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Abstract—We describe the results of a statistical approach to analyzing the combined radial-velocity
curves of X-ray binaries with OB supergiants in a Roche model, both with and without allowance for
the anisotropy of the stellar wind. We present new mass estimates for the X-ray pulsars in the close
binary systems Cen X-3, LMC X-4, SMC X-1, 4U 1538-52, and Vela X-1. c© 2004 MAIK “Nau-
ka/Interperiodica”.

1. INTRODUCTION

Neutron stars are a natural product of the evolu-
tion of stars with masses in excess of 10 M�. They
were predicted theoretically by Landau [1] in the early
1930s, and the first radio pulsar was found in the cen-
ter of the Crab nebula in the early 1960s. At the be-
ginning of the 1970s—an epoch of active programs in
near-Earth space exploration—the “Uhuru” satellite
discovered objects with periodic X-ray variability [2]
(X-ray pulsars), later identified with neutron stars in
binary systems.

Thousands of compact X-ray sources have now
been discovered in our Galaxy and other nearby
galaxies. Most of these are close binary systems,
in which the optical component supplies matter
to the neutron star. Accretion with subrelativistic
velocities onto the compact component’s surface
releases immense amounts of X-ray energy with
luminosities of the order of 1036–1039 erg/s [3–7].
From the point of view of the equation of state of the
superdense matter, the key characteristic of an X-ray
pulsar is its mass. The theory predicts two stable
modes for neutron stars, based on a “soft” equation of
state, with Mmax � 1.4 M�, and a “hard” equation of
state, with Mmax � 1.8 M� [8–12]. The question of
whether or not we should adopt the hard equation of
state for neutron stars remains unanswered. Among
known X-ray pulsars, only Vela X-1 has a mass
close to 1.8 M� [13]. Studies of X-ray binaries have
been carried out for more than 30 years. Extensive
spectroscopic observations have been accumulated
which not only enable but also demand for their
interpretation a more accurate allowance for effects
resulting from the closeness of the components. A
point-mass model approximating the optical com-
ponent as a source of electromagnetic radiation with
infinitesimal size is not adequate for analysis of the

rich observational data that are now available and
cannot be used to correctly estimate the masses of
the X-ray pulsars in binary systems. This is especially
true for systems with OB supergiants.

In X-ray binaries with OB supergiants, the op-
tical star nearly fills its critical Roche lobe, which
determines the limiting equilibrium figure in a ro-
tating reference frame fixed to the binary. Therefore,
the shape of the optical component deviates from a
sphere, and the velocity field at the stellar surface
becomes strongly nonuniform. The surface of the star
that is turned toward the X-ray pulsar is heated by the
pulsar’s radiation, and the nonuniform gravitational
acceleration on the companion leads to anisotropy of
the stellar wind. All these factors distort the radial-
velocity curve of the optical star. The distortions of the
radial-velocity curve due to the effects of outflow and
the stellar wind in close binaries with OB supergiants
are comparable to the orbital velocity. These facts
show the necessity of proper fitting of close-binary
radial-velocity curves in a Roche model taking into
account the anisotropy of the stellar wind [14].

2. DESCRIPTION OF THE ROCHE MODEL

The radial-velocity curves of X-ray binaries are
usually analyzed usingmodels with two pointmasses,
though it is not appropriate to approximate the stars
in most close binaries as point masses moving in
Keplerian orbits for the following reasons.

1. Due to tidal deformation, the optical compo-
nent is ellipsoidal or pear-shaped due to the gravi-
tational action of the relativistic companion, leading
to strongly nonuniform surface temperatures (gravi-
tational darkening). For mass ratios q = mx/mv < 1
(with mx and mv being the masses of the optical
and X-ray components), the binary centers of mass

1063-7729/04/4802-0089$26.00 c© 2004 MAIK “Nauka/Interperiodica”



90 ABUBEKEROV et al.

are inside the body of the optical star, leading to
significant distortion of the radial-velocity curve.

2. X-ray heating of the side of the optical star fac-
ing the relativistic component results in a nonuniform
temperature distribution over the stellar surface.

3. It is important for early-type stars in close bina-
ries that the cores of strong absorption lines formed in
the outermost atmospheric layers, at the base of the
stellar wind, experience radial Doppler shifts. These
shifts are due to the regular outflow of the stellar-wind
plasma with velocities of the order of the sound speed,
Vs ∼ T 1/2. The temperature and local gravitational
acceleration vary strongly at the surface of the tidally
deformed star, leading to appreciable distortion of the
optical component’s radial-velocity curve. For early-
type stars, the velocity of the stellar wind at its base
becomes comparable to the orbital velocity of the
optical component, of the order of 10–20 km/s.

For these reasons, the radial-velocity curves of
X-ray binaries with OB supergiants should be an-
alyzed using Roche models. We applied our algo-
rithm for synthesizing light curves, radial-velocity
curves, and absorption-line profiles, described in de-
tail in [15, 16], to analyze observations of massive
close X-ray binaries. We describe the optical star
using a Roche model, treating its companion as a
point X-ray source. We briefly summarize the main
principles of our algorithm below.

The optical star and point relativistic object with
masses of mv and mx move in elliptical orbits about
their common center of mass. The inclination of the
binary orbit to the plane of the sky is i. In general, the
star’s axial rotation is not assumed to be synchronous
with the orbital motion. The star’s shape coincides
with an equipotential surface of the Roche model [16,
17]. The size of the star is determined by the filling co-
efficient for the critical Roche lobe, µ = R/R∗, where
R and R∗ are the polar radii for partial and complete
filling of the critical Roche lobe at the orbit periastron.
The star’s tidally distorted surface is subdivided into
thousands of mass elements, with the emergent radi-
ation computed for each of them, after which the con-
tributions of the various areas are added taking into
account the visibility of each area element at various
phases of the orbital period. The computed radiation
fluxes from each area element include the effects of
gravitational darkening, heating of the stellar surface
by the radiation from the companion (the “reflection”
effect), and limb darkening. The absorption line profile
and line equivalent width for each visible area with its
temperature T and local gravitational acceleration g
were calculated using the tables of Kurucz [18] for the
Balmer lines and an interpolation procedure. We add
the local profiles over the stellar surface after first nor-
malizing to the continuum for each area, taking into

account the Doppler effect to obtain the total profile
for the star at the corresponding phase of the orbital
period. The theoretical total profile is subsequently
used to determine the star’s radial velocity and derive
the radial-velocity curve over the course of the orbital
period (for more details, see [15]).

The input parameters of the algorithm used to
compute the radial-velocity curve of an X-ray binary
in the Roche model are collected in Table 1.

