫ �(D, ρ,Ro)

−�(D, ρ,Ro)
dϕJ (ρ)

= 2J (0)
∫ R∗

0
ρ �(D,ρ, Ro) I

(
ρ

R∗

)
dρ

= J (0)R2
∗�L

(
D

R∗
, 1,

Ro

R∗

)
= J (0)R2

∗�L(δ, r),

(7)

where r = Ro

R∗ , δ = D
R∗ and

�L(δ, r) = 2
∫ 1

0
ρ �(δ, ρ, r) I (ρ)dρ

=
∫ 1

0
�(δ,

√
ρ, r) I (

√
ρ)dρ. (8)

Note that �L(δ, r) is the value of the decrease of the flux of
the binary system when the radius and brightness at the cen-
tre of the eclipsed star equals unity, the radius of the second
(eclipsing) component equals r and the distance between the cen-
tres of discs equals δ. In view of (1) we can express the de-
crease of the flux as a linear combination with limb-darkening
coefficients:

�L(δ, r) = �L0(δ, r) + �l�Ll(δ, r)

+�q�Lq (δ, r) + �L�LL(δ, r) + �Q�LQ(δ, r). (9)

The unobscured flux Lf of the star is

Lf = J (0)R2Lf ,

where R is the radius of the star and

Lf = π

∫ 1

0
I (

√
ρ)dρ

= Lf
0 + �lLf

l + �qLf
q + �LLf

L + �QLf
Q. (10)

When both components of the binary system are stars, the unob-
scured flux LF of the binary system is the sum of Lf for each star.
For a binary star and planet, LF equals Lf for the star.

Let g be a function such that g(ρ) is a separate linear term in
the expression for I (

√
ρ) [given by equation (1)]. g(−1) is one of its

primitives: g(ρ) = dg(−1)(ρ)
dρ

. We consider the integral of the general
form, which is a contribution to �L(δ, r) caused by the term g(ρ)
in the expression for I (

√
ρ):

�Lg(δ, r) =
∫ 1

0
�(δ,

√
ρ, r) g(ρ)dρ. (11)

We note that for δ > 0, r > 0

lim
ρ→0

�(δ,
√

ρ, r) = π	(r − δ),

where

	(t) ≡

⎧⎪⎪⎨
⎪⎪⎩

1, t > 0
1
2 , t = 0

0, t < 0.

Using integration by parts, we obtain

�Lg(δ, r) = �(δ, 1, r)g(−1)(1) − π	(r − δ)g(−1)(0)

−
∫ 1

0

(δ2 − r2 − ρ)g(−1)(ρ)

2ρ

×Q
(

1(
ρ − (δ − r)2

) (
(δ + r)2 − ρ

)
)

dρ, (12)

where (5) is used for differentiating �.
For a non-negative r and δ the integrand in (12) is non-zero

only if (δ − r)2 < ρ < (δ + r)2. Therefore, the integral in (12)
is zero if |δ − r| ≥ 1, and if |δ − r| < 1, integration can be
performed over the interval ((δ − r)2, min ((δ + r)2, 1)). In this

interval arccos
(

δ2+r2−ρ

2 δ r

)
is a monotone function of ρ, so we can

perform the change of variable in integration in the following way:

x = arccos

(
δ2 + r2 − ρ

2 δ r

)
. (13)

Then,

ρ = δ2 + r2 − 2rδ cos x. (14)

Integration with respect to x will be performed over the interval(
0, arccos

(
δ2 + r2 − min

(
(δ + r)2, 1

)
2 δ r

))
.

Taking into account the fact that

d

dρ
arccos

(
δ2 + r2 − ρ

2 δ r

)
= 1√(

ρ − (δ − r)2
) (

(δ + r)2 − ρ
)
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and

arccos

(
δ2 + r2 − min

(
(δ + r)2, 1

)
2 δ r

)
= A

(
δ2 + r2 − 1

2 δ r

)

= �(δ, r, 1),

we obtain

�Lg(δ, r) = �(δ, 1, r)g(−1)(1) − π	(r − δ)g(−1)(0) +
∫ �(δ, r, 1)

0

× (r2 − rδ cos x))g(−1)(δ2 + r2 − 2rδ cos x)

δ2 + r2 − 2rδ cos x
dx.

