УДК 524.3-17

ТРАНЗИЕНТЫ ЭКЗОПЛАНЕТ: ВОЗМОЖНЫЕ ИЗМЕНЕНИЯ КОЭФФИЦИЕНТОВ ПОТЕМНЕНИЯ К КРАЮ ЗАТМЕВАЕМЫХ ЗВЕЗД НА КОРОТКИХ ВРЕМЕННЫ́Х ИНТЕРВАЛАХ

© 2020 г. М. К. Абубекеров^{1, *}, Н. Ю. Гостев^{1, **}

¹ Московский государственный университет им. М.В. Ломоносова, Государственный астрономический институт им. П.К. Штернберга, Москва, Россия

> **E-mail: marat@sai.msu.ru* ***E-mail: ngostev@mail.ru* Поступила в редакцию 27.02.2020 г. После доработки 30.03.2020 г. Принята к публикации 30.03.2020 г.

Выполнена интерпретация высокоточных транзитных кривых блеска двойных систем с экзопланетами Kepler-5b, Kepler-6b, Kepler-7b для трех разных эпох. Продемонстрировано, что значения коэффициентов потемнения звезды к краю для каждой из эпох значимо отличаются, в то время как геометрические параметры для каждой из эпох в пределах ошибок хорошо согласуются между собой. Показано, что для надежного определения коэффициентов потемнения к краю требуются методы, "очищающие" наблюдаемые транзитные кривые блеска от эффектов, вызванных неоднородностью поверхности.

DOI: 10.31857/S0004629920080010

1. ВВЕДЕНИЕ

Транзитные кривые блеска содержат важную информацию не только о геометрических параметрах двойной (радиус звезды, радиус планеты, наклонение орбиты), но и коэффициенты потемнения к краю, которые косвенно содержат важную информацию об атмосфере звезды. При этом часто встает вопрос об адекватности классической модели потемнения к краю наблюдательным данным, в частности, из-за различных неоднородных структур на поверхности звезды.

Авторы в рамках решения этой задачи получили для разных эпох эмпирические значения коэффициентов потемнения к краю материнских звезд хорошо изученных двойных систем с экзопланетами Kepler-5b, Kepler-6b и Kepler-7b. Эмпирические значения коэффициентов потемнения к краю получены на основе транзитных кривых блеска двойных систем из работ [1–3]. Расчет значений коэффициентов потемнения выполнен для квадратичного закона потемнения диска звезды к краю.

Исходные анализируемые транзитные кривые блеска содержат около 2100 значений блеска, полученных в течение 44 сут. Авторы разделили эти данные на три равных сета по ~15 сут в каждом. Каждый такой наблюдательный сет содержал около 700 значений блеска двойной. Результаты интерпретации показали, что геометрические параметры каждой двойной, полученные на основе наблюдательных данных каждого сета, хорошо согласуются между собой. В то же время значения коэффициентов потемнения к краю значимо отличаются.

2. МЕТОД ИНТЕРПРЕТАЦИИ

Метод интерпретации наблюдаемых транзитных кривых блеска двойной системы с экзопланетой основан на алгоритме высокоточного вычисления блеска при транзите планеты по диску звезды, описанному в цикле работ [4–9].

Использовалась модель двух сферических звезд на круговой орбите в отсутствие эффектов отражения и эллипсоидальности. Относительный радиус полости Роша в десятки раз больше радиуса планеты [10]. Поэтому наше предположение о сферичности планеты вполне обосновано. То же самое можно сказать и об оптической звезде.

При расчете кривой блеска в качестве функций распределения яркости по диску звезды ис-

Рис. 1. Наблюдаемая кривая блеска двойной системы с экзопланетой Kepler-5b, полученная в фильтре *r* из работы [1]. Сплошная линия — оптимальная теоретическая кривая, полученная в предположении квадратичного закона потемнения диска звезды к краю.