3. COMPARISON OF THE THEORETICAL
RADIAL-VELOCITY CURVES

IN THE ROCHE AND POINT-MASS
MODELS

Our main goal was to refine available estimates of
the masses of X-ray pulsars in close binaries. Before
analyzing the observations, we carried out test com-
putations to compare the theoretical radial-velocity
curves in the Roche and point-mass models. We
computed the radial-velocity curves using the Hγ line
for a hypothetical X-ray system with parameters (Ta-
ble 1) close to those of the studied systems: Cen X-3,
LMC X-4, SMC X-1, Vela X-1, and 4U 1538–52
(Table 2).

To identify the influence of reflection effects on
the radial-velocity curves, we computed them in the
Roche model for low and high incoming X-ray fluxes,
kx = 0.05 and kx = 1.4. The computations of the
radial-velocity curves from the Hγ lines demonstrate
that the semiamplitude of the curves decreases in the
presence of stronger X-ray heating; a similar result
was obtained earlier [15]. We can explain this by the
fact that, in the case of a stronger X-ray flux incident
on the star and stronger heating of the surface facing
the companion, the contribution of the light from the
star’s “nose” to the combined luminosity increases.
The areas on the nose contribute more strongly to the
star’s mean radial velocity. The velocities of such ar-
eas are lower than the star’s center-of-mass velocity,
and so the mean velocity of the star decreases.

The difference of the star’s radial-velocity curve
from the curve for its center of mass increases from
phase 0.0 to phase 0.5 as the star moves along its
orbit and its heated surface turns toward the observer.
At phase 0.0, the star is in front of the X-ray source.
The difference between the star’s radial-velocity
curves in the Roche and point-mass models should
increase with decreasing q = mx/mv.

Figure 1a compares the theoretical radial-velocity
curves of a system (for its parameters, see Table 1)
in the Roche and point-mass models. Curves are
plotted for the Hγ line and for the case of low heating,
kx = 0.05. The semiamplitude of the curve is lower
in the Roche model, and the semiamplitudes of the
radial-velocity curves can be the same only when the
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Table 1. Numerical parameters used to synthesize an X-ray binary radial-velocity curve in the Roche model

Relativistic component’s mass mx, M� 1.35

Optical component’s mass mv, M� 20

Period P , days 4

Eccentricity e 0

Longitude of periastron of the optical component ω, degrees 0

Radial velocity of the system’s center of mass Vγ , km/s 0

Orbital inclination i, degrees 80

Roche-lobe filling coefficient for the optical component

at periastron µ 0.99

Rotational asynchronism coefficient f 0.95

Effective temperature of the optical component Teff , K 30000

Gravitational darkening coefficient β 0.25

Ratio of the relativistic component’s X-ray luminosity

to the optical component’s bolometric luminosity kx = Lx/Lv 0.05 и 1.4

Coefficient for reprocessing of the X-ray radiation A 0.5

Limb-darkening coefficient u 0.3

Table 2. Observed characteristics of X-ray binaries with OB supergiants (from the literature [13, 19, 20])

Name Spectral type Teff , K P , days e i, degrees µ f Kx, km/s

Cen X-3 O(6-9) II-III 35000 2.0871390 <0.0008 83+3
−3 0.995+0.005

−0.005 0.95+0.27
−0.25 414.1± 0.9

LMC X-4 O7 III-V 35000 1.40839 <0.01 63+3
−3 ∼1.0 0.65+0.23

−0.19 400.6

SMC X-1 B0.5Ia 25000 3.89229118 <0.00004 65+5
−5 0.97+0.03

−0.03 0.95+0.34
−0.27 301.5± 4

Vela X-1 B0.5Ibeq 25000 8.964368 0.0898 73+3
−3 0.95+0.04

−0.04 0.69+0.09
−0.08 278.1± 0.3

4U 1538–52 B0Iabe 25000 3.72844 0.08 60+5
−5 0.95+0.04

−0.04 0.94+0.32
−0.25 309.0± 11

The orbital inclination i was derived from the duration of the X-ray eclipse (see, e.g., [20]). The values of e and Kx were derived from
the X-ray pulsar’s radial-velocity curve.

mass of the relativistic component is increased from
1.35 M� to 1.45 M�. To obtain equal semiamplitudes
for phase 0.25, the mass of the X-ray pulsar must
be increased to 1.55 M�. For stronger heating, kx =
1.4, with the remaining parameters unchanged, equal
semiamplitudes in the Roche and point-mass models
require that the X-ray pulsar’s mass be increased to
1.65 M�.

Thus, all other conditions being the same, the use
of the Roche model leads to an increase in the mass
of the relativistic component by ∼7–20% compared
to the mass obtained in the point-mass model. This
suggests that using the more realistic close-binary
model to analyze the radial-velocity curves should

enable us to determine whether the masses of the
neutron stars in X-ray binaries with OB supergiants
exceed the masses of radio pulsars, which are equal,
on average, to 1.35 ± 0.04 M� [21].

4. OBSERVATIONAL MATERIAL

Five eclipsing X-ray binaries with OB supergiants
have been discovered to date (Table 2). During the
last 30 years, extensive observational material has
been accumulated for these systems, making it pos-
sible to test hypotheses using statistical methods. It
is not possible to correctly take into consideration the
components’ mutual influence with the widely used
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Fig. 1. (a) Theoretical radial-velocity curves of the op-
tical star in a hypothetical X-ray close binary (for its
parameters, see Table 1). The curves are derived from
the Hγ line. The dashed curve corresponds to the optical
star in a point-mass model with mx = 1.35 M�, and
the solid curve, to a Roche model with mx = 1.35 M�;
the dotted curve corresponds to mx = 1.45 M�, and
the dot–dash curve, to mx = 1.55 M�. (b) Comparison
of the theoretical radial-velocity curves of a star in the
Roche model based on the Hγ line (solid curve) and
the HeI 4471 Å line (dot–dash curve). The parameters
are close to those of Vela X-1 (mv = 23 M�, mx =
1.8 M�,Porb = 8.96 days, e = 0.0898, ω = 332.59◦ , i =
73◦, µ = 0.99, f = 0.69, T = 25 000 K, β = 0.25, kx =
0.05, A = 0.5, u = 0.38). The dashed curve is the radial-
velocity curve for the optical star’s center of mass.

Monte Carlo method in the framework of the point-
mass model. For the reasons indicated above, earlier
estimates of the masses of X-ray pulsars must be
refined and revised using the Roche model.

We constructed a master radial-velocity curve for
each of the systems. We describe the spectroscopic
data used for each radial-velocity curve below. The
center of the X-ray eclipse was taken as the zero
phase for all the systems.