(15)

Expression (15) is obtained assuming |δ − r| < 1. If |δ − r| ≥ 1,
then the value of �(δ, r, 1) = 0 and the integral in (15) vanishes. As
noted above, when |δ − r| ≥ 1, the integral in (12) is zero because
the integrand vanishes. Thus, the expression (15) is valid for all
positive values of δ and r .

By differentiating the integrand in (11) with respect to δ and r, we
similarly find an expression for the corresponding partial derivative
�Lg:

∂�Lg(δ, r)

∂δ
= −2r

∫ �(δ, r, 1)

0
cos x g(δ2 + r2 − 2rδ cos x)dx,

(16)

∂�Lg(δ, r)

∂r
= 2r

∫ �(δ, r, 1)

0
g(δ2 + r2 − 2rδ cos x)dx. (17)

The contribution to the Lf caused by the term g(ρ) in the expres-
sion for I (

√
ρ) is

Lf
g = π(g(−1)(1) − g(−1)(0)). (18)

4 IN D I V I D UA L L AW S O F L I M B DA R K E N I N G

The expression for the decrease of flux due to the eclipse of the
stellar disc with uniform brightness (with zero coefficients of limb
darkening) can be obtained if we substitute in equations (15), (16)
and (17) g(x) = 1, g−1(x) = x. Then,

Lf
0 = π,

�L0(δ, r) = �(δ, 1, r) + �(δ, r, 1)r2 − 1

2
Q (δ, r) , (19)

∂�L0(δ, r)

∂δ
= −Q(δ, r)

δ
(20)

and

∂�L0(δ, r)

∂r
= 2�(δ, r, 1)r. (21)

Here

Q (δ, r) ≡ Q ((
1 − (δ − r)2

) (
(δ + r)2 − 1

))
.

(i) Putting g(x) = μ(
√

x) = √
1 − x and g(−1)(x) = − 2

3 (1 −
x)

3
2 , we get

Lf
1 = 2π

3
,

�L1(δ, r) = 2π

3
	(r − δ)

+Q
(

1

1 − (r − δ)2

) [
2(δ + r)

3(δ − r)

̂

− 2

9

(
3(δ2 − r2) + (1 − (r − δ)2)((r + δ)2 − 1)

)
F̂

]

+2

9
Q (

1 − (r − δ)2
)

(7r2 + δ2 − 4)Ê. (22)

Here


̂ ≡ 


(
− 4δr

(r − δ)2
;
�(δ, r, 1)

2

∣∣∣∣ 4δr

1 − (r − δ)2

)
,

F̂ ≡ F

(
�(δ, r, 1)

2

∣∣∣∣ 4δr

1 − (r − δ)2

)
,

Ê ≡ E

(
�(δ, r, 1)

2

∣∣∣∣ 4δr

1 − (r − δ)2

)
,

where F, E and 
 are incomplete elliptic integrals of the first, second
and third kind:

F (φ |m) ≡
∫ φ

0

dθ√
1 − m sin2(θ )

,

E(φ |m) ≡
∫ φ

0

√
1 − m sin2(θ ),


(n; φ |m) ≡
∫ φ

0

dθ

(1 − n sin2(θ ))
√

1 − m sin2(θ )
.

The efficient algorithms for their calculations were suggested by
Carlson (1995). When |δ − r| → 0 or |δ − r| → 1, the limit of
the term containing the factor 
̂ in (22) is equal to zero. Note
that a similar expression was obtained by Pal (2012) for the integral
(primitive) of the appropriately chosen vector field along the limb of
the eclipsed component. However, application of this expression for
the calculation of the flux of the system requires further account of
its singularities. Expressions (22) and (19) give a direct algorithm
for calculating the brightness, and the possible singularities are
taken into account automatically by piecewise smooth functions of
one variable A and Q

∂�L1(δ, r)

∂δ

= −2r

∫ �(δ, r, 1)

0
cos(x)