пользовался квадратичный закон потемнения к краю диска,

$$I(\rho) = I_0 \left[1 - x \left(1 - \sqrt{1 - \frac{\rho^2}{r_s^2}} \right) - y \left(1 - \sqrt{1 - \frac{\rho^2}{r_s^2}} \right)^2 \right].$$
 (1)

Здесь ρ — полярное расстояние от центра диска звезды, I_0 — яркость в центре диска, а r_s — радиус диска звезды. Яркость в центре планеты и соответственно яркость в любой точке ее диска предполагается равной нулю. Планета в орбитальной фазе $\theta = \pi$ затмевает звезду. Единицей длины в наших моделях является расстояние между центрами масс звезды и планеты a (a = 1), орбита считается круговой. "Третий свет" в модели отсутствует. Радиус планеты обозначен как r_p . Искомыми параметрами модели являются радиусы звезды и планеты r_s и r_p , угол наклона орбиты i, коэффициент потемнения к краю x, в случае квадратичного закона потемнения к краю также и коэффициент потемнения y.

Полный блеск системы предполагается известным, в используемой нормировке он равен единице. Считаем, что наблюдаемые значения блеска распределены по нормальному закону. Также предполагаются известными стандартные отклонения наблюдаемых значений блеска **о**.

3. НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

В работе выполнен анализ высокоточных транзитных кривых блеска двойной системы с экзопланетой Kepler-5b, Kepler-6b, Kepler-7b из работ [1–3]. Кривые блеска были получены на космической обсерватории Kepler с 1 мая по 14 июня 2009 г.

Звездные системы Kepler-5b, Kepler-6b, Kepler-7b являются объектами ~13^m звездной величины. Кривые блеска получены в фотометрическом фильтре *r* фотометрической системы Ганна (ugriz). Центральная длина волны полосы пропускания $\lambda_0 = 6550$ Å, полуширина полосы пропускания $\Delta \lambda = 900$ Å. Транзитные кривые блеска каждой исследуемой системы включают в себя около 2100 индивидуальных значений ее блеска, большинство которых приходится на внезатменную часть кривой блеска.

Точность транзитных кривых блеска двойных систем Kepler-5b, Kepler-6b, Kepler-7b в интенсивностях составила $\sigma = 1.3759 \times 10^{-4}$, $\sigma = 1.2874 \times 10^{-4}$, $\sigma = 1.0248 \times 10^{-4}$ соответственно. Относительная ошибка (по отношению к глубине затмения) исследуемых в работе транзитных кривых блеска составляет ~ 1%. Наблюдаемые транзитные кривые блеска систем Kepler-5b, Kepler-6b, Kepler-7b представлены на рис. 1–3 соответственно.

Рис. 2. Наблюдаемая кривая блеска двойной системы с экзопланетой Kepler-6b, полученная в фильтре *r* из работы [2]. Сплошная линия — оптимальная теоретическая кривая, полученная в предположении квадратичного закона потемнения диска звезды к краю.

Рис. 3. Наблюдаемая кривая блеска двойной системы с экзопланетой Kepler-7b, полученная в фильтре *r* из работы [3]. Сплошная линия — оптимальная теоретическая кривая, полученная в предположении квадратичного закона потемнения диска звезды к краю.

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 7 2020

АБУБЕКЕРОВ, ГОСТЕВ

Параметры	$1^{d} - 15^{d}(t_{1})$	$15^d - 30^d (t_2)$	$30^d - 44^d (t_3)$	$1^d - 44^d (t_4)$	Теория
x	0.256 ± 0.26	-0.270 ± 0.42	-0.343 ± 0.33	-0.0632 ± 0.18	0.279
У	0.297 ± 0.36	1.041 ± 0.66	1.241 ± 0.57	0.744 ± 0.27	0.363
r _s	0.2069 ± 0.0046	0.2129 ± 0.0056	0.2029 ± 0.0063	0.2091 ± 0.0029	—
r_p	0.0172 ± 0.00056	0.0174 ± 0.00070	0.0163 ± 0.00074	0.0172 ± 0.00036	_
<i>і</i> , град	82.03 ± 0.47	81.64 ± 0.62	82.65 ± 0.74	81.91 ± 0.33	_
χ^2	1.165	0.980	0.999	1.049	—

Таблица 1. Результаты интерпретации кривых блеска двойных звездных систем с экзопланетой Kepler-5b в эпохи t_1, t_2, t_3, t_4 и теоретические значения коэффициентов потемнения к краю из работы [11]