Cen X-3. The system consists of an O giant
(O(6–9)II–III), with mass 17–18 M� and the X-ray
pulsar, and has an orbital period of 2.0871390 days.
The orbital eccentricity derived from timing of the
X-ray pulses is very low (e < 0.0008 [13]), and we
have assumed a circular orbit.

We used data from [22–24] acquired in 1976–
1997 to construct the master radial-velocity curve
(Fig. 2a). The data of [23] were corrected only for
the close binary’s γ velocity. The corrections for
the velocity of the stellar wind were already intro-
duced by the authors when combining the mean
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Fig. 2. (a) Master observed radial-velocity curve for the
close X-ray binary Cen X-3 (triangles show spectro-
scopic data for 1976 from [22]; circles, data for 1978
from [23]; crosses, data for 1990 from [24]; and squares,
data for 1997 from [24]). For comparison, the theoretical
radial-velocity curves are shown for the Roche model
(solid curve) and point-mass model (dashed curve), with
mx = 1.22 M� corresponding to the minimum residual
for the Roche model computed using method 2. The
parameters are collected in Table 3. (b) Radial velocities
averaged within phase intervals (filled circles are themean
radial velocities for the phase bins, and open circles, the
radial velocities corrected for the normalized anisotropy
function of the optical star’s wind). The theoretical radial-
velocity curves for the Roche model (solid curve) and
point-mass model (dashed curve) with mx = 1.22 M�
are shown for comparison.

observed radial velocities derived from the shifts of
the HeI 4471 Å, HeI 5875 Å absorption lines and
the hydrogen Balmer lines. The line shifts in [22,
24] were derived relative to the spectrum averaged
over all phases, so that the γ velocity was taken
into account in the method itself. The mean radial
velocities presented in [22] were derived from the
HeI 4471 Å, HeII 4541 Å absorption lines and
the hydrogen Balmer lines. Of the radial velocities
from [24], we used only those measured for the Hγ
line. A total of 79 data points were available to us,
distributed approximately uniformly in phase. We
used these data to construct a master radial-velocity
curve for the Cen X-3 system from the Hβ, Hγ, Hδ,
HeI 4471 Å, and HeI 5875 Å absorption lines. Our
test computations demonstrated that the theoretical
radial-velocity curves for the Roche model based on
Hγ and other lines (Hβ, Hδ, HeI 4471 Å) coincided,
all other parameters being the same (Fig. 1b; see also
the text below). Thus, we used the theoretical radial-
velocity curves for the Hγ line when fitting the master
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Fig. 3. (a) Master observed radial-velocity curve for the
close X-ray binary LMC X-4 (filled triangles show spec-
troscopic data for 1975 from [25]; circles and filled squares
show spectroscopic data for 1982 from [26] acquired with
2.5-m and 4-m telescopes). For comparison, theoretical
radial-velocity curves are shown for the Roche model
(solid curve) and point-mass model (dashed curve), with
mx = 1.63 M� corresponding to the minimum residual
for the Roche model computed using method 2. The
parameters are collected in Table 3. (b) Radial velocities
averagedwithin phase intervals (filled circles are themean
radial velocities for the phase bins, and open circles, the
radial velocities corrected for the normalized anisotropy
function of the optical star’s wind). For comparison, the-
oretical radial-velocity curves are shown for the Roche
model (solid curve) and point-mass model (dashed curve)
with mx = 1.63 M�.

radial-velocity curves for Cen X-3, as well as for the
other close binaries. The system’s γ velocity derived
using the spectroscopic data of [23] is 39 km/s.

LMC X-4.The system consists of theX-ray pulsar
and an optical star of spectral type O7III–V with
a mass of 14–15 M�. The eccentricity is very low
(e < 0.01), and we assumed the orbit to be circular.
The orbital period derived from studies of the X-ray
pulsar is 1.40839 days.

We used the data of [25, 26] acquired in 1975–
1982 to plot the master light curve (Fig. 3a). The ear-
lier observational data presented in [25] were already
used in [26]. Thus, we used the newest spectroscopic
data of [26]. The radial velocities were derived from
the hydrogen absorption lines. Prior to being included
in the master radial-velocity curves, the data were
corrected for the γ velocity in [26]. The system’s γ
velocity derived using the spectroscopic data of [26]
is 275 km/s.

SMC X-1. The system contains an optical com-
ponent of spectral type B0.5Ia with a mass of about
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Fig. 4. (a) Master observed radial-velocity curve for the
close X-ray binary SMC X-1 (filled squares show spec-
troscopic data for 1973 from [27]; open circles, spec-
troscopic data for 1976 from [28]; and open triangles,
spectroscopic data for 1989 from [29]). For compari-
son, theoretical radial-velocity curves are shown for the
Rochemodel (solid curve) and point-massmodel (dashed
curve), with mx = 1.48 M� corresponding to the min-
imum residual for the Roche model computed using
method 2. The parameters are collected in Table 3. (b) Ra-
dial velocities averaged within phase intervals (filled cir-
cles are the mean radial velocities for the phase bins, and
open circles, the radial velocities corrected for the normal-
ized anisotropy function of the optical star’s wind). For
comparison, theoretical radial-velocity curves are shown
for the Roche model (solid curve) and point-mass model
(dashed curve) with mx = 1.48 M�.

17–18 M� and the X-ray pulsar. Its orbital period is
3.89229118 days.

The mean radial-velocity curve (Fig. 4a) was con-
structed using the data of [27–29]. The mean radial
velocities measured from theHeI and SiIV absorption
lines and the hydrogen Balmer lines are presented
in [27]. The radial velocities determined by Hutchings
et al. [28] were based on the mean of the shifts of
the hydrogen Balmer lines and the HeI, SiIV, and
NIII absorption lines in the blue (3900–4000 Å). The
radial velocities in [29] were computed using a cross-
correlation method based on the entire spectrum from
4000 to 4395 Å relative to the spectrum of the B3V
standard star HR 1174, which has a similar spectral
type.