√
1 − (δ − r)2 − 4 δr sin2

(x

2

)
dx

= − 2

3δ
Q (

1 − (r − δ)2
) [(

(r + δ)2 − 1
)
F̂

+ (
1 − δ2 − r2

)
Ê], (23)

∂�L1(δ, r)

∂r
= 2r

∫ �(δ, r, 1)

0

√
1 − (δ − r)2 − 4 δr sin2

(x

2

)
dx

= 4r Q (
1 − (r − δ)2

)
Ê. (24)

For the term with linear limb-darkening coefficients in (9)

�Ll(δ, r) = �L1(δ, r) − �L0(δ, r), (25)
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Lf
l = Lf

1 − Lf
0 = −π

3
.

(ii) Assuming g(x) = x and g( − 1)(x) = x2/2 we get

Lf
2 = π

2 ,

�L2(δ, r) = 1

2
�(δ, 1, r) + r2

2

(
2δ2 + r2

)
�(δ, r, 1)

−1

8

(
δ2 + 5r2 + 1

)
Q (δ, r) . (26)

The partial derivatives of �L2 are as follows:

∂�L2(δ, r)

∂δ
= 2δr2�(δ, r, 1) − δ2 + r2 + 1

2δ
Q(δ, r), (27)

∂�L2(δ, r)

∂r
= 2r

(
δ2 + r2

)
�(δ, r, 1) − 2rQ(δ, r), (28)

�Lq (δ, r) = 2�L1(δ, r) − �L0(δ, r) − �L2(δ, r), (29)

Lf
q = 2Lf

1 − Lf
0 − Lf

2 = π

6
.

Further, we note that

�(δ, r, 1)

2
= π

2
− AQ

(
1 − (δ − r)2

4δr

)
.

(iii) Assuming g(x) = √
1 − x ln(1 − x) and g( − 1)(x) = (1 −

x)3/2(4/9 − 2/3ln (1 − x)), we obtain for the logarithmic limb-
darkening law

Lf
L = −4

9
π,

�LL(δ, r) = �L1(δ, r)

(
ln(4δr) − 2

3

)

−2π

3
ln(4δr)	(r − δ)

−8

3

√
δr

[
r2

P
L
1

(
(δ − r)2

4δr
,

1 − (δ − r)2

4δr

)

− δrP
L
2

(
(δ − r)2

4δr
,

1 − (δ − r)2

4δr

)]
, (30)

where

P
L
1 (n, k) =

∫ π

2
− A(Q k)

0

(
k − sin2 x

) 3
2 ln

(
k − sin2 x

)
n + sin2 x

dx,

(31)

P
L
2 (n, k)=

∫ π

2
− A(Q k)

0
cos 2x

(
k − sin2 x

) 3
2 ln

(
k − sin2 x

)
n + sin2 x

dx.

(32)

The partial derivatives of �LL are as follows:

∂�LL(δ, r)

∂δ
= ln(4δr)

∂�L1(δ, r)

∂δ
− 8r

√
rδP

L
δ

(
1 − (δ − r)2

4δr

)
,

(33)

P
L
δ (k) =

∫ π

2
− A(Q k)

0
cos 2x

√
k − sin2 x ln

(
k − sin2 x

)
dx,

(34)

∂�LL(δ, r)

∂r
= ln(4δr)

∂�L1(δ, r)

∂r
+ 8r

√
rδP

L
r

(
1 − (δ − r)2

4δr

)
,

(35)

P
L
r (k) =

∫ π

2
− A(Q k)

0

√
k − sin2 x ln

(
k − sin2 x

)
dx. (36)

(iv) Assuming g(x) = 4
√

1 − x and g(−1)(x) = − 4

5
(1 − x)5/4, we

obtain the following expression for the case of the square-root limb-
darkening law:

Lf
3 = 4π

5
,

�L3(δ, r) = 4π

5
	(r − δ)

−8

5
4
√

4δr

[
r2

P
Q
1

(
(δ − r)2

4δr
,

1 − (δ − r)2

4δr

)

− δrP
Q
2

(
(δ − r)2

4δr
,

1 − (δ − r)2

4δr

)]
, (37)

where

P
Q
1 (n, k) =

∫ π

2
− A(Q k)