Таблица 2. Результаты интерпретации кривых блеска двойных звездных систем с экзопланетой Kepler-6b в эпохи t_1 , t_2 , t_3 , t_4 и теоретические значения коэффициентов потемнения к краю из работы [11]

Параметры	$1^{d} - 15^{d}(t_{1})$	$15^d - 30^d (t_2)$	$30^d - 44^d (t_3)$	$1^d - 44^d (t_4)$	Теория
x	0.319 ± 0.28	0.382 ± 0.22	0.748 ± 0.23	0.386 ± 0.24	0.366
У	0.440 ± 0.44	0.314 ± 0.35	-0.144 ± 0.33	0.374 ± 0.32	0.314
r_s	0.1801 ± 0.0025	0.1780 ± 0.0026	0.1949 ± 0.0027	0.1785 ± 0.0016	—
r_p	0.01795 ± 0.00040	0.01769 ± 0.00042	0.02023 ± 0.00044	0.0177 ± 0.00029	—
і, град	82.98 ± 0.27	83.11 ± 0.0029	81.64 ± 0.30	83.15 ± 0.18	—
χ^2	1.051	1.015	1.47	1.073	—

4. РЕЗУЛЬТАТЫ ИНТЕРПРЕТАЦИИ ТРАНЗИТНЫХ КРИВЫХ БЛЕСКА

В астрофизических исследованиях возникает необходимость в учете потемнения звездного диска к краю. Коэффициенты потемнения к краю в предположении различных законов потемнения уже неоднократно вычислены в рамках различных теоретических одномерных моделей тонких звездных атмосфер (например, ATLAS и PHOENIX). Однако высокоточные транзитные кривые блеска дают возможность получения эмпирических значений коэффициентов потемнения звезды к краю непосредственно из наблюдательного материала.

Авторы данной работы поставили задачу выяснить, насколько надежно значение коэффициентов потемнения к краю, вычисляемых на основе высокоточной транзитной кривой блеска. Для этого использовались кривые блеска двойных звездных систем с экзопланетами Kepler-5b, Kepler-6b, Kepler-7b. Как уже отмечено выше, каждая транзитная кривая блеска включала в себя около 2100 индивидуальных значений блеска, полученных в течение 44 сут. Авторы разделили 44-х суточную кривую блеска на три наблюдательных сета. Первый сет включал в себя индивидуальные значения блеска, полученные с 1-го дня наблюдения по 15-й (t_1). Второй сет – с 15-го по 30-й день (t_2). Третий – с 30-го по 44-й (t_3). В каж-

дый наблюдательный сет вошло около 700 значений кривых блеска. В работе выполнено определение параметров двойной на основе транзитных кривых блеска указанных наблюдательных сетов. Также выполнена интерпретация полной транзитной кривой блеска (t_4), включающей в себя ~2100 индивидуальных значений блеска.

Вычисление коэффициентов выполнено в предположении квадратичного закона потемнения диска звезды к краю согласно (1). Минимизация невязки производилась одновременно по всем параметрам. Искомыми параметрами являлись радиус звезды r_s , радиус планеты r_p , наклонение орбиты *i*, линейный *x* и квадратичный *y* коэффициенты потемнения звездного диска к краю согласно (1).

Результаты интерпретации отдельных сетов кривой блеска и полной кривой блеска двойной системы Kepler-5b, Kepler-6b, Kepler-7b представлены в табл. 1–3. Ошибки искомых параметров получены методом Монте–Карло.

В последнем столбце "Теория" табл. 1-3 приведены теоретические значения коэффициентов потемнения звезды к краю из работы [11], полученные в предположении квадратичного закона потемнения звезды к краю. Теоретические значения коэффициентов потемнения к краю приведены для фильтра r (фотометрической системы ugriz).

