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Abstract—Parameters and their error intervals numerically estimated for the observed light curve of the
binary eclipsing system YZ Cas as well as for one-, two-, three-, and four-parameter functions, and the
associated parameters and their error intervals numerically estimated. The error intervals are calculated
using differential corrections method, Monte-Carlo simulations, and confidence areas. We study the error
intervals and the reliability of the techniques used.
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1. INTRODUCTION

It is often necessary to solve inverse paramet-
rical problems in astronomy, when model parame-
ters describing a process and, as may be even more
important, reliable estimates for the errors of these
parameters, must be determined from the observed
consequences of the process. One particualarly im-
portant example is fitting the light curves of eclipsing
binaries to derive information about the mass, radii,
and luminosities of stars in different stages of their
evolution. The determination of the basic parameters
of the stellar components of eclipsing binaries along
with their errors enables verification of the theory
of the structure and evolution of stars, searches for
relativistic objects in binary systems, and studies of
the evolution of close binaries. Since subtle evolu-
tionary effects in close binaries can often be revealed
only close to the limit of the observational accuracy,
reliable estimates of the errors of model parameters
are crucial in the analysis of eclipsing-binary light
curves.

The estimation of errors of eclipsing-binary pa-
rameters has been subject to various confusing
factors. As a rule, attention is given primarily to
the central values of parameters, while their errors
are usually determined only for formality’s sake.
Several methods for estimating error intervals for
parameters of binary systems, as well as in other
parametrical problems, are currently used in astro-
physics; the most common are the Monte-Carlo
method, the differential-correction method [1], and
the confidence-area method [2–4]. Various groups
have adhered to various of these techniques. Here, we
numerically compare these methods to estimate the

error intervals for the parameters of binaries in order
to reveal advantages and drawbacks of the various
approaches.

The construction of confidence areas in paramet-
rical problems has been well developed theoretically
(see, for example, [5]). Here, we use the high effi-
ciency of modern computers to illustrate numerically
different techniques that can be used to construct the
confidence areas, and provide real examples to justify
practical recommendations concerning the applica-
tion of various methods for parameter estimation.

2. A MODEL OF A BINARY
Since our study is methodological, we will adopt

a simple model with two spherical stars with thin
atmospheres in a circular orbit about each other,
without taking into account effects associated with
the mutual closeness of the components. This model
is easy to develop with modern computers and can
be used calculate numerous solution versions for an
inverse problem with a comparatively short computa-
tion time.

We considered the motion of the stellar disks pro-
jected onto the plane of the sky, i.e., the plane per-
pendicular to the line of sight. Figure 1 presents the
geometry of the stellar disks during an eclipse. Here,
r1 and r2 are the radii of the first and second star, ∆
the distance between the centers of the stellar disks,
and ρ and Ψ the polar coordinates of an arbitrary point
on the surface of the first stellar disk (the coordinate
origin is at the geometrical center of the disk). The
distance between the centers of the stellar disks is
specified by the expression (see, for example, [6])

∆2 = cos2 i + sin2 i sin2 θ, (1)
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Fig. 1. A model of two eclipsing spherical stars, projected
onto the plane of the sky.

where i is the orbital inclination of the binary and θ
the current orbital phase angle.

A linear limb-darkening law was used for the
brightness distribution across the stellar disks:

I(1)(ρ) = I
(1)
0

(
1 − x1 + x1

√
1 − ρ2

r2
1

)
, (2)

I(2)(ξ) = I
(2)
0

(
1 − x2 + x2

√
1 − ξ2

r2
2

)
. (3)

Here, I
(1)
0 and I

(2)
0 are the brightnesses at the disk

centers of the first and second star, x1 and x2 the
limb-darkening coefficients for the first and second
stars, and ρ and ξ the polar distances from the disk
centers of the first and second stars, respectively.

The desired model parameters are r1, r2, i, I
(1)
0 ,

I
(2)
0 , x1, and x2. The unit of length is the component

separation a = 1. There is no “third light” in the
model. The light curve of the binary is specified by the
following three equations:

1. The combined luminosity of the components,
which describes the brightness outside eclipse:

2π

r1∫
0

I(1)(ρ)ρdρ + 2π

r2∫
0

I(2)(ξ)ξdξ = Lfull. (4)

2. The light loss in the primary minimum due to the
eclipse of the smaller secondary by the larger primary:

Lfull − L(1)(θ) =
∫∫

S(∆)

I(2)(ξ)dS, (5)

where S(∆) is the disk overlap area.

3. The brightness loss in the secondary minimum
due to the eclipse of the larger primary by the smaller
secondary:

Lfull − L(2)(θ) =
∫∫

S(∆)

I(1)(ρ)dS. (6)

Equations (1), (4), (5), and (6) completely describe
the observed light curve and contain the seven desired

parameters: r1, r2, i, I
(1)
0 , I

(2)
0 , x1, and x2. Substitut-

ing the brightness distribution approximated by the
linear limb-darkening law (2), (3) in the integral and
then integrating, we obtain a system of non-linear
algebraic equations for these seven parameters.

3. DERIVATION OF FORMULAS
USED IN THE CALCULATIONS

Here, in contrast to the generally adopted ap-
proach (see, for example, [1]), we use another tech-
nique to calculate the area of disk overlap, making
it possible to obtain an expression for the light loss
independent of the relation between the radii r1, r2

and the distance between the component centers ∆.
Thus, we were able to unify the formulas used in
the calculations and avoid considering each case of
the eclipse individually. This approach results in a
reduction in the number of equations used, and, ac-
cordingly, a reduction in the calculation time, by a
factor of seven. We describe our technique in more
detail below.

Let the brightness at some point of the stellar disk
be

I(ρ) = I0

(
1 − x + x

√
1 − ρ2

r2

)
,

where ρ is the distance from the point to the center of
the stellar disk, I0 the brightness at the disk center,
x the limb-darkening coefficient, and r the radius of
the star.

Introducing the new parameters X0 = I0(1 − x)
and X1 = I0x,

I(ρ) =

(
X0 + X1

√
1 − ρ2

r2

)
. (7)

Component 1 eclipses component 2 at orbital
phase θ = 0. The total brightness of the star is

L(s) = 2π

r∫
0

I(s)(ρ)ρdρ = X
(s)
0 πr2

s +
2
3
X

(s)
1 πr2

s ,

s = 1, 2,
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and the total brightness of the binary outside eclipse
is

Lfull = L(1) + L(2) = X
(1)
0 πr2

1 (8)

+
2
3
X

(1)
1 πr2

1 + X
(2)
0 πr2

2 +
2
3
X

(2)
1 πr2

2.

In order to make the formulas for the light curve
minima universal and to reduce the number of equa-
tions, we assign the subscript n to the eclipsing com-
ponent (closer to the observer), and f to the eclipsed
component (further from the observer). When cal-
culating the light curve minima in the orbital-phase
interval −π/2 < θ < π/2 (or cos θ > 0), the variable
rn must be replaced by r1, and rf by r2. In the orbital-
phase interval cos θ < 0, the opposite substitution
must be made—rf must be replaced by r1, and rn

by r2.

In the new notation, the light loss during an eclipse
is

Ldec(∆, rf , rn,X
(f)
0 ,X

(f)
1 ) =

∫∫
S(∆)

I(f)(ρ)dS, (9)

where ∆ is the distance between the disk centers and
S(∆) the overlapping area of the disks.

Before calculating the integral (9), we introduce
the functions

Ax ≡

⎧⎪⎨
⎪⎩

π, x < −1,
arccos x, −1 ≤ x ≤ 1,
0, x > 1

(10)

and

Qx ≡
{√

x, x ≥ 0,
0, x < 0.

Then
dAx

dx
= Q

(
1

1 − x2

)
. (11)

Let us introduce a set of polar coordinates with
their origin at the center of the disk of the eclipsed star
and the polar angle ϕ measured from the direction of
disk center of the eclipsed component (“f”) towards
the center of the disk of the eclipsing component
(“n”) (Fig. 1). In these coordinates, the domain of
integration S(∆) is specified as

S(∆) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ < rf ,

−π < ϕ ≤ π,
ρ2 + ∆2 − r2

n

2ρ∆
≤ cos ϕ.

(12)

Let us integrate (9) over ϕ with ρ for which the

inequality

∣∣∣∣ρ2 + ∆2 − r2
n

2ρ∆

∣∣∣∣ ≤ 1 is satisfied:

ρ2 + ∆2 − r2
n

2ρ∆
≤ cos ϕ

⇔ |ϕ| ≤ arccos
(

ρ2 + ∆2 − r2
n

2ρ∆

)
.

With the same ρ, for which
ρ2 + ∆2 − r2

n

2ρ∆
< −1, the

inequality

ρ2 + ∆2 − r2
n

2ρ∆
< cos ϕ

is satisfied for any ϕ. In this case, the integration
over ϕ is from −π to π. For values of ρ for which
ρ2 + ∆2 − r2

n

2ρ∆
> 1, the last of inequalities (12) is not

satisfied for any ϕ (i.e., no points with such ρ values
are in the integration domain). For such ρ values, we
specify both limits of the integration over ϕ to be zero.

Using the notation (10), the integral in (9) can be
rewritten

Ldec(∆, rf , rn) (13)

=

rf∫
0

ρdρ

Ψ(∆,ρ,rn)∫
−Ψ(∆,ρ,rn)

dϕI(f)(ρ)

= 2

rf∫
0

ρΨ(∆, ρ, rn)I(f)(ρ)dρ,

where

Ψ(∆, x, y) ≡ A
(

x2 + ∆2 − y2

2x∆

)
.

Substituting (7) into (13), we obtain

Ldec(∆, rf , rn,X
(f)
0 ,X

(f)
1 ) (14)

= X
(f)
0 Ldec

0 (∆, rf , rn) + X
(f)
1 Ldec

1 (∆, rf , rn).

Using (11), we obtain

Ldec
0 (∆, rf , rn) = 2

rf∫
0

ρΨ(∆, ρ, rn)dρ (15)

= Ψ(∆, rf , rn)r2
f + Ψ(∆, rn, rf )r2

n

− 1
2
Q (∆, rf , rn) ,

Q (∆, rf , rn) ≡ Q
( [

r2
f − (∆ − rn)2

]
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×
[
(∆ + rn)2 − r2

f

])

and

Ldec
1 (∆, rf , rn) = 2

rf∫
0

ρΨ(∆, ρ, rn) (16)

×
√

1 − ρ2

r2
f

dρ =

r2
f∫

0

Ψ(∆,
√

ρ, rn)
√

1 − ρ

r2
f

dρ

(the last equality is obtained via the substitution ρ′ =
ρ2; further, to avoid excessive new notation, ρ′ is
replaced by ρ). The integral (16) is calculated numer-
ically.

For a circular orbit, the distance between the cen-
ters of the stellar disks ∆ depends on the phase and
the orbital inclination as

∆(θ, i) =
√

cos2 i + sin2 i sin2 θ. (17)

The brightness of the binary depends on the phase as
follows:

L(θ, i, r1, r2,X
(1)
0 ,X

(1)
1 ,X

(2)
0 ,X

(2)
1 ) = Lfull (18)

−
{

Ldec(∆(θ, i), r1, r2,X
(1)
0 ,X

(1)
1 ), cos θ < 0,

Ldec(∆(θ, i), r2, r1,X
(2)
0 ,X

(2)
1 ), cos θ > 0.