0

(
k − sin2 x

) 5
4

n + sin2 x
dx, (38)

P
Q
2 (n, k) =

∫ π

2
− A(Q k)

0
cos 2x

(
k − sin2 x

) 5
4

n + sin2 x
dx. (39)

The partial derivatives of �LQ are as follows:

∂�L3(δ, r)

∂δ
= −4r

4
√

4rδP
Q
δ

(
1 − (δ − r)2

4δr

)
, (40)

where

P
Q
δ (k) =

∫ π

2
− A(Q k)

0
cos 2x

(
k2 − sin2 x

) 1
4 dx, (41)

and

∂�L3(δ, r)

∂r
= 4r

4
√

4rδP
Q
r

(
1 − (δ − r)2

4δr

)
, (42)

where

P
Q
r (k) =

∫ π

2
− A(Q k)

0

(
k − sin2 x

) 1
4 dx. (43)

For the term with square-root limb-darkening coefficients in (9):

�LQ(δ, r) = �L3(δ, r) − �L0(δ, r), (44)

Lf
Q = Lf

3 − Lf
0 = −π

5
.

It is easy to generalize the formulas obtained for the square root to
the case of the limb-darkening law which contain the brightness term√

μl in expression of brightness, where l is an odd positive number.
It’s enough just to put in (15), (16) and (17) g(x) = 4

√
(1 − x)l
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and g(−1)(x) = − 4
4+l

(1 − x)1+l/4. For an even l of non-multiple of
4, the light curve and its derivative can be expressed by elliptical
integrals similarly to the formulae (22)–(24). If l is divisible by 4,
the light curve and its derivative can be expressed by elementary
functions similarly to the formulae (26)–(28) obtained for quadratic
limb darkening.

5 N U M E R I C A L C A L C U L ATI O N O F
I N T E G R A L S

Thus, the calculation of the brightness for the logarithmic and
square-root limb-darkening law is reduced to the calculation of
the integrals PL

1 , PL
2 , PL

r PL
δ , PL

r , PL
1 , P

Q
2 , PQ

r P
Q
δ , PQ

r (depending
on parameters). These integrals can be represented in a general form
as

P̃(n, k) =
∫ π

2
− A(Q k)

0

V (k, x)K
(
k − sin2 x

)
n + sin2 x

dx, (45)

for PL
1 , PL

2 , P
Q
1 , P

Q
2 , or

P̄(k) =
∫ π

2
− A(Q k)

0
V (k, x)K

(
k − sin2 x

)
dx, (46)

for PL
r PL

δ , PL
r , PQ

r P
Q
δ , PQ

r . Here V (k, x) =
s∑

i=1
ui(k)vi(x), where

vi(x) are some trigonometric polynomials, n > 0, k > 0. We de-
note the maximum degree of these trigonometric polynomials by
τ . K(y) = √

y ln y or K(y) = 4
√

yγ , respectively, has a logarithmic
or fractional power singularity at t = 0. In the case of calculat-
ing PQ

r P
Q
δ , PQ

r , we put γ = 1. For the limb darkening of the
general form, which is characterized by the presence of the term√

μl in the expression for brightness (odd l), it is enough to put
γ = l mod 4.

By applying the Gaussian quadrature formula, we can find the
numerical value of the integrals with high precision, producing a
relatively small number of elementary computations (the amount
of computation of the integrand is proportional to the required
number of significant digits). However, at the same time, an in-
tegrable function must satisfy certain conditions. In particular, this
can be achieved if the higher derivatives of the integrand (or its non-
singular component) are uniformly bounded on the section of inte-
gration. To reduce the computation of the integrals (45) and (46) to
the computation of the integrals that satisfy the above conditions, we
divide the interval of integration (0, π

2 − A(Q k)) into a sequence

X0 > X1 > ··· > XM, such that X0 = π

2
− A(Q k)), XM = 0,

k − sin2 Xi+1

k − sin2 Xi

≤ 2 for i ≥ 1 and k 
= 1, (47)

Xi − Xi+1 ≤ 1

max{τ, 2} for all i < M and k. (48)

In the case of equation (45), we also require the following in-
equality:

n + cos Xi

n + cos Xi+1
≤ 2 for all i < M and k. (49)

If k > 1, the inequality from (47) also holds for i = 0. If k < 1,
then

k − sin2 X1

(X0 − X1) sin(2X0)
≤ 3

2
and X1 ≥ X0/2. (50)

(47)–(50) can be used as recurrent relations, allowing us to construct
the sequence Xi.