Before plotting the mean curve, we corrected the
spectroscopic data of [27–29] for the γ velocity. We
computed the γ velocity by minimizing the sum of
squared deviations between the radial velocities that
were observed and synthesized in the Roche model
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Fig. 5. (a) Master observed radial-velocity curve for the
close X-ray binary 4U 1538–52 (filled circles are the
spectroscopic data for 1978 of [31], and open circles,
the spectroscopic data for 1991 of [32]). For compari-
son, the theoretical radial-velocity curves are shown for
the Roche model (solid curve) and point-mass model
(dashed curve), withmx = 1.18 M� corresponding to the
minimum residual in the Roche model computed using
method 2. The parameters are collected in Table 3. (b) The
radial velocities averaged within phase intervals (filled
circles are the mean radial velocities for the phase bins,
and open circles, the radial velocities corrected for the
normalized anisotropy function of the optical star’s wind).
For comparison, the theoretical radial velocity curves are
shown for the Roche model (solid curve) and point-mass
model (dashed curve) with mx = 1.18 M�.

for the same phase. The γ velocity enters the algo-
rithm used to synthesize the radial-velocity curves
additively, so that the condition that the areas of the
radial-velocity curve above and below the γ velocity
be equal was fulfilled automatically. The γ velocities
derived from the spectroscopic data of [27–29] were
173.0, 181.0, and 172.7 km/s.

4U 1538-52. This system consists of the X-ray
pulsar and a B0Iabe supergiant with a mass of 17–
18 M�. The system’s orbital period is 3.72844 days.
The eccentricity derived from timing of the X-ray
pulses is 0.07± 0.09 [30]. Due to the large uncertainty
of this value, we assumed zero eccentricity.

The master radial-velocity curve (Fig. 5a) is based
on the spectroscopic data of [31, 32]. Radial veloc-
ities derived from the Hβ, Hγ, HeI 4921 Å, and
HeI 4471 Å absorption lines are presented in [31]. The
radial velocities in [32] were computed via the cross-
correlation method using the spectroscopic standard
HD 133955 and HeI absorption lines in the range
6290–6710 Å . These data are in good agreement. We
corrected the data from [31, 32] for the close binary’s
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Fig. 6. (a): Master observed radial-velocity curve for
the close X-ray binary Vela X-1 (filled circles are the
spectroscopic data for 1973 of [33], and open circles, the
spectroscopic data for 1995–1996 of [34]). For compar-
ison, the theoretical radial-velocity curves are shown for
the Roche model (solid curve) and point-mass model
(dashed curve), withmx = 1.93 M� corresponding to the
minimum residual in the Roche model computed using
method 2. The parameters are collected in Table 3. (b) The
radial velocities averaged within phase intervals (filled
circles are the mean radial velocities for the phase bins,
and open circles, the radial velocities corrected for the
normalized anisotropy function of the optical star’s wind).
For comparison, the theoretical radial-velocity curves are
shown for the Roche model (solid curve) and point-mass
model (dashed curve) with mx = 1.93 M�.

γ velocity. We derived the γ velocities −168.5 and
−146.7 km/s using the spectroscopic data of [31, 32],
respectively. In this case, the large negative value of
the γ velocity may reflect radial expansion of the line-
formation region near the base of the stellar wind.

Vela X-1. This system contains a B0.5Ibeq su-
pergiant with a mass of 24–25 M� and the X-ray
pulsar. The components are in an elliptical orbit with
e � 0.0898, and we adopted this eccentricity. The
system’s orbital period is 8.964368 days.

The observational material for this system is very
rich. We used only the radial velocities of [33, 34] for
the hydrogen Balmer lines to construct the master
radial-velocity curve (Fig. 6a). As a result, data for
1973 and 1995–1996 were included in the master
curve; these demonstrated good agreement despite
the long time interval separating them.

The Balmer absorption lines from [33] derived from
the absolute shifts of the cores of the H2–H10 ab-
sorption lines relative to their laboratory wavelengths
indicated increasing stellar-wind velocities with de-
creasing line number in the series—a Balmer pro-
gression [35, 36]. This effect is due to the negative
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temperature gradient in the star’s photosphere, re-
sulting in a dependence of the observed stellar-wind
velocity on the excitation potential of the absorption
line used to measure this velocity. Thus, the Hβ ab-
sorption line is formed in higher and, consequently
cooler, layers of the stellar photosphere, so that the
stellar-wind velocity derived from this line is higher
than the stellar-wind velocity measured from Balmer
absorption lines with higher numbers.

According to the data of [37], the γ velocity derived
from the Hβ line and HeI, NIII, and SiIV ion lines is
−3.5± 0.8 km/s. The shifts of the lines’ cores relative
to their laboratory wavelength are due not only to the
γ velocity but also to the velocity of the stellar wind
at its base. If the system’s γ velocity is much lower
than this stellar-wind velocity, it is not possible to
determine it from the shifts of the H2–H10 lines due
to the strong stellar wind from the OB supergiant.
For example, according to the spectroscopy of [33],
the radial velocities derived from the H2, H3, H5, and
H6 lines are −29.0, −15.5, −14.0, and −8.5 km/s,
respectively. It is evident from these results that the
velocity associated with the wind outflow is much
higher than the systematic velocity of the center of
mass, the latter being −3.5 ± 0.8 km/s [37]. For this
reason, we do not present a γ velocity for Vela X-1.
The radial velocities derived using the H2–H10 lines
from [33] were corrected for the systematic radial
velocity (the velocities of the center-of-mass motion
and of the stellar wind at its base) individually for
each line before including them in the master radial-
velocity curve.

The spectral cross-correlation method used in [34]
to compute the radial velocities made it unnecessary
for us to introduce any further corrections for either
the velocity of the stellar wind at its base or the γ
velocity.

We can see from the above discussion that the
radial velocities we used to fit the observational data
were derived from both the hydrogen and HeI ab-
sorption lines. Therefore, as was mentioned above, we
carried out test computations to check the agreement
between the theoretical radial-velocity curves based
on the Hγ and HeI 4471 Å lines (Fig. 1b). The radial
velocities for the HeI 4471 Å line were computed
using a new version of our algorithm for the synthe-
sis of theoretical absorption-line profiles and of the
radial-velocity curves for close X-ray binaries [38]. In
contrast to the earlier algorithm, which is described
in the cited paper and uses the Balmer profiles from
the tables of Kurucz [18] for the local profiles, the
new algorithm computes the local profiles for area
elements on the stellar surface after constructing the
model atmosphere irradiated by the external X-rays.
Since the X-ray heating is not strong for most of the
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Fig. 7. (a) Anisotropy function of the stellar wind.
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binaries studied here, we deemed it to be admissible
to synthesize the theoretical radial-velocity curves
using our earlier algorithm, which requires far fewer
computer resources. The theoretical radial-velocity
curves for the Hγ and HeI 4471 Å lines shown in
Fig. 1b demonstrate good agreement, and, as was
already mentioned, we used the theoretical radial-
velocity curves based on the Hγ line for our analysis
of the master set of observational data for the Balmer
lines and HeI absorption lines.