Introducing the functions

L
(1)
0 (θ, r1, r2, i) = πr2

1 (19)

−
{

Ldec
0 (∆(θ, i), r1, r2), cos θ < 0,

0, cos θ > 0,

L
(1)
1 (θ, r1, r2, i) =

2
3
πr2

1

−
{

Ldec
1 (∆(θ, i), r1, r2), cos θ < 0,

0, cos θ > 0,

L
(2)
0 (θ, r1, r2, i) = πr2

2

−
{

Ldec
0 (∆(θ, i), r2, r1), cos θ > 0,

0, cos θ < 0,

L
(2)
1 (θ, r1, r2, i) =

2
3
πr2

2

−
{

Ldec
1 (∆(θ, i), r2, r1), cos θ > 0,

0, cos θ < 0,

we can write the total brightness as the linear combi-
nation

L(θ, r1, r2, i,X
(1)
0 ,X

(1)
1 ,X

(2)
0 ,X

(2)
1 ) (20)

= X
(1)
0 L

(1)
0 (θ, r1, r2, i) + X

(1)
1 L

(1)
1 (θ, r1, r2, i)

+ X
(2)
0 L

(2)
0 (θ, r1, r2, i) + X

(2)
1 L

(2)
1 (θ, r1, r2, i).

The partial derivatives of the total brightness func-
tion are expressed in terms of partial derivatives of
Ldec

0 and Ldec
1 with respect to ∆, rf , and rn and the

partial derivatives of ∆(θ, i) with respect to θ and i.
We can use (11) to find the partial derivatives (15).
Simplifying, we finally obtain

∂Ldec
0 (∆, rf , rn)

∂∆
= −Q(∆, rf , rn)

∆
, (21)

∂Ldec
0 (∆, rf , rn)

∂rf
= 2Ψ(∆, rf , rn)rf , (22)

∂Ldec
0 (∆, rf , rn)

∂rn
= 2Ψ(∆, rf , rn)rn. (23)

Calculating the derivatives of Ldec
1 , we introduce the

functions

K1(∆, rf , rn) (24)

≡

r2
f∫

0

Q

⎛
⎝ r2

f − ρ[
ρ − (∆ − rn)2

] [
(∆ + rn)2 − ρ

]
⎞
⎠ dρ,

K2(∆, rf , rn) ≡ 1
∆

r2
f∫

0

(
r2
n − ρ

)
(25)

×Q

⎛
⎝ r2

f − ρ[
ρ − (∆ − rn)2

] [
(∆ + rn)2 − ρ

]
⎞
⎠ dρ.

We obtain

∂Ldec
1 (∆, rf , rn)

∂∆
(26)

= −∆K1(∆, rf , rn) + K2(∆, rf , rn)
rf

,

∂Ldec
1 (∆, rf , rn)

∂rn
=

2rn

rf
K1(∆, rf , rn), (27)

∂Ldec
1 (∆, rf , rn)

∂rf
=

1
r2
f

r2
f∫

0

ρ
Ψ(∆,

√
ρ, rn)√

r2
f − ρ

dρ. (28)

Integrating (28) by parts yields

∂Ldec
1 (∆, rf , rn)

∂rf
=

2
rf

r2
f∫

0

Ψ(∆,
√

ρ, rn) (29)
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×
√

1 − ρ

r2
f

dρ +

r2
f∫

0

(
∆2 − r2

n − ρ
)

×Q

⎛
⎝ r2

f − ρ[
ρ − (∆ − rn)2

] [
(∆ + rn)2 − ρ

]
⎞
⎠ dρ

=
2
rf

Ldec
1 (∆, rf , rn)

+

(
∆2 − 2r2

n

)
K1(∆, rf , rn) + ∆K2(∆, rf , rn)

r2
f

.

The numerical determination of the integrals
in (24) and (25) is complicated by the singularities in
the functions in the integrand. Therefore, we convert
them to a more appropriate form. In these functions,
the integrand differs from zero in the interval [(∆ −
rn)2, (∆ + rn)2]. Therefore,

K1(∆, rf , rn) = K2(∆, rf , rn) = 0 (30)

for |∆ − rn| ≥ rf ,

and if |∆ − rn| < rf , it is sufficient to integrate
over the segment [(∆ − rn)2,min{(∆ + rn)2, r2

f}].

In this segment, the function arccos
(

∆2 + r2
n − ρ

2∆rn

)
is real and monotonic with respect to ρ; consequently,

we can substitute x = arccos
(

∆2 + r2
n − ρ

2∆rn

)
. The

integration over x will then be done over the segment⎡
⎣0, arccos

⎛
⎝∆2 + r2

n − min
{
(∆ + rn)2, r2

f

}
2∆rn

⎞
⎠

⎤
⎦ .

Taking into account that

d

dρ
arccos

(
∆2 + r2

n − ρ

2∆rn

)

=
1√[

ρ − (∆ − rn)2
] [

(∆ + rn)2 − ρ
]

and

arccos

⎛
⎝∆2 + r2

n − min
{
(∆ + rn)2, r2

f

}
2∆rn

⎞
⎠

= A
(

∆2 + r2
n − r2

f

2∆rn

)
= Ψ(∆, rn, rf ),

we obtain:

K1(∆, rf , rn) (31)

=

Ψ(∆,rn,rf )∫
0

√
r2
f − (∆ − rn)2 − 4∆rn sin2 x

2
dx,

K2(∆, rf , rn) =

Ψ(∆,rn,rf )∫
0

(2rn cos x − ∆) (32)

×
√

r2
f − (∆ − rn)2 − 4∆rn sin2 x

2
dx.

Expressions (31) and (32) were obtained assum-
ing that |∆ − rn| < rf . In the case |∆ − rn| ≥ rf ,
the function Ψ(∆, rn, rf ) = 0, so that the integrals
in the indicated expressions vanish, consistent with
(30). Thus, (31) and (32) are valid for any positive
∆, rn and rf .

A fact that is important for the numerical integra-
tion is that the integrand in (16) is only piecewise
smooth, while the efficient application of numerical
integration techniques, such as Gauss’ quadrature
method, requires the integrated function to be smooth
over the entire integration interval. Therefore, during
the integration, the interval [0, r2

f ] must be divided
into sections according to discontinuous points of the
integrand’s derivatives, with the integration be carried
out separately for each section. Let us present the
general expression for the sequence of these points
(depending on the values of rn, rf , and ∆, some of
these points coincide):

{max(0, (∆ − rn)2),min(r2
f , (∆ − rn)2), (33)

min(rf ,∆ + rn)2, r2
f}.

This expression is convenient for the construction of
a general numerical-integration procedure.

Now let us change to the new variable z = cos2 i
and new subscripts:

L1 (θ, r1, r2, z) = L
(1)
0 (θ, r1, r2, i), (34)

L2 (θ, r1, r2, z) = L
(1)
1 (θ, r1, r2, i),

L3 (θ, r1, r2, z) = L
(2)
0 (θ, r1, r2, i),

L4 (θ, r1, r2, z) = L
(2)
1 (θ, r1, r2, i),

X1 = X
(1)
0 , X2 = X

(1)
1 ,

X3 = X
(2)
0 , X4 = X

(2)
1 .

In the new notation, (20) is written

L(θ, r1, r2, z,X1 . . .X4) =
4∑

k=1

XkLk(θ, r1, r2, z).

(35)
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3.1. Least-Squares Method
for the Linear Model

The central values for the parameters of a bi-

nary model X
(1)
0 , X

(1)
1 , X

(2)
0 , and X

(2)
1 (with respect

to which the problem is linear) and r1, r2, and i
(with respect to which it is non-linear) are obtained
by obtaining a least-squares fit to the “observed”
light curve. We summarize briefly here elements of
the least-squares technique for linear and non-linear
models (see the following Section).

Consider the linear model specified by the function
f(θ, α1 . . . αP ), which depends linearly on the param-
eters α1 . . . αP :

f lin(θ, α1 . . . αP ) = g0 +
P∑

p=1

gp(θ)αp. (36)

We denote the true values of the physical parameters
α1 . . . αP , and the points at which observations are
made θ1 . . . θM (here, M is the total number of obser-
vational points). We also specify the set of random,
statistically independent observed values ξ1 . . . ξM ,
which have a normal distribution with the expecta-
tion values M(ξk) = f lin(θk, α1 . . . αP ) and disper-
sions σ2(ξm) = σ2

m; from now on, σ2(. . .) will de-
note the calculated dispersion. We define the residual
functional via the expression

Rlin(α1 . . . αP , ξ1 . . . ξM) (37)

=
M∑

m=1

[
ξm − f lin(θ, α1 . . . αP )

]2
wm

=
M∑

m=1

⎛
⎝ξm − g0 −

P∑
p=1

gp(θm)αp

⎞
⎠

2

wm

with the weights wm being inversely proportional to
the dispersions: wm = ε2

0/σ
2
m, where

ε2
0 =

σ2(Rlin(α1 . . . αP , ξ1 . . . ξM ))
M

is the dispersion for weights of unity. In the modeling,
ε0 is specified as an initial parameter; i.e. the value of
ε0 is specified a priori in the model calculations.

Let us find the values for αc
1 . . . αc

P that yield
a minimum in the residual functional for the fixed
ξ1 . . . ξM . The minimum condition (37) is equivalent
to the system of P linear equations

∂Rlin(α1 . . . αP )
∂αq

(38)

= 2
M∑

m=1

⎡
⎣ξm − g0 −

P∑
p=1

gp(θm)wmαp

⎤
⎦

× gq(θm)wm = 2Bq − 2
P∑

p=1

Aqpαp = 0,

q = 1 . . . P,

where

Aqp =
M∑

m=1

gq(θm)gp(θm)wm, (39)

Bq =
M∑

m=1

(ξm − g0)gq(θm)wm.

The solution for the system (38) is

αc
p =

P∑
q=1

A−1
qp Bq =

M∑
m=1

(ξm − g0)wm (40)

×
P∑

q=1

A−1
qp gq(θm), p = 1 . . . P.

Thus, the central values for the parameters
αc

1 . . . αc
P are expressed in terms of a linear combi-

nation of ξ1 . . . ξM , and so are normally distributed.
Their expectation values are α1 . . . αP , while the
dispersions are expressed in terms of the dispersions
ξ1 . . . ξM , in accordance with the addition of the dis-
persions of independent random values in quadrature:

σ2(αc
p) (41)

=
M∑

m=1

σ2(ξm)w2
m

⎛
⎝ P∑

q=1

A−1
qp gq(θm)

⎞
⎠

2

=
M∑

m=1

ε2
0wm

⎛
⎝ P∑

q=1

A−1
qp gq(θm)

⎞
⎠

2

.