Параметры	$1^d - 15^d (t_1)$	$15^d - 30^d (t_2)$	$30^d - 44^d (t_3)$	$1^d - 44^d (t_4)$	Теория
x	0.511 ± 0.21	0.0428 ± 0.75	0.104 ± 0.30	0.226 ± 0.15	0.316
У	0.0384 ± 0.28	0.657 ± 1.0	0.658 ± 0.50	0.435 ± 0.22	0.344
r_s	0.1710 ± 0.0028	0.1734 ± 0.0046	0.1701 ± 0.0038	0.1711 ± 0.0019	_
r_p	0.01453 ± 0.00037	0.01448 ± 0.00058	0.01407 ± 0.00054	0.01433 ± 0.00025	_
<i>і</i> , град	83.24 ± 0.29	83.14 ± 0.45	83.46 ± 0.44	83.3 ± 0.19	_
χ^2	0.919	1.0693	1.20	1.054	—

Таблица 3. Результаты интерпретации кривых блеска двойных звездных систем с экзопланетой Kepler-7b в эпохи t_1, t_2, t_3, t_4 и теоретические значения коэффициентов потемнения к краю из работы [11]

Наиболее чувствительной частью кривых блеска к значениям коэффициентов потемнения к краю является область кривой блеска вблизи минимума. На рис. 4—6 представлены части оптимальных теоретических кривых блеска для наблюдательных данных эпох t_1 , t_2 , t_3 и t_4 . Из рисунков видно, что разброс значений оптимальных кривых блеска разных эпох вблизи минимума составляет сотые и тысячные доли процента.

5. ОБСУЖДЕНИЕ

Из приведенных выше таблиц, содержащих значения коэффициентов потемнения к краю и значения геометрических параметров, видно, что значения геометрических параметров для разных наблюдательных сетов хорошо согласуются друг с другом. В то же время значения коэффициентов потемнения к краю значительно отличаются друг от друга. Также следует отметить, что в подавляющем большинстве случаев коэффициенты потемнения к краю, полученные на основе кривых блеска разных эпох, значимо отличаются и от теоретических значений из работы [11].

Коэффициенты потемнения к краю оказываются весьма чувствительны к неоднородностям транзитной кривой блеска. Неоднородности могут быть связаны с различными физическими процессами как на поверхности звезды, так процессами в двойной системе.

Прежде всего неоднородности кривой блеска могут быть вызваны пятнами на поверхности звезды. Так, например, в работе [12] на основе четырехлетнего анализа кривой блеска звезды класса К Kepler-210 были выявлены модуляции активности звезды и их сезонность. Показано, что модуляции активности развиваются по определенной схеме, напоминающей изменения от солнечных пятен во время солнечного магнитного

Рис. 4. Фрагменты оптимальных кривых блеска двойной системы Kepler-5b, полученные по наблюдательным данным в эпохи t_1 (мелкая штриховая (красная) линия), t_2 (штриховая (зеленая) линия), t_3 (штрих-пунктирная (синяя) линия) и t_4 (сплошная (черная) линия).

АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 97 № 7 2020

Рис. 5. То же, что на рис. 4, для двойной системы Kepler-6b.

Рис. 6. То же, что на рис. 4, для двойной системы Kepler-7b.

цикла. Авторы работы [12] в предположении дифференциального вращения оценили время жизни пятна звезды Kepler-210 в 60—90 дней. Выполненные в [13] работы по картированию поверхности звезд поздних спектральных классов с температурой на поверхности 3000—6500 К по транзитным кривым блеска уверенно подтверждают наличие пятен на поверхности этих звезд.

Мы обоснованно можем предположить, что значение радиуса и периода вращения звезд Кеpler-5, Kepler-6 и Kepler-7 близки к радиусу и периоду вращения Солнца. Несколько пятен или десятков пятен среднего размера (~10000–30000 км) на Солнце дают вариации блеска Солнца в несколько сотых и тысячных долей процента.

Аналогичное поведение кривых блеска на временах в полпериода вращения Солнца вокруг своей оси мы наблюдаем и у звезд Kepler-5, Kepler-6 и Kepler-7. Как отмечено выше, оптимальные кривые блеска для эпох t_1 , t_2 , t_3 отличаются друг от друга (см. рис. 4–6) на тысячные и сотые доли процента (или 10^{-5} – 10^{-4} в величинах относительной интенсивности). Таким образом, наблюдаемые вариации кривых блеска вблизи минимума на временах ~15 сут являются косвенным ука-

занием на наличие пятен на поверхности звезд Kepler-5, Kepler-6 и Kepler-7.