5. THE EFFECT OF ANISOTROPY
OF THE STELLAR WIND

IN THE ATMOSPHERE OF THE OB STAR

Early-type stars posses high mass-loss rates, up
to 10−7–10−5Ṁ�/year. The outflow velocity in the
zone in which the absorption lines are formed can
be as high as ∼10–20 km/s, and, thus, becomes
comparable to the orbital velocity of the OB giant in
the system.

The isotropy of the stellar wind in a close bi-
nary is disrupted by the gravitational action of the
compact object. The optical star is already in a
nonuniform gravitational field. The wind velocity near
the Lagrangian point L1 increases; this is observed
(Figs. 2a, 3a, 4a, 5a, 6a) as an excess negative radial
velocity (toward the observer) at phase 0.5, when the
X-ray source is in front of the OB star.

This strongly hinders correct interpretation of the
radial-velocity curve for close binaries with early-
type optical components. The anisotropy of the stel-
lar wind is a source of errors when searching for
a system’s spectroscopic orbital elements [14], and
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this anisotropy must likewise be taken into account
when fitting the radial-velocity curve of the optical
component of a close binary. Bearing in mind the
difficulties of constructing theoretical models for an
anisotropic wind from a distorted star, we approached
this problem empirically.

Before fitting the radial-velocity curves of the sys-
tems, we calculated the phase dependences of the
differences Vobs − Vteor for each system (with the ex-
ception of 4U 1538–52, due to the low number of data
points and their nonuniform distribution in orbital
phase); Vobs is the observed radial velocity for a given
orbital phase and Vteor is the theoretical value in the
Roche model without taking into account the wind.
Jumping somewhat ahead, we note that we used the
mass of the relativistic object computed using the
secondmethod (i.e., not taking into account the radial
velocities observed at phases from 0.4 to 0.6) when
computing Vteor . Such mass estimates for X-ray pul-
sars are most reliable.

The resulting radial-velocity deviations for all four
systems were combined and averaged within phase
bins with a width of 0.05. Since the structure of
the spectroscopic data for Vela X-1 was such that
radial velocities derived from the H2–H10 absorption
lines fell at the same phase, we first averaged these
within each orbital phase. We adopted the mean ve-
locity from all the absorption lines for Vobs (i.e., from
H2–H10) at a given epoch. Unaveraged data were
used for the other systems.

The mean curve of the radial-velocity deviations,
Vobs − Vteor, for the four systems is presented in
Fig. 7a. We will call this relation the stellar-wind
anisotropy function. The relation in Fig. 7a clearly
demonstrates an excess negative radial velocity (to-
ward the observer) at phases from 0.4 to 0.6, when the
nose of the star is turned toward the observer. This
result is in qualitative agreement with the physics of
anisotropic stellar-wind outflows.

The use of the stellar-wind anisotropy function to
correct the observed radial velocities is justified by
the fact that it is essentially an empirical relation. We
normalized the relation for this purpose. The Vobs −
Vteor residuals were averaged for the phase intervals
0–0.4 and 0.6–1.0. The resulting mean values, 1.79
and 4.32 km/s, were adopted as the zero points for
correcting the observed radial velocities in the phase
intervals 0.0–0.5 and 0.5–1.0, respectively. The nor-
malized empirical stellar-wind anisotropy function is
shown in Fig. 7b.

6. INTERPRETATION
OF THE RADIAL-VELOCITY CURVES

Our aim was to determine the mass of the X-ray
pulsars from the master radial-velocity curves in the

Roche model, taking into account the anisotropy of
the stellar wind from the OB star.

We applied a simple method with an exhaustive
parameter search and found multiple solutions vary-
ing the desired parameter. In our case, the unknown
was mx and the mass of the compact object in the
close X-ray binary was varied during the solutions,
with all other parameters of the close binary being
fixed. The values of these fixed parameters were de-
rived from analyses of the photometric light curves,
X-ray eclipse data, and timing of the X-ray pulses.
The close-binary parameters used to synthesize the
radial-velocity curves are presented in Table 3.

It is often very difficult to measure the true radial
velocity of the optical star. Complex processes on the
surface of the supergiant and in gaseous structures in
the system can lead to both systematic and random
deviations. We were faced with the question of how
to best take into account the systematic errors. In
addition to the effect of anisotropy in the optical star’s
wind, tidal gravitational waves on the stellar surface
could be a source of systematic errors if the orbit is el-
liptical. The recent study [40] demonstrated that there
was no correlation between the orbital phase and the
phase of the gravitational tidal waves. Consequently,
tidal waves on the optical star’s surface are a source
of random errors and can be reduced by averaging the
data from many nights of observations.

In addition to gravitational–tidal perturbations
of the OB supergiant’s surface, additional absorp-
tion and photoionization effects [41] in the complex
gaseous structures in the close binary can be sources
of random errors in the observed radial velocities.

To reduce the influence of random errors due
to various effects, we averaged the radial velocities
within phase intervals. Our subsequent analysis
of the radial-velocity curves was based on these
mean observed radial velocities. The averaged radial-
velocity curves for the program binaries are presented
in Figs. 2b, 3b, 4b, 5b, and 6b.

We tested various hypotheses using the Fisher ra-
tio test, which takes into account the most complete
information on the averaged data. We describe our
adaptation of the Fisher ratio test for the analysis

of the radial-velocity curves below. Let V̄j
obs be the

observed mean radial velocity for the phase interval
centered at phase φ̄j ; Vj

teor, the theoretical radial
velocity value at this phase; and σj , the rms deviation

of V̄j
obs from the radial velocities observed in the given

phase interval centered at φ̄j . Let M be the number
of the phase intervals, and nj , the number of radial
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Table 3. Numerical parameters used to synthesize the radial-velocity curves of the close X-ray binaries in the Roche
model

Parameters Cen X-3 LMC X-4 SMC X-1 4U 1538–52 Vela X-1

P , days 2.0871390 1.40839 3.89229118 3.72844 8.964368

e 0.0 0.0 0.0 0.0 0.0898

ω, deg∗ 0.0 0.0 0.0 0.0 332.59

i, deg 82 65 65 65 73

µ∗∗ 0.99 0.99 0.97 0.95 0.95 и 0.99

f 0.95 0.65 0.95 0.94 0.69

Teff , K 35000 35000 25000 25000 25000

β 0.25 0.25 0.25 0.25 0.25

kx 0.05 1.4 0.25 0.0025 0.003

A 0.5 0.5 0.5 0.5 0.5

u∗∗∗ 0.30 0.30 0.38 0.38 0.38

Kx, km/s 414.1 400.6 301.5 309.0 278.1
∗ The longitude of the periastron of the optical component is given.