Given the dispersion of the central value of a pa-
rameter, we can construct an interval within which
the true value of the parameter falls with a specified
probability. To this end, it is sufficient to notice that,
as follows from the normal distribution of the central
parameter,

P
(∣∣αc

p − ᾱp

∣∣ ≤ κσ(αc
p)

)
, (42)

where P denotes the probability of satisfying the con-
dition and κ depends on the chosen probability γ
(confidence level) and is determined as the root of the
equation √

2
π

κ∫
0

exp
(
− t2

2

)
dt = γ.
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For example, the confidence level γ is 0.6827, 0.9545,
and 0.9973 for κ = 1, 2, and 3, respectively (corre-
sponding to 1, 2, and 3σ).

When ε0 is unknown (e.g., in the case of a real
observed light curve), instead of using (41), the errors
are determined using a formula derived from (41) by
replacing ε0 with υ0, called the rms estimate for the
unity-weight dispersion [7]:

υ2
0 =

Rlin(αc
1 . . . αc

P , ξ1 . . . ξM)
M − P

. (43)

The resulting rms estimates for the dispersions are
specified by the formula

σ2
est(α

c
p) =

M∑
m=1

υ2
0wm

⎛
⎝ P∑

q=1

A−1
qp gq(θm)

⎞
⎠

2

. (44)

Here, υ0 is random, and (αc − ᾱ)/σest obeys a
Student’s distribution with M − P degrees of free-
dom. However, for sufficiently large M − P � 10,
this becomes close to a normal distribution, and
it can be assumed that P

(∣∣αc
p − ᾱp

∣∣ ≤ κσ(αc
p)

)
�

P
(∣∣αc

p − ᾱp

∣∣ ≤ κσest(αc
p)

)
.

3.2. Differential-Correction Method

Let us now consider a model specified by an arbi-
trary, in general, non-linear function f(θ, β1 . . . βP )
that is differentiatable with respect to β1 . . . βP .
β1 . . . βP , θ1 . . . θM , ξ1 . . . ξM , and the residual func-
tional are specified in the same way as for the linear
model: ξ1 . . . ξM display normal distributions and

M(ξk) = f(θk, β1 . . . βP ), σ2(ξm) = σ2
m, (45)

where M(ξk) denotes the expectation value for ξk, and
σ2(ξm) the dispersion of ξk. The residual functional
has the form

R(β1 . . . βP , ξ1 . . . ξM) (46)

=
M∑

m=1

(ξm − f(θ, β1 . . . βP ))2wm,

where wm = ε2
0/σ

2
m, and we obtain for the unity-

weight dispersion

ε2
0 =

σ2(R(β1 . . . βP , ξ1 . . . ξM))
M

. (47)

In the modeling, ε0 is specified as an initial parameter,
i.e., it is known a priori in the model calculations.

We denote βc
1 . . . βc

P to be the central values that
bring R(β1 . . . βP , ξ1 . . . ξM ) to a minimum for the
fixed ξ1 . . . ξM . Let β1,0 . . . βP,0 be some values for the
parameters that are close to their central values. We

expand the function f at the point β1,0 . . . βP,0 into
a Taylor series, retaining up to the first term:

f(θ, β1 . . . βP ) ≈ f(θ, β1,0 . . . βP,0)

+
P∑

p=1

(βp − βp,0)
∂f

∂βp
(θ, β1,0 . . . βP,0).

Further, we adopt in (36), and then in (39) and (40)

αp = βp − βp,0, g0 = f(θ, β1,0 . . . βP,0), (48)

gp(θ) =
∂f

∂βp
(θ, β1,0 . . . βP,0),

where p = 1 . . . P . The βp,0 + αp will then be the next
approximations for the central values of βc

1 . . . βc
P ,

while the dispersions calculated using (41) and (48)
for βp,0 = βc

p,

σ2(βc
p) =

M∑
m=1

ε2
0wm (41′)

×

⎛
⎝ P∑

q=1

A−1
qp

∂f

∂βq
(θm, β1,0 . . . βP,0)

⎞
⎠

2

are adopted as approximate values for the dispersions
βc

1 . . . βc
P .

In the case of a real observed light curve, similar to
the linear case, we use the rms estimate for the unity-
weight dispersion instead of ε0:

υ2
0 =

R(αc
1 . . . αc

P , ξ1 . . . ξM )
M − P

(43′)

and the corresponding rms estimates for the disper-
sions of the parameters:

σ2
est(β

c
p) =

M∑
m=1

υ2
0wm (44′)

×

⎛
⎝ P∑

q=1

A−1
qp

∂f

∂βq
(θm, β1,0 . . . βP,0)

⎞
⎠

2

.

It is obvious that, if f(θ, β1 . . . βP ) is a linear
function in β1 . . . βP , then (41′)–(44′) concide with
(41)–(44). Note that, in this method, the model is
assumed to provide an adequate desription of the
observational data.

3.3. Monte-Carlo Method

In our study, we have also estimated the disper-
sions σ(βc

1) . . . σ(βc
p) using the Monte-Carlo method.

For the specified β1 . . . βP , we calculated the val-
ues of ξ̄1 . . . ξ̄M at the phases θ1 . . . θM . We then
used the specified ε0 to randomly generate for N
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times a sequence of normally distributed ξ
(n)
1 . . . ξ

(n)
M

(n = 1 . . .N ) with mathematical expectations equal
to ξ̄1 . . . ξ̄M .

The central values for β
c(n)
1 . . . β

c(n)
P were found

for each sequence ξ
(n)
1 . . . ξ

(n)
M (n = 1 . . .N ), and their

dispersions estimated as

σ2
mc(β

c
p) =

1
N

N∑
n=1

(βc(n)
p − βp)

2. (49)

Naturally, this technique assumes that the true
values for β1 . . . βP are known, which is possible
in model problems aimed at determining errors for
comparison with those found using other techniques.
During the reduction of a real light curve, this method
can be applied using the central values for the pa-
rameters β1 . . . βP obtained from the least-squares
solution of the light curve, instead of their true values.
In doing this, we assume that a small variation of
β1 . . . βP will result in a relatively small variation of
the error. Like the differential-correction method, this
method assumes that the model provides an adequate
description of the observational data.

3.4. Confidence-Area Method

Let us now consider the residual R for the general
model specified by (46). Then, in accordance with the
χ2 distribution,

R(β̄1 . . . β̄P , ξ1 . . . ξM )
ε2
0

∼ χ2
M , (50)

where “∼” means “distributed as.” The integral dis-
tribution χ2

M is specified by the expression

χ2
m(t) =

Γ
(

m
2 , 0, t

2

)
Γ

(
m
2

) , (51)

where Γ
(

m
2 , 0, t

2

)
is the incomplete generalized

gamma function. Consequently, if χ2
M (∆0) = γ, i.e.,

∆0 is the quantile of the χ2
M distribution for some

confidence level γ < 1, then the corresponding prob-
ability is

P
(

R(β̄1 . . . β̄P , ξ1 . . . ξM )
ε2
0

≤ ∆0

)
= γ. (52)

Let DP be the P-dimensional set of values for the
vector β1 . . . βP satisfying the condition

R(β1 . . . βP , ξ1 . . . ξM)
ε2
0

≤ ∆0. (52′)

Then, (52) is equivalent to the statement that
the set DP is not empty with probability γ, and the

true values (β̄1 . . . β̄P ) ∈ D. The set D is the confi-
dence region for (β̄1 . . . β̄P ). Note that, in this case,
ε0 cannot be replaced by its rms estimate υ0 speci-
fied by (43′), since this would appreciably violate the
distribution law (50). In particular, a null confidence
region would not be obtained for the quantile ∆0 >
M − P (for M = 101, this corresponds to γ > 0.35);
i.e., the model would always be adequate to the ob-
servations. Therefore, either the exact known value
for ε0 must be taken, as in model problems, or a
value estimated with high accuracy from independent
considerations, as in the case of real observations.

Since, in practice, ε2
0 is not always known, a

criterion based on the Fisher distribution is often
used. Let M be the number of “normal” points
unifying the measurements in the group for their
subsequent averaging. Let ξm in the point θm be mea-
sured Nm times (m = 1 . . . M ); i.e., the mth group
contains Nm points. We denote the total number of
measurements as N : N =

∑M
m=1 Nm. Let ξj

m be the
jth measurement of the curve (j = 1, 2 . . . Nm) at
the point θm; i.e., ξj

m is a random value obeying a
normal distribution, and M(ξj

m) = f(θk, β1 . . . βP ).

Let ξm =
1

Nm

∑Nm
j=1 ξj

m; then the true dispersions

σ2(ξm) = σ2(ξj
m)/Nm, while (σobs

m )2 =
1

Nm(Nm − 1)
∑Nm

j=1(ξm − ξj
m)2 denotes the esti-

mates of the dispersions of the observations at these
points. Then,

R(β̄1 . . . β̄P , ξ1 . . . ξM )
M∑

m=1
(Nm − 1)wm(σobs

m )2

N − M

M
∼ FM,N−M , (53)

where FM,N−M is the Fisher distribution [5]. Its inte-
gral distribution function is

Fn,m(t) =
B nt

m+nt

(
n
2 , m

2

)
B

(
n
2 , m

2

) , (54)

where Bz

(
n
2 , m

2

)
is the incomplete beta function. The

procedure used to construct the confidence region for
(β̄1 . . . β̄P ) is similar to the previous case.

Let us now consider the case when the function f
depends linearly on K parameters β1 . . . βP (K ≤ P ),
for example, on β1 . . . βK . Let β̃1(βK+1 . . . βP ) . . .

β̃K(βK+1 . . . βP ) be the values that bring yield the
minimum residual R(β1 . . . βP , ξ1 . . . ξM ) for the fixed
βK+1 . . . βP , which, in this case, is quadratic in
β1 . . . βK . Then, according to [5],
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R(β̃1(β̄K+1 . . . β̄P ) . . . β̃K(β̄K+1 . . . β̄P ), β̄K+1 . . . β̄P , ξ1 . . . ξM )
ε2
0

∼ χ2
M−K (55)

and

R(β̃1(β̄K+1 . . . β̄P ) . . . β̃K(β̄K+1 . . . β̄P ), β̄K+1 . . . β̄P , ξ1 . . . ξM )
M∑

m=1
(Nm − 1)wmσ2

om

N − M

M − K
∼ FM−K,N−M . (56)

These statistics can be used to construct confidence
areas for β̄K+1 . . . β̄P .

In particular, we obtain for some k(1 ≤ k ≤ P )

R(β̃1(β̄k) . . . β̄k . . . β̃P (β̄k), ξ1 . . . ξM )
ε2
0

(57)

∼ χ2
M−P+1

and

R(β̃1(β̄k) . . . β̄k . . . β̃P (β̄k), ξ1 . . . ξM )
M∑

m=1
(Nm − 1)wmσ2

om

(58)

× N − M

M − P + 1
∼ FM−P+1,N−M ,

where β̃p(βk) and 1 ≤ p ≤ P , p �= k, minimize the
residual for the fixed βk . The relations (57) and (58)
can be used to construct one-dimensional confidence
regions (intervals) for βk with a specified confidence
level.