Thus,

P̃(n, k) =
M−1∑
i=0

P̃i(n, k),

P̄(k) =
M−1∑
i=0

P̄i(k),

where

P̃i(n, k) =
∫ Xi

Xi+1

V (k, x)K
(
k − sin2 x

)
n + sin2 x

dx (51)

and

P̄i(k) =
∫ Xi

Xi+1

V (k, x)K
(
k − sin2 x

)
dx. (52)

For fixed values of n and k the last two integrals can be represented
in the following form:

Pi =
∫ Xi

Xi+1

U (x)K
(
k − sin2 x

)
dx,

where U (x) = V (k,x)
n+sin2 x

for (51) and U(x) = V(k, x) for (52).
By linear substitution of the variable of integration

x(t) = Xi+1 + t(Xi − Xi+1)

in (53), we turn to the integration from zero to unity:

Pi = (Xi − Xi+1)
∫ 1

0
U (x(t))K

[
k − sin2(x(t))

]
dt . (53)

In this form, Pi can be computed by applying the Gaussian quadra-
ture formula:∫ 1

0
h(t)ω(t)dt ≈

N∑
l=1

wlh(tl). (54)

Here ω(t) > 0 ∀t ∈ (0, 1), nodes ti are the roots of the polynomial
HN(t), where {Hi} is the system of orthogonal polynomials with
weight ω in the interval (0, 1):∫ 1

0
Hl(t)Hj (t)ω(t)dt = 0 for l 
= j .

wl can be found as the solution of the system of N linear algebraic
equations, which can be obtained if we put h(t) ≡ 1, h(t) ≡ t, . . . ,
h(t) ≡ tN in (54) and replace the approximate equality with exact
equality.

N can be adjusted so as to ensure the required accuracy of the
calculation of P0i(n, k) and Pdi(k) and can be the same for all
values of i, n, k. N is of the same order of magnitude as the number
of significant digits in the result, and this allows us to calculate the
integral with the required accuracy in a reasonable time. So, after the
calculation of the roots of polynomials xl and weights wl (this may
take a while), we can reuse them for computing P0i(n, k), Pdi(k)
for all i, n, k.

In the case of i > 0 or of k > 1 we put in (54): ω(t) = 1∀t ∈ (0,
1), h(t) = (Xi − Xi + 1)U(x(t))K(k − sin 2x(t)). Then,

Pi ≈
N∑

l=1

wlh(tl).

Note that in this case Hi(t) ≡ Pi(2t − 1), where Pi are Legendre
polynomials.
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In the case of i > 0, k < 1 and the logarithmic limb-darkening
law (K(y) = √

y ln y), we represent the integrand from (53) in the
form

U (x(t))
√

1 − t

√
k − sin2(x(t))

1 − t

×
[

ln

(
k − sin2(x(t))

1 − t

)
+ ln(1 − t)

]
.

Next, we put in (54): ω(t) = √
1 − t∀t ∈ (0, 1),

h(t) = U (x(t))

√
k − sin2(x(t))

1 − t
ln

(
k − sin2(x(t))

1 − t

)
.

Note that here Hi(t) ≡ P
( 1

2 ,0)
i (2t − 1), where P

( 1
2 ,0)

i are Jacobi poly-

nomials. Let S1 =
N∑

l=1
wlh(tl).

Next, we put in (54): ω(t) = −√
1 − t ln(1 − t)∀t ∈ (0, 1),

h(t) = −U (x(t))

√
k − sin2(x(t))

1 − t
.

The polynomials corresponding to this value of ω can be ob-
tained through the standard procedure of orthogonalization. Let

S2 =
N∑

l=1
wlh(tl). Then, P0 ≈ (S1 + S2)(X0 − X1).