∗∗ The value for Vela X-1 corresponds to the orbit periastron.
∗∗∗ Data of [39].

velocities averaged in a given phase interval. We can
calculate the residual as follows:

∆(mx) =

M∑

j=1
(nj − 1)

M

M∑

j=1
nj(Vj

teor − V̄j
obs)2

M∑

j=1
nj(nj − 1)σ2

j

. (1)

The variable ∆(mx) will be distributed according
to a Fisher law, F

M,
M∑

j=1
(nj−1),α

[42]. Let us adopt

the significance level α. The confidence set for the
desired parameter, mx, will then consist of the values
satisfying the condition

∆(mx) ≤ F
M,

M∑

j=1
(nj−1),α

.

We solved the inverse problem using the Roche
and point-mass models. The latter was used only to
reveal disagreements between the results for the two
models. We analyzed the mean radial-velocity curves
for each system using three methods.

Method 1. Using all the mean observed radial
velocities, with no correction for anisotropy of the
stellar wind.

Method 2. Rejecting mean observed radial veloci-
ties at phases 0.4–0.6 that aremost strongly distorted
by the effects of the stellar-wind anisotropy.

Method 3. Using the mean radial velocities at
phases 0.4–0.6 corrected for the stellar-wind aniso-
tropy function.

Let us consider the details of our procedures for
determining the compact object’s mass using the first
system, Cen X-3, as an example.

Cen X-3. The mean radial-velocity curve for Cen
X-3 had 79 data points. Despite the fact that the
points were uniformly distributed in orbital phase
(Fig. 2a), we can identify close groups of points with
similar orbital phases. In the case of Cen X-3, we
isolated 11 such groups, within which we averaged
the observed radial velocities. The radial velocities
averaged within the phase bins are shown in Fig. 2b.

The mean radial velocities show the strongest de-
viations from the standard curve at phases 0.4–0.6.
The supergiant’s excess negative radial velocity at
these phases is due to the anisotropy of the stellar
wind.

Recall that we determined the unknown mx by
carrying out an exhaustive search among its possible
values. In the process, we varied the mass of the
relativistic component so that the semiamplitude of
its radial-velocity curve remained unchanged, Kx =
414.1 km/s [43]. For more detail on the method used
to compute the optical component’s mass by running
through possible masses for the relativistic compo-
nent, see the Appendix. The remaining binary param-
eters (Table 3) were fixed.
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Fig. 8. Deviations of the observed mean radial-velocity curves for (a) Cen X-3 and (b) Vela X-1 from the synthetic curves in
the Roche model (solid curve) and point-mass model (dashed curve) obtained using methods 1, 2, and 3. The method used to
derive the residuals is indicated by a number near the curve. The horizontal lines correspond to the critical levels in the Fisher
ratio test, ∆8,47 = 2.14 (a) and ∆18,782 = 1.605 (b), for a significance level of 5%.

The residual yielded by analyzing the observed ra-
dial velocities usingmethod 1 is shown in Fig. 8a. The
significance level adopted for the computations was
5%. We can see in this figure that the model without
allowance for the wind anisotropy must be rejected at
this significance level. The mx value corresponding to
the minimum residual is presented in Table 4.

Interpretation of the radial-velocity curve is hin-
dered by the strong deviation of the data points from
their computed positions near phase 0.5. This does
not fit into the Roche model with an isotropic stellar
wind. We therefore excluded in the next stage ob-
served radial velocities at phases 0.4–0.6 during the
computations, and our analysis of the fitted curves did
not take them into account (method 2). The behavior
of the residuals is shown in Fig. 8a. We can see that
the point-mass model must be rejected according to
the Fisher test, whereas the Roche model, which is
more adequate for describing the physics of processes
in close binaries, is acceptable. We accordingly adopt
the Rochemodel, not because it is necessarily correct,
but because there is no reason to reject it (see the
review [44] for details).

The mass of the X-ray pulsar corresponding to the
minimum residual in the Roche model is 1.63 M�.
The minimum residual for the point-mass model is
reached for 1.47 M�. This large a discrepancy can be
explained by the difference in the shapes of the syn-
thetic curves for the Roche and point-mass models
(Fig. 1a). The barycenter of the system is inside the

body of the optical star (q < 1), so that some frac-
tion of the optical star’s emitting surface is moving
in the same direction as the relativistic component.
This leads to a lower amplitude of the synthesized
radial-velocity curve in the Roche model, all the other
parameters being the same, and, hence, to a higher
mass for the relativistic object.

In the computations with method 3, we corrected
the mean radial velocities at phases 0.4–0.6 for the
mean normalized wind anisotropy function. This
correction makes the deviation between the synthetic
and observed radial velocity values much smaller
(Fig. 2b). The differences between the theoretical
and corrected observed radial-velocity curves are
presented in Fig. 8a. We can see that, in this case,
the Fisher ratio test indicates both the Roche and
point-mass models to be acceptable.

The resultingmasses, alongwith themasses of the
X-ray pulsars in the other systems, are collected in
Table 4.

LMC X-4. The master radial-velocity curve con-
tains about 70 data points (Fig. 3a); the averaged
master radial-velocity curve is presented in Fig. 3b.
The mean velocities in the phase bins were formed
using from three to ten points. These mean observed
velocities are in good agreement with the theoretical
values.

The residuals obtained for the Roche and point-
mass models using methods 1 and 2 indicate that
both models are acceptable according to the Fisher
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Table 4. Masses of X-ray pulsars in the close binaries with supergiants derived from fitting the mean observed radial-
velocity curves in the Roche and point-mass models (the confidence interval is given for the 95% confidence level)

Name
Roche model Point-mass model

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Cen X-3 1.14 1.22+0.15
−0.14 1.10+0.05

−0.05 1.12 1.14 1.09+0.18
−0.18

LMC X-4 1.55+0.29
−0.27 1.63+0.42

−0.47 1.60 1.40+0.30
−0.29 1.47+0.47

−0.43 1.43+0.08
−0.05

SMC X-1 1.40+0.33
−0.29 1.48+0.47

−0.42 1.40+0.49
−0.45 1.30+0.33

−0.31 1.36+0.41
−0.39 1.30+0.49

−0.45

4U 1538–52 1.21+0.28
−0.26 1.18+0.29

−0.27 1.26 1.16 1.13+0.11
−0.11 1.21

Vela X-1 (µ = 0.95) ∗ 2.02 1.93+0.25
−0.24 1.94+0.08

−0.10 2.02 1.92+0.30
−0.28 1.94+0.21

−0.18

Vela X-1 (µ = 0.99) ∗ 2.02 1.93+0.19
−0.21 1.94 2.02 1.92+0.30

−0.28 1.94+0.21
−0.18

∗ The confidence interval is given for the error of the mean artificially increased twofold.

test. Because of the initial good agreement of the
mean observed and theoretical radial velocities, the
residual increases when the observed radial-velocity
curve is analyzed using method 3. The increase in
the difference between the theoretical and observed
radial velocities is quite apparent in Fig. 3b.When the
observed mean radial-velocity curve is analyzed using
method 3, the point-mass model is rejected by the
Fisher test, whereas the Roche model is acceptable.
The resulting masses and confidence intervals are
presented in Table 4.