We will now find the distribution of the difference
between the residual for χ2

M statistics obtained with
the true parameter values and with their central val-
ues. Let us first consider the case of a linear depen-
dence on all parameters, so that, adopting K = P
in (55), we will derive the distribution for the residual
obtained for the central parameter values1 :

R(βc
1 . . . βc

P , ξ1 . . . ξM)
ε2
0

∼ χ2
M−P . (59)

We denote Rmin ≡ R(βc
1 . . . βc

P , ξ1 . . . ξM). Using the
well known statement (ξa ∼ χ2

a and ξb ∼ χ2
b) ⇒ ξa +

ξb ∼ χ2
a+b, we can obtain

R(β̄1 . . . β̄P , ξ1 . . . ξM) − Rmin

ε2
0

∼ χ2
P . (60)

The statistics (60) assume the a priori adequacy of
the model, and the confidence set obtained with these

1 Of course, the vectors βc and β̃ also depend on the observed
ξ; we omit this dependence for the sake of brevity.

statistics is never empty. We obtain from (55) and (59)
with K = P − 1

R(β̃1(β̄k) . . . β̄k . . . β̃P (β̄k), ξ1 . . . ξM ) − Rmin

ε2
0

∼ χ2
1.

(61)

The statistics (61) also suggest a priori adequacy
of the model, and one-dimensional confidence sets
(intervals) obtained using these statistics are never
empty.

If the dependence on β1 . . . βK is non-linear, the
above statements concerning the distributions (55),
(56), and the formulas (57)–(61) following from them
are fulfilled asymptotically, as the number of measure-
ments tends to infinity. One of the problems solved
here is the numerical verification of the acceptability
of these asymptotic approximations.

Note that, if the confidence set is not empty (the
model used is adequate to the observed curve), it
contains the point βc

1 . . . βc
P .

Let us also present the minimum residuals for the
parameters in geometrical terms. If we consider a
P-dimensional set

DP = {(β1 . . . βP ) : R(β1 . . . βP ) ≤ C},

then, the P − K-dimensional set

DP−K = {(βK+1 . . . βP ) : R(β̃1(βK+1 . . . βP ) . . .

β̃K(βK+1 . . . βP ), βK+1 . . . βP , ξ1 . . . ξM ) ≤ C}

is the projection of DP onto the P − K-dimensional
plane βK+1 . . . βP .

Since the projections of the confidence set are cal-
culated using the corresponding residuals minimized
with respect to all parameters except one, we can
find the probability that the true values lie within the
corresponding projections of the confidence region
constructed for the specified confidence level γ, given
the distributions of these minimum residuals.

If χ2
M (∆0) = γ and DP is the P-dimensional con-

fidence set with the confidence level γ, obtained using
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Table 1. γ′ for γ = 0.6827 for two-, three-, and four-
parameter problems

Statistics P = 2 P = 3 P = 4

χ2
P 0.8703 0.9396 0.9702

χ2
M , M = 101 0.7072 0.7309 0.7536

FM,N−M , M = 101, N = 1212 0.7046 0.7258 0.7464

the quantile ∆0 for the statistics (50), then its pro-

jections D
(p)
1 onto the βp axes, p = 1 . . . P are one-

dimensional confidence sets for the statistics (57)
with the confidence level

γ′ = χ2
M−P+1(∆0). (62)

(Recall that χ2
M (t) is specified by (51).) Further, if

χ2
P (∆0) = γ and DP is the P-dimensional confidence

set with the confidence level γ obtained using ∆0 for

the statistics (60), its projections D
(p)
1 onto the βp

axes, p = 1 . . . P are one-dimensional confidence sets
for the statistics (61) with the confidence level

γ′ = χ2
1(∆0). (63)

Finally, if FM,N−M(∆0) = γ and DP is the P-di-
mensional confidence set with the confidence level γ
obtained using ∆0 for the statistics (53), then its pro-

jections D
(p)
1 onto the βp axes, p = 1 . . . P are one-

dimensional confidence sets for the statistics (56)
with the confidence level

γ′ = FM−P+1,N−M

(
M

M − P + 1
∆0

)
, (64)

where the function Fn,m(t) is specified by (54).
This simulation demonstrates that (62)–(64) yield

satisfactory results, even in the non-linear case.
Table 1 presents the probability γ′ of the true value

lying within the projection of the region, given the
probability of its lying in the region itself, γ = 0.6827,
for one-, two-, three-, and four-parameter problems,
calculated using (62)–(64). Jumping ahead for a mo-
ment, we note that, as the simulation shows, the
number of cases when the true parameter values lie
within the projection of the region on the parameter
axis is perfectly consistent with the theoretical values
for γ′ presented in Table 1, in both the linear and non-
linear cases.

We present here the factors κ, by which the stan-
dard deviation σ should be multiplied [see (42)] in
order to obtain the projection of the confidence region
on the parameter axis, which is found for χ2

P statis-
tics under the condition that the confidence region
contains the true parameter value with probability

γ = 0.6827. These factors are 1.515173, 1.87796, and
2.17244 for the two-, three-, and four-parameter ar-
eas, respectively. Jumping ahead for a moment, we
note that the dispersions and projections of the con-
fidence region obtained in the simulation for the χ2

P
statistics are in good consistency with this rule. In
addition, in the case of multi-parameter problems, the
increase of the overlap probability for the projections
is the same for all parameters (Tables 2 and 3).

In Table 4 we present the quantile ∆0 for the
χ2

P distribution for one-, two-, three-, and four-
parameter problems for the confidence level γ =
0.6827.

Thus, for example, in one-dimensional problems,
to ensure that the confidence region overlaps with
the exact solution with the probability γ = 0.6827,
the values R(β1, ξ1 . . . ξM)/ε2

0 must be cut off at a
number exceeding the minimum value by unity.

3.5. Application of Error Determination Methods
to a Light Curve

Let us now consider a model of a binary light
curve. We used (35) to calculate the brightness from
the known r1, r2, z, and X1 . . .X4. The brightness
outside of eclipse Lfull was assumed to be known.
The total brightness of the binary was taken to be
Lfull = 1. Using this condition, we can express X4

in terms of the other parameters via (8) [taking into
account the new notation of (34)]:

X4 =
3

2πr2
2

− 3X1r
2
1

2r2
2

− X2r
2
1

r2
2

− 3
2
X3. (65)

Having substituted in (46)
P = 6 and β1 = r1, β2 = r2, β3 = z, (66)

β4 = X1, β5 = X2, β6 = X3,

f(θ, β1 . . . β6) = L(θm, r1, r2, z,X1 . . .X4),

we write the resulting residual functional
R(r1, r2, z,X1,X2,X3, ξ1 . . . ξM ) (67)

=
M∑

m=1

[ξm − L(θm, r1, r2, z,X1 . . .X4)]
2wm,

where X4 is specified by (65).
The central values of a parameter will be those

that yield the absolute minimum. We denote these
rc
1, rc

2, zc, and X c
1 , X c

2 , X c
3 . The dispersions of the

central values and their rms estimates can be found
by substituting (66) into (41′) and (44′).

The values X̃p(r1, r2, z, ξ1 . . . ξM ) that yield the
minimum residual for fixed r1, r2, z can be found by
adopting P = 3 and

g0 =
3

2πr2
2

L4(θm, r1, r2, z),
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Table 2. Half-widths of the projections of the confidence region of parameters of the linear functions (74)–(77) for the
χ2

P statistics and the number of agreements of these projections with the theoretical parameter values

Function ∆β1/2; (N∆β1) ∆β2/2; (N∆β2) ∆β3/2; (N∆β3) ∆β4/2; (N∆β4) N0

Formulа (74) 0.00119; (681) – – – - -

Formulа (75) 0.00282; (878) 0.00225; (868) – – 686

Formulа (76) 0.00353; (939) 0.00768; (944) 0.00149; (940) – 685

Formulа (77) 0.0910; (977) 0.0343; (969) 0.0119; (972) 0.0796; (976) 681

Table 3. Half-widths of the projections of the confidence region of parameters of the non-linear functions (78)–(81) for
the χ2

P statistics and the number of agreements of these projections with the theoretical parameter values

Function ∆β1/2; (N∆β1) ∆β2/2; (N∆β2) ∆β3/2; (N∆β3) ∆β4/2; (N∆β4) N0

Formulа (78) 0.00113; (682) – – – - -

Formulа (79) 0.0418; (870) 0.00169; (866) – – 668

Formulа (80) 0.0155; (943) 0.00603; (937) 0.00132; (942) – 697

Formulа (81) 0.00921; (962) 0.0126; (976) 0.00322; (969) 0.0132; (973) 702

g1(θk) = L1(r1, r2, z) − 3r2
1

2r2
2

L4(θm, r1, r2, z),

g2(θk) = L2(r1, r2, z) − r2
1

r2
2

L4(θm, r1, r2, z),

g3(θk) = L3(r1, r2, z) − 3
2
L4(θm, r1, r2, z)

in (36), (39), and (40). Then

X̃ (r1, r2, z, ξ1 . . . ξM ) (68)

= A−1(r1, r2, z)B(r1, r2, z, ξ1 . . . ξM ).

Let us denote the minimum residuals with respect
to X1, X2, X3 as

R̃(r1, r2, z, ξ1 . . . ξM ) = R(r1, r2, z, X̃1(r1, r2, z),

X̃2(r1, r2, z), X̃3(r1, r2, z), ξ1 . . . ξM )

(the dependence of X̃ (r1, r2, z, ξ1 . . . ξM ) on ξ1 . . . ξM

is omitted for the sake of brevity). According to (55)
and (56),

R̃(r1, r2, z, ξ1 . . . ξM )
ε0

∼ χ2
M−3 (69)

and

R̃(r1, r2, z, ξ1 . . . ξM )
M∑

m=1
(Nm − 1)wm(σobs

m )2

N − M

M − 3
(70)

∼ FM−3,N−M .

Also, similar to (60), we obtain asymptotically

R̃(r1, r2, z, ξ1 . . . ξM ) − Rmin

ε0
∼ χ2

3. (71)

The minimization with respect to r1, r2, z is carried
out using a minimization technique for non-linear
functions, such as the gradient-descent technique. To
this end, it is convenient to have expressions for the
derivatives of X̃ (r1, r2, z) with respect to r1, r2, z.
We denote these ∂1, ∂2, ∂3, respectively, and they are
equal to

∂kX̃ =
(
∂kA

−1
)
B + A−1∂kB, k = 1, 2, 3.

Table 4. ∆0 quantile of the χ2
P distribution for one-, two-,

three-, and four-parameter problems for the confidence
level γ = 0.6827

Number of parameters P ∆0

1 1.0000

2 2.2957

3 3.5267

4 4.7195
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Using the relation2

∂kA
−1 = −A−1(∂kA)A−1

and (68), we obtain

∂kX̃ = A−1
[
−(∂kA)X̃ + ∂kB

]
, (72)

k = 1, 2, 3.

The residual functional can also be easily differenti-
ated using this last relation.