Отметим, что неоднородность в транзитную кривую блеска также может привносить и планета, форма которой может быть отлична от сферической (несмотря на то, что планета не заполняет полость Роша). Трехмерное газодинамическое моделирование показывает, что атмосфера горячего Юпитера, в силу близости к звезде, активно истекает [14]. Картина истечения горячего Юпитера многократно усложняется ударной волной, образуемой при столкновении звездного ветра и атмосферы планеты, а также взаимодействием магнитных полей звезды и планеты, вследствие чего аппроксимация планеты сферой может быть все-таки недостаточно корректной [15].

Не исключено, что расхождение между теоретическими и наблюдаемыми коэффициентами потемнения к краю, обнаруженное в работах [6, 16], вызвано именно физическими процессами, остающимися за рамками модели, используемой для интерпретации двойной системы. Для ответственных выводов о значениях наблюдаемых коэффициентов потемнения к краю транзитные кривые блеска должны быть максимально "очищены" от возможного влияния неоднородностей поверхности звезды. Требуются наблюдения в периоды минимальной активности звезды.

6. ЗАКЛЮЧЕНИЕ

Значимое различие коэффициентов потемнения к краю указывает на наличие активных физических процессов на поверхности звезд. Определение точных значений коэффициентов потемнения к краю на основе транзитной кривой затруднено. Требуется использование специальных методов, компенсирующих и учитывающих влияние неоднородной поверхности звезды на транзитную кривую (напр., [17]).

Или же определение значений коэффициентов потемнения к краю должно происходить на массиве наблюдательных данных, охватывающем несколько периодов вращения звезды. Массив наблюдательных данных, содержащий значения блеска за несколько периодов вращения звезды, статистически усреднит и тем самым минимизирует влияние пятен при определении коэффициентов потемнения звезды к краю. Подчеркнем еще раз, что транзитные кривые блеска являются источником не только информации о геометрических параметрах двойной системы (радиуса звезды и планеты, наклонения орбиты), но и являются уникальным источником информации о потемнении к краю звезд разных спектральных классов. С этой точки зрения двойная система с экзопланетой представляет собой уникальную возможность проверки достоверности нашего понимания физики звездных атмосфер и формирования эффекта потемнения диска звезды к краю.

БЛАГОДАРНОСТИ

Авторы благодарят академика А.М. Черепащука за полезные советы и обсуждение данной работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. D. G. Koch, W. J. Borucki, J. F. Rowe, N. M. Batalha, et al., Astrophys. J. 713, L131 (2010).
- 2. E. W. Dunham, W. J. Borucki, D. G. Koch, N. M. Batalha, et al., Astrophys. J. **713**, L136 (2010).
- 3. D. W. Latham, W. J. Borucki, D. G. Koch, T. M. Brown, et al., Astrophys. J. **713**, L140 (2010).
- 4. *М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук,* Астрон. журн. **85**, 121 (2008).
- 5. *М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук*, Астрон. журн. **86**, 778 (2009).
- 6. *М. К. Абубекеров, Н. Ю. Гостев, А. М. Черепащук,* Астрон. журн. **87**, 1199 (2010).
- 7. *M. K. Abubekerov and N. Yu. Gostev*, Monthly Not. Roy. Astron. Soc. **432**, 2216 (2013).
- 8. *M. K. Abubekerov and N. Yu. Gostev*, Monthly Not. Roy. Astron. Soc. **459**, 2078 (2016).
- 9. *M. K. Abubekerov and N. Yu. Gostev*, Astron. and Атыstrophys. **633**, id. A96 (2020).
- 10. Н. Ю. Гостев, Астрон. журн. 88 (7), 704 (2011).
- 11. A. Claret, Astron. and Astrophys. 428, 1001 (2004).
- 12. P. Ioannidis and J. H. M. M. Schmitt, Astron. and Atustrophys. 594, id. A41 (2016).
- 13. E. Aronson and N. Piskunov, Astrophys. J. 155 (5), id. 208 (2018).
- 14. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Monthly Not. Roy. Astron. Soc. 475, 605 (2018).
- 15. *T. Matsakos, A. Uribe, and A. Konigl*, Astron. and Aтыstrophys. **578**, id. A6 (2015).
- 16. A. Claret, Astron. and Astrophys. 506, 1335 (2009).
- 17. E. Aronson and N. Piskunov, Astron. and Astrophys. 630, id. A122 (2019).