SMC X-1. The mean curve contained 70 data
points (Fig. 3a). The averaged radial velocities are
presented in Fig. 4b; the observed radial velocities at
phases 0.40 and 0.51 deviate fairly strongly from the
theoretical values.

The analysis of the mean observed radial-velocity
curves using any of the three methods indicates that
both the Roche and point-mass models are accept-
able according to the Fisher ratio test. Correction of
the mean observed radial velocities at phases 0.40 and
0.51 reduces the disagreement between the synthetic
and observed radial velocities (Fig. 4b); i.e., the resid-
uals obtained using method 3 are lower than those for
method 1. This is reflected in the broader confidence
interval for the X-ray pulsar masses satisfying the
Fisher test at the 95% confidence level for method 3
compared to method 1 (Table 4).

4U 1538–52. The master radial-velocity curve
contains 36 data points (Fig. 5a); the values aver-
aged within each group are presented in Fig. 5b.
Because of the sparseness of the spectroscopic data,
the averaging in some phase intervals was based on
radial velocities measured on a single night, making
it impossible to reduce the influence of random errors.
This could be the origin of the excess positive velocity
at phase 0.45.

When analyzing the mean observed radial veloc-
ities using method 1, the Roche model passes the

Fisher ratio test, whereas the point-mass model is re-
jected. With the radial velocity at phase 0.45 excluded
(model 2), both the Roche and point-mass models
pass the Fisher test. Since an excess positive radial
velocity is observed at phase 0.45, the correction for
the normalized stellar-wind anisotropy function only
increases the discrepancy between themean observed
and theoretical radial velocities. Thus, the increased
residual yielded by method 3 results in both mod-
els being rejected by the Fisher test. The resulting
masses and confidence intervals are presented in Ta-
ble 4.

Vela X-1. The master radial-velocity curve in-
cluded 782 data points subdivided into 18 groups
(Fig. 6a). The values averaged within each group
are shown in Fig. 6b. Each phase bin used for the
averaging contains many (28 to 82) data points, lead-
ing to low standard deviations. Thus, the residuals
obtained using method 1, method 2, and method 3 are
8.59, 6.00, and 6.59, respectively, with the quantiles
being 1.69, 1.605, and 1.69. The low uncertainties in
the averaged data impose stringent requirements on
the models, so that even the Roche model with the
stellar-wind anisotropy taken into account is rejected
by the Fisher test, testifying to the complexity of the
physics of the absorption-line-formation processes.

Artificially increasing the standard deviations, σj ,
by a factor of 1.5 reduced the residuals for method 2
to 1.92, whereas the critical level for the Fisher ratio
test with a 5% significance level is 1.605. The differ-
ence between the critical level for the Fisher test with
the 5% significance level and the residuals derived
using the other methods using 1.5σj are even higher.
When the standard deviations, σj , in (1) were artifi-
cially doubled, the models for methods 2 and 3 were
deemed acceptable by the Fisher test. The model for
method 1 is rejected even after doubling the standard
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deviations and analyzing the full, uncorrected radial-
velocity curve.

The above findings indicate that the Roche model
is not adequate to the high-accuracy radial-velocity
curve of the optical star in the Vela X-1 system,
making the mass of the X-ray pulsar, mx, derived for
this system relatively uncertain.

Because of the large uncertainty in theRoche-lobe
filling coefficient, µ, we carried out computations for
µ = 0.95 and 0.99, keeping the remaining conditions
the same (this corresponds to two lines in Table 4).
The deviation of the mean observed radial-velocity
curve from the synthetic curve for the Roche model
is much lower for µ = 0.95 than for µ = 0.99, which
is reflected in a wider confidence interval for the better
fit (Table 4). However, the mass of the X-ray pulsar
derived from the residual minimum remains the same
for the two cases.We conclude that the radial-velocity
curve is insensitive to relatively small variations of the
Roche-lobe filling coefficient.

Figure 8b shows the behavior of the residuals (for
µ = 0.95) found using each of the methods. Table 4
presents the X-ray pulsar masses corresponding to
the minimum residuals for models rejected by the
Fisher ratio test. It is not possible to derive confidence
intervals in these cases.

7. CONCLUSIONS

This paper has presented estimates of the masses
of X-ray pulsars that are most adequate to the entire
set of observational data for X-ray binaries with OB
supergiants. In contrast to earlier studies, we have
considered not only the semiamplitude of the radial-
velocity curve but also its overall shape.

Our investigation demonstrates that a pure Roche
model is insufficient for analyzing the radial-velocity
curves of X-ray close binaries with early-type optical
stars. This model is often rejected by the Fisher ratio
test due to the presence of an excess negative radial
velocity near phase 0.5. In a number of cases, only
taking into account the wind anisotropy makes it
possible to accept the model based on the Fisher test,
thereby enabling us to obtain reliable estimates of the
neutron-star masses in the X-ray binaries and their
confidence intervals.

This study has yielded masses of the X-ray pulsars
derived in the Roche model, with the stellar-wind
anisotropy taken into account empirically. This model
is much more realistic than earlier models based on
point masses in Keplerian orbits. Note that the mass
estimates for X-ray pulsars in binaries with super-
giants obtained in the point-mass models of [13] are
in good agreement with our own determinations us-
ing the same model with two point masses.

Let us now consider the X-ray pulsar mass es-
timates for the Roche model. They are systemati-
cally higher than the masses derived in the point-
mass model, by on average∼ 10% (Table 4). Our test
computations for the SMCX-1 system demonstrated
that the systematic excess of the X-ray pulsar masses
obtained for the Roche model did not depend on the
orbital inclination i (see the Appendix). Thus, we
conclude that the X-ray pulsar masses were system-
atically too low (by 5–10%) in all earlier studies based
on point-mass models.