We now present a geometrical interpretation of
the minimum residuals with respect to some of the
parameters. If the set

D = {(r1, r2, z,X1,X2,X3)
: R(r1, r2, z,X1,X2,X3) ≤ ∆0}

(where “:” means “such that”), then the set

Dr1r2z = {(r1, r2, z) : R̃(r1, r2, z) ≤ ∆0}
is the projection of D on the three-dimensional r1r2z
hyperplane, and

Dr1 = {r1 : R̃(r1, r̃2(r1), z̃(r1)) ≤ ∆0} (73)

(where r̃2(r1), z̃(r1) are the values of r2 and z at which
the function R̃(r1, r2, z) reaches its minimum for a
fixed r1)—this is the projection of Dr1r2z (and D) onto
the r1 axis.

4. SIMULATION AIMED AT ESTIMATING
THE RELIABILITY

OF THE METHODS OF DIFFERENTIAL
CORRECTIONS

AND CONFIDENCE AREAS

Before find the solution of the observed light curve,
we tested the error-estimation methods using a set
of simple functions. We used one-, two-, three-, and
four-parameter functions with both linear (74)–(77)
and non-linear (78)–(81) dependences on the param-
eters.

The simulations, used the linear functions

f(θ, β1) = cos θ + β1 sin θ, (74)

where the true value for β̄1 = 2,

f(θ, β1, β2) =
β1

1 + θ2
+ β2 sin θ, (75)

where the true values for β̄1 = 2 and β̄2 = 3,

f(θ, β1, β2, β3) =
β1

1 + θ2
+ β2 sin θ + β3e

θ, (76)

2 Obtained by differentiating the identity AA−1 = I, where I is
the unit matrix.

where the true values for β̄1 = 2, β̄2 = 3, and β̄3 = 1,
and

f(θ, β1, β2, β3, β4) (77)

=
β1

1 + θ2
+ β2 sin θ + β3e

θ + β4 cos θ,

where the true values for β̄1 = 1, β̄2 = 1, β̄3 = 1, and
β̄4 = 1.

We used the non-linear functions differentiable
with respect to the parameters

f(θ, β1) = cos(θ + β1) + sin β1θ, (78)

where the true value for β̄1 = 2,

f(θ, β1, β2) =
1

β1θ2 + β2
+ sinβ2θ, (79)

where the true values for β̄1 = 2 and β̄2 = 3,

f(θ, β1, β2, β3) (80)

=
1

β1θ2 + β2
+ sin(β2θ + β3) + eβ3θ,

where the true values for β̄1 = 2, β̄2 = 3, and β̄3 = 1,
and

f(θ, β1, β2, β3, β4) =
1

β1θ2 + β2
(81)

+ sin(β2θ + β1 − 1) + eβ3θ + cos(β4θ + β3 − 1),

where the true values for β̄1 = 1, β̄2 = 1, β̄3 = 1, and
β̄4 = 1.

In the numerical simulations, the true values
of the functions ξ̄1 . . . ξ̄101 were derived at points
θ1 . . . θ101 uniformly distributed in the interval [0, 2]
of the x axis for specified true values of β̄1, β̄2, β̄3,
and β̄4. A sample of normally distributed random
values ξm (m = 1 . . . 101) was generated, so that
σ(ξm) = σm = 0.03/

√
12 = 0.008660 and M(ξm) =

ξ̄m. The generation of the ξ1 . . . ξ101 was carried
out as follows. A sample of normally distributed
random values ξj

1 . . . ξj
101 was first generated for

j = 1 . . . 12, so that M(ξj
m) = ξ̄m and σ(ξj

m) = 0.03,

m = 1 . . . 101. Further, the values ξm =
1
12

∑12
j=1 ξj

m

were calculated. In addition, we calculated (σobs
m )2 =

1
12(12 − 1)

∑12
j=1(ξm − ξj

m)2, for use in determining

the Fisher statistics. Accordingly, M = 101, wm =
Nm = 12, and ε0 = 0.03 were adopted in (45), (46),
and (53) (in this case, the standard deviation σ(ξm) =
σm = 0.03/

√
12 = 0.008660). We call this procedure

“perturbing” a function, and the sample ξj
1 . . . ξj

101

used to obtain ξm and σobs2
m the “perturbed” curve.

This technique for generating the perturbed func-
tion is equivalent having M = 101 perturbed points
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with standard deviation σm = 0.008660, where m =
1 . . . 101. The above method for obtaining the per-
turbed light curve is used when applying Fisher
statistics, where the points must be divided into
groups. The method for generating the perturbed
curve makes it possible to search for the parameter
values by applying Fisher and χ2 statistics to the
same realization of the perturbed curve, which is
essential for the purity of the simulation conditions.
With this generation method, the dimension of the
χ2 statistics was M = 101, while that for the Fisher
statistics was F101,1212−101.

Further, we calculated the central parameter val-
ues and the error intervals. We also calculated the
number of cases when the interval encompassed the
true parameter values, as an estimate of the reliability
of the methods used to calculate the error intervals.

Since the central parameter values of (74)–(77)
essentially coincide with the true values, we do not
present these central values here, to avoid diverting
attention from the main results of the calculations
(the error intervals). The error intervals are given
at the γ = 68.2% confidence level, unless otherwise
indicated.

4.1. Differential-Correction Method

We obtained the central values for βc
1, βc

2, βc
3, and

βc
4 and, based on (41′), estimates for the standard

deviations (rms errors) σ(βc
1), σ(βc

2), σ(βc
3), and σ(βc

4)
for both the linear functions (74)–(77) and the non-
linear functions (78)–(81). Tables 5 and 6 present
these results.

In addition, we tested the reliability of the error
intervals for βc

1 ± σ(βc
1), βc

2 ± σ(βc
2), βc

3 ± σ(βc
3), and

βc
4 ± σ(βc

4), estimated as follows. The above pertur-
bation was carried out a thousand times for each
function with ε0 = 0.03. We obtained the solution for
each perturbed function—the central values for βc

1,
βc

2, βc
3, and βc

4. Further, we calculated the number
of cases (N1), (N2), (N3), and (N4) when the true
values of β̄1, β̄2, β̄3, and β̄4 fell in the error intervals
βc

1 ± σ(βc
1), βc

2 ± σ(βc
2), βc

3 ± σ(βc
3), and βc

4 ± σ(βc
4).

The number of simultaneous coincidences of the error
intervals and parameters Nall was also calculated.

4.2. Monte-Carlo Method

A similar numerical simulation for (74)–(81) was
carried out using the Monte-Carlo method. N =
1000 perturbations of the function were made. For

each perturbed function, the central values of β
c(n)
1 ,

β
c(n)
2 , β

c(n)
3 , and β

c(n)
4 were found (n = 1 . . .N ) and

their dispersions estimated using (49).

As in the previous case, we calculated the num-
ber of cases when the error intervals β̄c

1 ± σmc(βc
1),

β̄c
2 ± σmc(βc

2), β̄c
3 ± σmc(βc

3), and β̄c
4 ± σmc(βc

4) en-
compassed random realizations of the central values
of βc

1, βc
2, βc

3, and βc
4.

In addition, we checked how well the distributions
of the central values of βc

1, βc
2, βc

3, and βc
4 coincided

with a normal distribution for the non-linear relations
(74)–(77) (in the case of a linear dependence, this
coincidence is exact). To this end, in addition to the
number of cases when the true parameter values fell
within the σmc half-width interval, we also calculated
the number of cases when the true values fell within
the 1.5σmc, 2σmc, and 3σmc half-width intervals, for
which the probabilities of coincidence for a normal
distribution are 0.8664, 0.9545, and 0.9973, respec-
tively. To avoid overburdening the article with exces-
sive tables, we do not present here these numbers of
coincides; however, they were as close to the theoret-
ical probabilities as for σmc (see Table 8 below). This
provides evidence that the distribution of the central
parameter values is also close to normal in the non-
linear case (due to the small “observational errors”).

Tables 7 and 8 present the results for the numerical
simulations of the estimated reliability of the error
intervals for analytical functions with linear and non-
linear dependences on the parameters, respectively.

4.3. Confidence-Area Method

We carried out a similar analysis using the
confidence-area method. The confidence areas were
constructed based on χ2

P statistics (where P is the
number of unknown parameters of the problem),
χ2

M statistics (where M is the total number of
points in the curve) and Fisher statistics FM,N−M .
In contrast to the differential-correction technique,
the confidence-area method not only can be used
to calculate confidence intervals for the parameters,
but, in some cases, also enables verification of the
adequacy of the model to the observational data.

The perturbed curves ξj
1 . . . ξj

101 for (74)–(81) were
obtained in the x-axis interval [0, 2]. The error in-
tervals [βmin

p , βmax
p ](p = 1 . . . 4) were then sought for

using the confidence-area method. The intervals were
calculated as projections of the confidence area ob-
tained using χ2

P , χ2
M , or FM,N−M statistics via the

solution of the corresponding inequality in β1, β2, β3,
and β4, on the coordinate axes β1, β2, β3, and β4.

To underscore these results, we present here the
half-widths of the projections of the confidence area
∆βp/2 = (βmax

p − βmin
p )/2 rather than the limits of the

interval βmin
p and βmax

p .
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Table 5. Standard deviations (rms errors) for the parameters of the linear functions (74)–(77) and the number of cases
when they encompass the true values, obtained with the differential-correction method

Function σ(βc
1); (N1) σ(βc

2); (N2) σ(βc
3); (N3) σ(βc

4); (N4) Nall

Formulа (74) 0.00111; (696) – – – –

Formulа (75) 0.00186; (686) 0.00148; (675) – – 527

Formulа (76) 0.00188; (666) 0.00409; (691) 0.000793; (684) – 485

Formulа (77) 0.0418; (669) 0.0158; (659) 0.00548; (665) 0.0366; (670) 606

Table 6. Standard deviations (rms errors) for the parameters of the non-linear functions (78)–(81) and the number of
cases when they encompass the true values, obtained with the differential-correction method

Function σ(βc
1); (N1) σ(βc

2); (N2) σ(βc
3); (N3) σ(βc

4); (N4) Nall

Formulа (78) 0.00115; (697) – – – - -

Formulа (79) 0.0276; (683) 0.00112; (676) – – 469

Formulа (80) 0.0837; (695) 0.00313; (673) 0.00068; (677) – 587

Formulа (81) 0.00412; (676) 0.00555; (679) 0.00143; (679) 0.00596; (687) 534

Table 7. Standard deviations (rms errors) for the parameters of the linear functions (74)–(77) and the number of cases
when they encompass the true values, obtained with the Monte-Carlo method

Function σmc(βc
1); (N1) σmc(βc

2); (N2) σmc(βc
3); (N3) σmc(βc

4); (N4)

Formulа (74) 0.00114; (691) – – –

Formulа (75) 0.00154; (689) 0.00128; (683) – –

Formulа (76) 0.00182; (674) 0.00394; (675) 0.000769; (672) –

Formulа (77) 0.0430; (684) 0.0161; (692) 0.00563; (692) 0.0376; (682)

Table 8. Standard deviations (rms errors) for the parameters of the non-linear functions (78)–(81) and the number of
cases when they encompass the true values, obtained with the Monte-Carlo method

Function σmc(βc
1); (N1) σmc(βc

2); (N2) σmc(βc
3); (N3) σmc(βc

4); (N4)

Formulа (78) 0.00113; (670) – – –

Formulа (79) 0.0277; (684) 0.00108; (700) – –

Formulа (80) 0.0818; (680) 0.00317; (689) 0.000689; (673) –

Formulа (81) 0.00415; (681) 0.00563; (677) 0.00146; (691) 0.00605; (687)

As in the previous cases, we estimated the reliabil-
ity of the half-width of the projection of the confidence
area ∆β1/2, ∆β2/2, ∆β3/2, and ∆β4/2 by calculating
N∆β1 , N∆β2 , N∆β3 , and N∆β4—the numbers of cases
when the obtained intervals [βmin

p , βmax
p ] (p = 1 . . . 4)

encompassed the true value β̄p. In total, one thou-
sand trials were made. In addition to calculating the
number of coincidences between the true values and

the projection area, we also calculated the numbers of
coincides of the confidence area itself, N0. The results
are presented below.