In the case of i > 0, k = 1 and the logarithmic limb-darkening
law (K(y) = √

y ln y), we represent the integrand from (53) in the
form

2U (x(t)) cos(x(t))

[
ln

(
cos(x(t))

1 − t

)
+ ln(1 − t)

]
.

Next, we put in (54): ω(t) = 1∀t ∈ (0, 1),

h(t) = 2U (x(t)) cos(x(t)) ln

(
cos(x(t))

1 − t

)
.

Let S1 =
N∑

l=1
wlh(tl).

Next, we put in (54): ω(t) = − ln (1 − t)∀t ∈ (0, 1),

h(t) = −2U (x(t)) cos(x(t).

Let S2 =
N∑

l=1
wlh(tl). Then, P0 ≈ (S1 + S2)(X0 − X1).

In the case of i > 0, k < 1 and the square-root limb-darkening
law (K(y) = 4

√
yγ ), we put in (54): ω(t) = (1 − t)

γ
4 ∀t ∈ (0, 1),

h(t) = U (x(t))

(
k − sin2 x(t)

1 − t

) γ
4

.

Note that here Hi(t) ≡ P
( γ

4 ,0)
i (2t − 1), where P

( γ
4 ,0)

i are Jacobi

polynomials. Then, P0 ≈ (X0 − X1)
N∑

l=1
wlh(tl).

In the case of i > 0, k = 1 and the square-root limb-darkening
law, we put in (54): ω(t) = √

1 − t ∀t ∈ (0, 1),

h(t) = U (x(t))

(
cos(x(t))

1 − t

) γ
2

.

Then, P0 ≈ (X0 − X1)
N∑

l=1
wlh(tl).

Calculations show that in all cases of the applications of the Gauss
quadrature accuracy of 19 significant decimal digits (corresponding
to 80-bit machine numbers) can be achieved by choosing N to be

14. Value sets of points ti and weights wi corresponding to each of
the considered forms of the function ω can be downloaded from the
Internet, along with other materials (see the Conclusion section).

6 C O N C L U S I O N

We have derived the expression for the calculation of the eclips-
ing binary flux and its derivatives. We considered the linear limb-
darkening law, the quadratic limb-darkening law, the logarithmic
limb-darkening law and the square-root limb-darkening law. In
general, the decrease of the flux is given by the expression (9). In
(19)–(21), �L0 corresponds to uniform brightness and its deriva-
tives; it is expressed in terms of easily computed piecewise-defined
functions of one variable A (equation 3) and Q (equation 4). �Ll

corresponds to the linear limb-darkening law, given as a linear com-
bination of �L0 and �L1 (equation 44), where �L1 with its deriva-
tives are expressed in terms of incomplete elliptic integrals in equa-
tions (22)–(24). �Lq corresponds to the quadratic limb-darkening
law, given as a linear combination of �L0, �L1 and �L1 (equation
29), where �L2 with its derivatives are given in equations (26)–
(28). �LL corresponds to the logarithmic limb-darkening law and
�LQ corresponds to the square-root limb-darkening law expressed
by two- and one-parametric integrals. Further, we described how
these integrals can be found numerically by multiple applications
of the Gaussian quadrature formula. It is important that the nodes
for this formula can be found once and reused for the calculations
for different values of parameters. Also, the general integral form
(15)–(17) of the flux component allows us to extend this approach
to other limb-darkening laws.

The algorithm described above was tested by Abubekerov, Gostev
& Cherepashchuk (2010, 2011) and Gostev (2011) for the inter-
pretation of the high-precision polychrome light curves of the bi-
nary system with exoplanets HD 209458 (Brown et al. 2001), HD
189733 (Pont et al. 2007) and monochrome light curves of Kepler-
5b, Kepler-6b and Kepler-7b (Dunham et al. 2010; Koch et al. 2010;
Latham et al. 2010).

The algorithm is implemented in ANSI C in the form of
the functions for the computation of the individual component
�L(δ, r) and its derivatives. This implementation is available from
http://lnfm1.sai.msu.ru/∼ngostev/algorithm.html
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