The masses of the X-ray pulsars in LMC X-4
and SMC X-1, 1.63+0.42

−0.47 M� and 1.48+0.47
−0.42 M�,

respectively, are somewhat higher than the standard
mass for a neutron star, 1.35 ± 0.04 M� [21], though
they can be reconciled with a mass of 1.35M� within
our confidence intervals. It is difficult to explain the
excess of the X-ray pulsar masses over the standard
value as being due to the accumulation of accreted
matter from an accretion disk onto the neutron star’s
surface. A mass of about 0.01 M� could settle onto
the pulsar’s surface over the optical component’s life
time during the stage when the Roche lobe is close
to being filled, ∼ 105 years, if the mass-loss rate of
the optical star is 10−7–10−6Ṁ�/year, taking into
account the size of the close binary and the relativistic
star’s gravitational capture radius.

The X-ray pulsar masses in the Cen X-3, LMC
X-4, SMC X-1, and 4U 1538–52 systems derived
using the most reliable method, in the Roche model
excluding the mean radial velocities near phase 0.5,
are 1.22+0.15

−0.14 M�, 1.63+0.42
−0.47 M�, 1.48+0.47

−0.42 M�,
and 1.18+0.29

−0.27 M�, respectively. The mean of the
four X-ray pulsar masses is 1.37 ± 0.15 M� at the
95% confidence level (the mass of the pulsar in the
Vela X-1 system was not used for the average due to
its anomalously high value). This mean X-ray pulsar
mass agrees with the standard radio pulsar mass,
1.35 ± 0.04 M�, within the errors [21].

Our test computations in the Roche model for
various orbital inclinations, i, demonstrated the valid-
ity of the relation mx ∼ sin−3i (see the Appendix for
more details). Thus, the X-ray pulsar masses derived
in the Roche model can easily be recalculated if their
orbital inclinations are refined.

An important result of this study is the mass es-
timate for the compact object in the Vela X-1 X-ray
binary. The earlier estimate was 1.86+0.32

−0.32 M� at the
95% significance level [34], considerably in excess
of the standard value, 1.35 ± 0.04 M�. Our analy-
sis of the radial-velocity curve in the Roche model
taking into account the wind anisotropy slightly in-
creased the mass of the X-ray pulsar in this system,
to 1.93+0.19

−0.21 M� at the 95% confidence level. Note
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Table 5. Masses of the SMC X-1 pulsar derived using the Roche and point-mass model for various orbital inclinations
(confidence intervals are given for the 95% confidence level)

Orbital inclination
Roche model Point-mass model

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

i = 65◦ 1.40+0.33
−0.29 1.48+0.33

−0.29 1.40+0.49
−0.45 1.30+0.33

−0.31 1.36+0.41
−0.39 1.30+0.49

−0.45

i = 75◦ (case A) 1.15+0.27
−0.24 1.22+0.37

−0.36 1.15+0.40
−0.37 1.08+0.27

−0.25 1.12+0.35
−0.31 1.43+0.41

−0.38

i = 75◦ (case B) 1.156 1.223 1.156 1.074 1.123 1.074

i = 85◦ (case A) 1.05+0.24
−0.22 1.11+0.34

−0.32 1.05+0.37
−0.33 0.98+0.24

−0.24 1.02+0.32
−0.28 0.98+0.38

−0.33

i = 85◦ (case B) 1.054 1.114 1.054 0.978 1.024 0.978

again that our Roche model for the Vela X-1 system
was rejected by the Fisher ratio test, so that the X-ray
pulsar’s mass, 1.93 M�, cannot be considered very
trustworthy. A “hard” equation of state must be used
to explain the existence of neutron stars with masses
this high. Studies in this direction are very promising.
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APPENDIX

When solving the inverse problem, we varied the
mass of the X-ray pulsar, mx, so that the semi-
amplitude of its radial-velocity curve, Kx, remained
unchanged, since this parameter is known to high ac-
curacy from X-ray timing data (Table 2). To keep Kx

constant as the mass of the relativistic component,
mx, varied, we had to vary the mass of the optical star,
mv, as well. We used the classical formulas to relate
the mass of the optical component, mv, to each value
of the X-ray pulsar’s mass, mx:

mx sin3 i = 1.038 × 10−7P (1 − e2)3/2 (2)

× Kv(Kx + Kv)2,

mv sin3 i = 1.038 × 10−7P (1 − e2)3/2 (3)

× Kx(Kv + Kx)2.

The point-object model is quite applicable to the
X-ray pulsar, justifying the use of (2). The value of
Kv it gives for fixed mx and i characterizes the true
velocity of the optical star’s center of mass. Due to the
various reasons mentioned above (the pear-like shape
of the stars, anisotropic winds, heating effects, etc.),
the observed Kv can differ from the value of Kv found

from (2). Substituting the true Kv derived from (2)
into (3), we find the mass of the optical star, mv, for
the specified value of i. In this manner, relating the
mass of the optical component to that of the rela-
tivistic component, we can keep the semiamplitude of
the relativistic component’s radial-velocity curve,Kx,
constant. Note also that (3) contains only a quadratic
dependence on Kv, whereas the dependence on Kx

is cubic. This is reflected in the fact that varying mx

by a factor of 2.7 leads to a change in the optical
component’s mass by only a factor of 1.14.

In the model with two point masses, the masses
of the optical star, mv, and of the X-ray pulsar, mx,
depend on the orbital inclination, i, as mv ∼ sin−3i
and mx ∼ sin−3i. We should check if the relation
mx ∼ sin−3i is valid when the X-ray pulsar’s mass is
determined using the Roche model for the optical star
from the minimum difference between the observed
mean radial-velocity curve and the curve synthesized
in the Roche model.

For this purpose, we also analyzed the mean
radial-velocity curve of the SMC X-1 system in the
Roche model using the three methods for orbital
inclinations of 75◦ and 85◦. The result is presented in
Table 5, where it is called “case A.” Having the mass
obtained earlier in the Roche model for an orbital
inclination of 65◦ (Table 4), we recalculated this mass
for the orbital inclinations 75◦ and 85◦ according to
the formulas

mx(75◦) = mx(65◦)
sin3 65◦

sin3 75◦
, (4)

mx(85◦) = mx(65◦)
sin3 65◦

sin3 85◦
, (5)

where mx(65◦), mx(75◦), and mx(85◦) are the mass-
es of the X-ray pulsar for orbital inclinations of 65◦,
75◦, and 85◦. The results are presented in Table 5,
where they are called “case B.” We can see that the
masses mx derived from the minimum residual in the
Roche model for the orbital inclinations 75◦ and 85◦
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(case A) are very close to the masses mx obtained us-
ing (4) and (5) (case B). Thus, the masses mx derived
in the Roche model for the optical star (Table 4) can
easily be recalculated using the formula mx ∼ sin−3i
if the orbital inclination, i, is refined.
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