4.4. χ2
P Statistics

The error intervals were calculated as projections
of the confidence area obtained using (60) via the
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solution of the corresponding inequality for β1, β2, β3,
and β4 along the β1, β2, β3, and β4 axes.

For example, for a two-parameter function, the
confidence area is elliptical (Fig. 2). The “projection
of the confidence area” is the projection of this ellipse
onto the corresponding parameter axes—in this case,
the β1 and β2 axes.

Note that the adequacy of the model to the ob-
servational data is not verified when calculating the
confidence area based on χ2

P statistics; the model is
initially assumed to be adequate. Since the quan-
tile ∆0 is plotted from the minimum residual Rmin
[see (60)], the half-width of the confidence-interval
projection is stable (in contrast to the case of χ2

M
statistics, where M is the total number of points on
the curve).

Tables 2 and 3 present the confidence-area pro-
jections for the parameters βp for (74)–(77) and
(78)–(81), based on χ2

P statistics, and the number
of cases when the resulting confidence intervals
encompassed the true parameter values. If we require
that the probability that the value for the exact
solution lies within the projected confidence area be
γ′ = 68.2%, the probability that the exact solution
is encompassed by the entire confidence area will
be γ < 68.2% (γ ∼ 50%). At the same time, the
projections of the confidence intervals indicated in
Tables 2 and 3 guarantee that the confidence area
will encompass the exact solution with a probability
of γ = 68.2%. This situation is similar to that for the
differential-correction method.

In practice, the cross section for an unknown pa-
rameter is often calculated, rather than the projection
of the confidence area onto the parameter axis. To
determine the reliability of this parameter-estimation
method, we also calculated these cross sections and
the number of cases when a cross section encom-
passed the true parameter value based on χ2

P statis-
tics for both the linear function (75) and a more cor-
related function of the parameters β1 and β2:

f(x, β1, β2) = β1x + β2x
2. (82)

For (75), the half-widths of the cross sections of
β1 and β2 were Sβ1/2 = 0.003289 (739) and Sβ2/2 =
0.002627 (750) (the number of coincidences of the
true values and the cross section is given in paren-
theses). For (82), the half-width of the cross sec-
tions for β1 and β2 were Sβ1/2 = 0.001747 (307) and
Sβ2/2 = 0.001122 (311); the projection and the num-
ber of coincidences with the true values were ∆β1/2 =
0.006989 (874) and ∆β2/2 = 0.0044896 (879). It is
obvious that the size of the cross section and the
number of coincidences with the true values depend
on the degree of correlation between the parameters,
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Fig. 2. Confidence area for the parameters β1 and β2

of the function f(θ, β1, β2) = 1
β1θ2+β2

+ sin β2θ con-

structed based on χ2
P statistics (the smaller ellipse) and

χ2
M statistics (the larger ellipse). The dotted squares

show parallelepipeds containing the confidence areas;
their size is specified by projections of the confidence area
onto the β1 and β2 axes. The solid square shows the
parallelepiped corresponding to the differential correction
method and Monte Carlo method.

while the projection of the confidence area onto the
parameter axes and the numbers of coincidences with
the corresponding true values are independent of the
degree of correlation between the parameters.

The meaning of the projections of the confidence
areas presented in Tables 2 and 3 (and in the other
tables considered below) is as follows. The true pa-
rameter values are guaranteed to simultaneously all
lie within the projected confidence area with a proba-
bility of γ = 68.2%, and to lie within the parallelepiped
corresonding to the confidence area itself with some
probability γ > 68.2%.

4.5. χ2
M Statistics

A similar numerical experiment was also carried
out based on χ2

M statistics. The intervals were calcu-
lated as projections of the confidence areas obtained
using the statistics (50), which is the solution of the
inequality (52′) for β1, β2, β3, and β4 on the β1, β2, β3,
and β4 axes.

Tables 9 and 10 present the half-widths of the
projected confidence areas ∆β1/2, ∆β2/2, ∆β3/2, and
∆β4/2. Recall that the selected confidence level is
γ = 68.2%.
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Fig. 3. Experimentally obtained histogram for the density of the distribution of the half-width of the confidence interval ∆β1/2

of the function f(θ, β1) = cos(θ + β1) + sin β1θ. The intervals were obtained for χ2
M statistics as a result of 104 trials; N is

the number of values of the confidence-interval half-widths ∆β1/2 falling on the corresponding step of the histogram.

In contrast to the χ2
P distribution and differential-

correction method, the confidence area depends on
the specific realization of the perturbed ξj

1 . . . ξj
101

curve. Figure 3 presents the experimentally obtained
density histogram for the distribution of the half-
width of the confidence interval ∆β1/2 for the one-
parameter function obtained as a result of 104 trials
using (74).

The histogram displays two pronounced maxima.
The first maximum is associated with errors of the first
type, when the correct solution is rejected with the
probability α = 1 − γ; i.e., there is no error interval.
The second maximum of the histogram displays the
density distribution for the error intervals. The con-
fidence intervals vary by a factor of seven to eight.
Therefore, we present the half-width of the interval
in the vicinity of the second maximum of its density
distribution.

Tables 9 and 10 present the projected confidence
areas for the parameters βp of (74)–(77) and (78)–
(81) for the χ2

M statistics, together with the numbers
of coincidences with the true values. These areas are
approximately twice those for the χ2

P statistics.

4.6. Fisher Statistics FM,N−M

We also carried out analogous numerical simu-
lations for the Fisher statistics FM,N−M . The error
intervals were calculated as projections of the confi-
dence areas obtained using (53), which represents the
solutions for the corresponding inequalities in β1, β2,
β3, and β4 on the β1, β2, β3, and β4 coordinate axes.

Tables 11 and 12 present the projected confidence
area for the parameters βp of (74)–(77) and (78)–(81)

obtained for the FM,N−M statistics, together with
the number of coincidences with the true parameter
values.

4.7. Analysis of the Results

First and foremost, we note that, even in the case
of the linear (74) and non-linear (78) one-parameter
problem, the error-interval half-width obtained us-
ing the differential-correction and confidence-area
methods with χ2

M and FM,N−M statistics do not
coincide. The error-interval half-width ∆β1 for χ2

M
and FM,N−M statistics can exceed the error interval
σ(βc

1) for β1 obtained using the differential-correction
method by up to a factor of ∼7−10. In the case
of the one-parameter problems (74) and (78), the
error-interval half-widths for βp obtained using the
confidence-area method with χ2

P statistics are very
close to those obtained for the differential-correction
method and the Monte-Carlo technique. However, in
the case of analyses with two or more parameters, the
projections of the confidence areas onto the parameter
axes βp differ by factors of ∼1.5−2. The probability of
encompassing the true value exceeds 68%.

As the numerical simulations showed, the half-
widths of the error intervals for unknown parameters
depend on the selected statistics and the a priori infor-
mation about the model used. The methods perform
similarly in the sense that the number of cases when
the exact solution falls within the confidence area
corresponds to the specified probability γ.

The half-width of the error intervals in the
differential-correction method (σ(βc

p)) and Monte-
Carlo method (σmc(βc

p)) are very close. In the
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Table 9. Half-widths of the projected confidence areas for the parameters of the linear functions (74)–(77) for χ2
M

statistics and the number of coincidences with the theoretical parameter values

Function ∆β1/2; (N∆β1) ∆β2/2; (N∆β2) ∆β3/2; (N∆β3) ∆β4/2; (N∆β4) N0

Formulа (74) 0.00344; (674) – – – –

Formulа (75) 0.00915; (688) 0.00702; (694) – – 673

Formulа (76) 0.00508; (740) 0.0110; (738) 0.00215; (739) – 684

Formulа (77) 0.2174; (726) 0.0820; (728) 0.0284; (727) 0.1900; (725) 674

Table 10. Half-widths of the projected confidence areas for the parameters of the non-linear functions (78)–(81) for χ2
M

statistics, and the number of coincidences with the theoretical parameter values

Function ∆β1/2; (N∆β1) ∆β2/2; (N∆β2) ∆β3/2; (N∆β3) ∆β4/2; (N∆β4) N0

Formulа (78) 0.00354; (663) – – – - -

Formulа (79) 0.116; (707) 0.00436; (700) – – 680

Formulа (80) 0.437; (718) 0.00159; (729) 0.00343; (723) – 676

Formulа (81) 0.0160; (746) 0.0220; (745) 0.00560; (746) 0.0229; (747) 680

Table 11. Half-widths of the projected confidence areas for the parameters of the linear functions (74)–(77) for Fisher
distribution FM,N−M , and the number of coincidences with the theoretical parameter values

Function ∆β1/2; (N∆β1) ∆β2/2; (N∆β2) ∆β3/2; (N∆β3) ∆β4/2; (N∆β4) N0

Formulа (74) 0.00294; (692) – – – - -

Formulа (75) 0.00746; (705) 0.00578; (706) – – 685

Formulа (76) 0.00420; (728) 0.0093; (729) 0.00189; (730) – 687

Formulа (77) 0.1733; (753) 0.0677; (752) 0.0200; (752) 0.134; (753) 688

Table 12. Half-widths of the projected confidence areas for the parameters of the non-linear functions (78)–(81) for the
Fisher distribution FM,N−M , and the number of coincidences with the theoretical parameter values

Function ∆β1/2; (N∆β1) ∆β2/2; (N∆β2) ∆β3/2; (N∆β3) ∆β4/2; (N∆β4) N0

Formulа (78) 0.00315; (693) – – – - -

Formulа (79) 0.099; (700) 0.00432; (700) – – 678

Formulа (80) 0.391; (723) 0.00140; (725) 0.00301; (723) – 679

Formulа (81) 0.0114; (749) 0.0192; (750) 0.00485; (749) 0.0193; (750) 680

confidence-area method, the half-width of the error
interval increases with the uncertainties in the data.
For example, when χ2

P statistics are used (where P
is the number of parameters), the model is initially
assumed to be adequate to the observational data,
and the dispersion of the data to be known a priori.

In general, the adequacy of a model is taken to
be demonstrated if the reduced χ2

M for the minimum

residual—χ2
M/(M − P ), where M is the number of

data points and P the number of parameters—is close
to unity (see, for example, [2–4]). If the reduced χ2

M

appreciably exceeds unity, this means that the min-
imum residual is too high; i.e., there are substan-
tial systematic deviations between the observed and
best-fit theoretical light curves, providing grounds
to consider the model inadequate. In this case, it is
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Fig. 4. Use of the differential-corrections technique.
The linear function f(θ, β1, β2) = β1

1+θ2 + β2 sin θ is con-
structed with the parameters β1 − σ and β2 − σ, β1 and
β2, and β1 + σ and β2 + σ. The random scatter of the
points conforms to Gaussian statistics with σteor = 0.03.
The values β1 = 2.0000 ± 0.001600 and β2 = 2.9991 ±
0.001278 were adopted. The “error corridor” correspond-
ing to the boundaries of the confidence intervals for the
parameters is shown (the curves nearly merge).

not correct to estimate the confidence intervals for
the parameters using χ2

P statistics (the same is also
true for the differential-correction and Monte-Carlo
methods).

The assumption a priori of a model’s adequacy
unifies the calculation of the errors in the parameters
βp using χ2

P statistics and the differential-correction
and Monte-Carlo methods. In one-parameter prob-
lems, the error-interval half-width ∆β1/2 obtained
using χ2

P statistics is very close to the errors for
the differential-correction and Monte-Carlo methods
(Tables 2–8). In multi-parameter problems, the pro-
jection of the confidence area onto the corresponding
βp axes differs from the error-interval half-width cal-
culated using the differential-correction and Monte-
Carlo methods by a factor of ∼1.5−2. The probability
of encompassing the exact solution increases above
that specified by γ. As was already noted, if we require
that the probability of the projections encompassing
the exact solution be γ′ = 68.2%, the projected con-
fidence area roughly coincide with the standard rms
deviations; however, there is no guarantee that the
exact solution lies within the confidence area with the
specified probability γ = 68.2% (the real probability
for this is γ < 68.2%).

When χ2
M statistics (where M is the number of

values of the “perturbed” function) and Fisher statis-
tics FM,N−M are used, then the confidence areas
for the parameters are calculated and the adequacy
of the model is also checked. One distinguishing
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Fig. 5. Use of the confidence-area method with χ2
M

statistics. The linear function f(θ, β1, β2) = β1
1+θ2 +

β2 sin θ, constructed with the parameters β1 − σ and
β2 − σ, β1 and β2, and β1 + σ and β2 + σ, is presented.
The random scatter of the points conforms to Gaussian
statistics with σteor = 0.03. The values β1 = 2.0000 ±
0.01083 and β2 = 2.9991 ± 0.008798 were adopted. The
“error corridor” corresponding to the boundaries of the
confidence intervals for the parameters is shown.

feature of this method for calculating the error in-
terval (confidence area) is that the confidence ar-
eas depend on the specific realization of the per-
turbed curve ξj

1 . . . ξj
101. The confidence areas ob-

tained for χ2
M and FM,N−M statistics varies (in con-

trast to the differential-correction, Monte-Carlo, and
confidence-area methods with χ2

P statistics). For ex-
ample, Fig. 3 presents the distribution of confidence
areas in the one-parameter case. The area corre-
sponding to the maximum of the histogram exceeds
the error intervals for the differential-correction and
Monte-Carlo methods by, on average, a factor of ∼5,
and the confidence intervals for χ2

P statistics by a
factor of ∼3 (Fig. 2).

Figure 4 presents graphs for the two-parameter
linear function (75) constructed for the parameter
β̄c

1 − σ(βc
1) and β̄c

2 − σ(βc
2), β̄c

1 and β̄c
2, and β̄c

1 + σ(βc
1)

and β̄c
2 + σ(βc

2), which form the so-called “error
corridor.” When the differential-correction method
is used, about half of the ξj

1 . . . ξj
101 points of the

“perturbed” function fall away from the error corri-
dor. At the same time, in the error corridor formed
by (75) for the confidence-area method with χ2

M

statistics and the parameter values β̄c
1 − ∆(βc

1)/2
and β̄c

2 − ∆(βc
2)/2, β̄c

1 and β̄c
2, and β̄c

1 + ∆(βc
1)/2

and β̄c
2 + ∆(βc

2)/2 (where β̄c
p is the value of the

middle of the interval [βmin
p ;βmax

p ]), the vast majority
of the points lie within the error corridor (Fig. 5).
This explains why model-fitting results obtained by
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different authors who have estimated the errors using
the differential-correction method are often inconsis-
tent. The confidence-area method yields more reliable
estimates for the parameter errors.

Returning to the reliability of the error-interval
half-widths, we note that, in the differential-
correction method, the number of simultaneous coin-
cides of all the error intervals by their parameters Nall

is appreciably lower (by ∼20%) than the probability
γ (Tables 5 and 6). On the other hand, the number
of coincidences with the individual error intervals
β̄c

p ± σ(βc
p) corresponds to the probability γ in this

method. In the confidence-area method, the number
of coincidences with the indicated projections exceeds
the probability γ; however, it is guaranteed that all the
true parameter values will simultaneously lie in the
confidence area with the probability γ, and lie within
the encompassing parallelepiped with a probability
exceeding γ.

Thus, in the confidence-area method, the number
of coincidences N0 of the true parameter values with
the confidence area always corresponds to the sug-
gested probability (Tables 2–12), whereas the num-
ber of coincidences with the projected confidence area
appreciably exceeds the probability γ. It is clear from
the simulation results that the error-interval half-
widths obtained for the confidence-area method are
more reliable than those obtained for the differential-
correction and Monte-Carlo methods.

Note that non-linearity in the parameters results
in asymmetry of the confidence area about the central
value, whereas, in the linear case, the area is strictly
symmetrical about the βp axes.

5. FITTING OF THE OBSERVED LIGHT
CURVE OF THE BINARY SYSTEM YZ Cas

5.1. Six-Parameter Problem

Here, we analyze the normalized light curve of the
eclipsing binary YZ Cas in the red filter (λ = 6700 Å)
taken from the study of Kron [8]. The observed light
curve ξ1 . . . ξ42 consisted of M = 42 points. The dis-
persion for each point in the observed light curve was
taken to be (σobs

m )2 = 1.77 × 10−6 [3] on a magni-
tude scale; in our intensity scale, taking into account
the fact that Lfull = 1, (σobs

m )2 = 1.5015 × 10−6. The
central value for each point of the light curve was
also obtained by averaging Nm = 12 points for m =
1 . . . 42 [6, 8].

We obtained a least-squares fit of the total light
curve for all six parameters, yielding the central values
for the parameters r1 = 0.14408, r2 = 0.07556, i =
88.27◦, X1 = 3.927, X2 = 2.696, and X3 = 10.703.
We obtained the rms estimates for the dispersions us-
ing the differential-correction method with (44′). The
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Fig. 6. Primary minimum of the normalized light curve
of the detached binary YZ Cas. The points indicate the
observed brightnesses from [8]; the solid curve represents
the best-fit theoretical light curve obtained using our
procedure. The corresponding parameters are presented
in Table 13.
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Fig. 7. Same as Fig. 6 for the secondary minimum.

rms dispersion of the unity-weight υ0 = 0.003422904
was estimated using (43′). The confidence-area
method with Fisher statistics minimized with re-
spect to the linear parameters (70) yielded the one-
dimension projections of the confidence areas at the
confidence level γ = 0.6827. For example, this pro-
jection for r1 is specified by (73); i.e., it is the solution
of this inequality. Accordingly, these projections were
calculated as follows: the residual (70) was minimized
with respect to two non-linear parameters, and the
resulting value, which depends on the one remaining
non-linear parameter (alternately taken to be r1, r2,
and i), was set equal to the quantile (i.e., two roots of
the corresponding equation were determined). These
results are given in Table 13.

Since an analysis using χ2
P and χ2

M statistics re-
quires the unity-weight dispersion ε0, which is not
known exactly beforehand, we studied a model binary
system in which the phases θ1...θ42 coincided with
those of the observed light curve of the YZ Cas.
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Table 13. Photometric elements of YZ Cas derived here from the light curve at λ = 6700 Å

Method r1 r2 i

Differential corrections (σest) 0.14408± 0.00023 0.07556± 0.00038 88.27◦ ± 0.090◦

Confidence intervals, statistics 0.1441± 0.0021 0.07547± 0.0012 88.36 ± 0.5225
FM−3,N−M (γ = 68.2%)

Table 14. Photometric elements of the model binary YZ Cas

Method r1 r2 i

Differential corrections (σ) 0.14422± 0.00023 0.07557± 0.00038 88.28◦ ± 0.091◦

Monte-Carlo (σ) 0.14422± 0.00023 0.07557± 0.00038 88.28± 0.085

Confidence intervals, 0.14450± 0.00043 0.07579± 0.00073 88.17 ± 0.17
statistics χ2

3 (γ = 68.27%)

Confidence intervals, 0.14448± 0.0012 0.07564± 0.0019 88.19 ± 0.46
statisticsа χ2

M−3 (γ = 68.27%)

Table 15. Photometric elements of YZ Cas derived from the light curve at λ = 6700 Å by other authors

Reference r1 r2 i

[8] 0.1443± 0.00046 0.0756± 0.00015 88.18◦ ± 0.057◦

[10] 0.1428 0.0763 88.11

[11] 0.14478± 0.00021 0.07580± 0.00042 88.617± 0.038

[12] 0.1454 ± 0.0009 0.0753± 0.0003 88.47± 0.01

[13] 0.151 ± 0.002 0.0779± 0.006 87.1 ± 0.3

[14] 0.144 0.0780 89.22

[15] 0.1466 0.080 88.4

[16] 0.145 ± 0.005 0.076 ± 0.001 88.25 ± 0.1

[17] 0.1442± 1% 0.0767± 1% 88.3 ± 0.2

The true values of the binary parameters were taken
to be equal to the central values obtained from the
fit of the observed light curve: r̄1 = 0.14408, r̄2 =
0.07556, and ī = 88.27◦. The unity-weight dispersion
was taken to be the rms estimate υ0 obtained from the
fit of the observed light curve, ε0 = 0.003422904. The
weight coefficients wm and the number of the mea-
surements at each phase N1 . . . N42 were set equal to
12. We obtained the dispersions σ for the model sys-
tem for the differential-correction method using (41′).
Further, we obtained the one-dimension confidence-
area projections at the confidence level γ = 0.6827
using the confidence-area method and χ2

M statistics
minimized with respect to the linear parameters (69),
and using χ2

3 statistics (71). The results for the model
light curve of YZ Cas are given in Table 14. The nu-

merical experiment consisted of a thousand realiza-
tions of the model light curve ξ1 . . . ξ42, each of which
was analyzed and the number of coincidences of the
true values of r1, r2, and i with the error intervals
obtained for each method calculated.

Table 15 presents the results of fitting of the
YZ Cas light curve by other authors. The central
values for the component radii r1, r2 and the orbital
inclination i we have obtained are in good consistency
with the previous results (Tables 13, 15). Thus, our
procedure for fitting the light curve of two spherical
stars can be considered reliable. Figures 6 and 7
present the light curve obtained from the fit of the
observational data carried out in [8].
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5.2. Two-Parameter Problem

Based on our procedure, we analyzed the ob-
served light curve of YZ Cas using the differential-
correction, Monte-Carlo, and confidence-area meth-
ods with χ2

P , χ2
M , and FM,N−M statistics. In addition,

we checked the reliability of the error intervals cal-
culated for each method. To this end, we introduced
a thousand perturbations of the light curve with the
“true” parameter values r̄1 = 0.14408, r̄2 = 0.07556,

and ī = 88.27◦, and the unit-weight dispersion ε0 =
0.003422904. We also calculated the numbers of
coincidences of the corresponding confidence areas
and their projections with the true parameter values.

For convenience and simplicity when comparing
the results obtained for each of the methods, we re-
duced the fit of the observed light curve of YZ Cas to a
two-parameter form. In the first case, the component
radii r1 and r2 were assumed to be unknown, and, in
the second case, the radius of the secondary r2 and
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Table 16. Fit of the light curve of YZ Cas from [8] for component radii

Method ∆r1/2; (N∆r1) ∆r2/2; (N∆r2) N

Differential corrections 0.6687× 10−4; (687) 0.1089× 10−3; (693) 543

Monte-Carlo 0.6639× 10−4; (683) 0.1082× 10−3; (687) 535

Confidence intervals, χ2
P statistics 1.013× 10−4; (868) 0.1649× 10−3; (870) 687

Confidence intervals, χ2
M statistics 2.284× 10−4; (714) 0.3720× 10−3; (719) 681

Confidence intervals, FM,N−M statistics 2.294× 10−4; (717) 0.3737× 10−3; (714) 685

Table 17. Fit of the light curve of YZ Cas from [8] for the radius of the secondary r2 and the orbital inclination i

Method ∆r2/2; (N∆r2) i; (Ni) N

Differential corrections 0.7920 × 10−4; (675) 88.2836◦ ± 0.0305◦; (696) 472

Monte-Carlo 0.8021 × 10−4; (686) 88.2700± 0.02851; (682) 491

Confidence intervals, χ2
P statistics 1.203× 10−4; (868) 88.2821± 0.04663; (874) 676

Confidence intervals, χ2
M statistics 2.226× 10−4; (711) 88.2915± 0.0862; (717) 683

Confidence intervals, FM,N−M statistics 2.063× 10−4; (720) 88.2911± 0.07988; (716) 687

the orbital inclination i. The other parameters were
assumed to be known, and equal to the central values
presented above.

Tables 16 and 17 present the results of our light-
curve analysis in this two-parameter form. Figure 8
presents the confidence area for r1 and r2 obtained
when the observed light curve of YZ Cas was fit using
χ2

P and χ2
M statistics. Figure 9 presents the confi-

dence area for r2 and i obtained when the observed
light curve was fit using χ2

P and χ2
M statistics. The

confidence areas for the χ2
M statistics are, on average,

about twice those for the χ2
P statistics. According

to the simulations, the numbers of coincidences of
the true values with confidence areas for the χ2

P and
χ2

M statistics correspond to the specified probability
γ = 68.2%.

6. RESULTS OF ANALYZING THE LIGHT
CURVE OF YZ Cas

The results based on the observed light curve of
YZ Cas reproduce the previous simulation results ob-
tained using (74)–(77) both quantitatively and quali-
tatively.

The parameter errors calculated using the
differential-correction and Monte-Carlo methods are
similar (Tables 16 and 17). The confidence intervals
calculated using χ2

P statistics in multi-parameter
problems exceed the parameter errors calculated

using the differential-corrections and Monte-Carlo
methods by factors of ∼1.5−2. For one-dimensional
problems, the confidence intervals obtained using χ2

P
statistics are close to the errors calculated using the
differential-correction and Monte-Carlo methods.

Projections of the confidence areas for r1, r2, and
i calculated using χ2

M and FM,N−M statistics ex-
ceed the error intervals for the same parameters ob-
tained using the differential-correction and Monte-
Carlo methods by factors of ∼3−5. Recall that the
confidence areas calculated using χ2

M and FM,N−M

statistics vary. Therefore, we present the confidence
area in the vicinity of the maximum of the area distri-
bution.

The results of the numerical experiment to esti-
mate the reliability of the error-calculation methods
are similar to those for (74)–(81). Tables 16 and
17 show that the number of simultaneous coinci-
dences for the error intervals obtained using the
differential-correction and Monte-Carlo methods are
substantially different from the specified probability
(∼15−20% lower), though the number of coinci-
dences of the individual intervals corresponds to the
specified probability γ = 68.2%.

In the confidence-area method, the number of co-
incidences of the projected confidence areas with true
values of r1, r2, and i exceeds the specified probability
γ = 68.2%, while the number of coincidences of the
confidence area itself by the true values corresponds
to the specified probability γ (Table 16 and 17). The
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non-linearity of the problem does not affect the devi-
ation of the number of coincidences substantially, and
the approximation of using (41′) in the differential-
correction method can be considered reasonable. As
was noted above, the non-linearity of the problem is
manifest in the аsymmetry of the confidence areas
about their central values (Figs. 8 and 9).

7. DISCUSSION

Let us summarize the main conclusions of our
study comparing various methods for estimating pa-
rameter errors in inverse parametrical problems.

These methods are classified according to the se-
lected statistics and the a priori information about the
dispersion of the observational data and the adequacy
of the model used.

7.1. Differential-Correction Method

This method is based on the statistics for the
normal distribution of measurements for a single ob-
served point. The dispersions and, accordingly, rms
errors, of the parameters are expressed in terms of the
dispersion of the observations using the formula for
the sum of dispersions of the observational data. The
method assumes a priori that the model is correct and
adequate to the observations, and that the dispersion
of the observational data is known independently.

The parameter errors obtained using the
differential-correction method are generally very
small. The probability of simultaneous coincidences
of all parameter intervals with the exact solutions
is appreciably (∼15−20%) lower than the specified
probability 68.2% (see, for example, Tables 16 and
17). The corridor of theoretical light curves corre-
sponding to the boundaries of the confidence intervals
for the parameters is very narrow—comparable to
the rms error of a single measurement. A substan-
tial fraction of the observed points lie outside the
error corridor formed by the limiting theoretical light
curves. Therefore, it is likely that the results of fitting
of observational data obtained by different researchers
will be significantly different. The “outer” errors of
the obtained parameters can substantially exceed the
“inner” errors (according to Popper [9], by a factor of
three to five).

According to our numerical experiments, the use
of linearization procedures in non-linear problems
distorts the confidence intervals obtained using the
differential-correction method only slightly when the
observational errors are small.

7.2. Monte-Carlo Method

This method is similar to the differential-
correction method and yields similar results. It uses
the statistics for the normal distribution of the mea-
surements of a single point of the light curve. The
method assumes that the model is adequate to the
data and that the dispersion of the observational
data is known independently. Like those obtained
for the differential-correction method, the parameter
errors obtained in the Monte-Carlo method are very
small (according to Popper [9], the “outer” errors can
exceed the “inner” errors by factors of three to five).

Thus, both the differential-correction and Monte-
Carlo methods use strict a priori assumptions about
the model’s adequacy and apply the simplest statis-
tics for the normal distribution of the observational
measurements with a previously known dispersion. It
is precisely due to the use of these idealized model
assumptions that these methods yield such small pa-
rameter errors.

In reality, it is not known in advance whether the
model provides an adequate description of the data.
In addition, in reality, model parameters are searched
for using statistics generated by a normal distribution
(χ2

M , Fisher, etc.) rather then statistics of a normal
distribution. The dispersion of the observational da-
ta is often not known in advance. Therefore, it is
natural to estimate parameter errors using the same
statistics used for the search for the model parameters
themselves (χ2

M , Fisher, etc.), rather then using the
statistics of a normal distribution or χ2

P statistics.
Let us consider such methods for estimating pa-

rameter errors.

7.3. Method Based on χ2
P Statistics

Since in this method relative rather than absolute
variations of the residual functional are used, it as-
sumes that the model is fully adequate. In addition,
the dispersion of the observational data is assumed to
be known a priori. In this method, the confidence area
never degenerates to a null set. In addition, in non-
linear problems, the confidence area is understood in
asymptotic terms: the probability of encompassing
the exact solution is not equal to the specified prob-
ability γ, but only tends to γ as M → ∞, where M
is the number of observational points. However, as
simulations show, the probability of of the asymptotic
confidence area in non-linear problems encompass-
ing the exact solution is very close to the specified
probability γ for sufficiently large M .

In one-parameter problems, the confidence-area
method with χ2

P statistics yields results close to those
obtained with the differential-corrections and Monte-
Carlo methods. This is natural, since all three use
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the same strict, idealized a priori assumptions. In
both one-parameter and multi-parameter problems,
the χ2

P method yields confidence areas that always
encompass the exact solution with the specified prob-
ability γ. This represents a substantial advantage of
the χ2

P method over the differential-correction and
Monte-Carlo methods, for which, as is shown by our
simulations, the probability of joint coincidence of the
confidence intervals for all parameters with the exact
solutions is below the specified probability γ.

When the χ2
P method is used to estimate the

confidence intervals in multi-parameter problems, it
is necessity to project the confidence area onto the
parameter axes. The confidence area that encom-
passes the exact solution with a specified probability
γ is replaced by a parallelepiped containing it, and
the probability of encompassing the exact solution
increases.

If we assume that the probability of coincidence
with a projection onto a parameter axis is γ = 68.2%,
then, according to supplementary calculations using
the example of (75) and (82), the projections of the
confidence area onto the parameter axes, ∆β1 and
∆β2 , obtained for χ2

P statistics coincide with the con-
fidence intervals obtained for differential-correction
method, σβ1 and σβ2 , for the same probability γ =
68.2%.

However, in this case, the probability of a joint
coincidence of the confidence area by all parameters is
substantially smaller than the probability γ = 68.2%
(∼50% or less).

7.4. Method Based on χ2
M Statistics

This method also assumes that the dispersion of
the observational data is known a priori. However, the
adequacy of the applied model is not assumed in this
case. The absolute values of the residual functional
are used to find the confidence areas. Therefore, the
confidence areas are different for different realizations
of the random process (the observed light curve). In
a number of cases, when a model is rejected based on
a statistical criterion, the confidence area degenerates
into a null set. However, it is strictly proven and con-
firmed by numerical experiments that the confidence
area found using the χ2

M method encompasses the
exact solution with the specified probability γ, as in
the χ2

P method.
As follows from the smaller number of model as-

sumptions compared to the χ2
P method (the model’s

adequacy is not assumed), the confidence area ob-
tained using the χ2

M method is larger than that for
the χ2

P method. The numerical simulations show that
the the confidence areas for the χ2

M statistics exceed

those for the χ2
P statistics by approximately a factor of

two (see, for example, Figs. 8 and 9). To estimate the
parameter confidence intervals, the confidence area
must be projected onto the parameter axes, and the
fact that the probability of encompassing the exact
solution increases in this case must be taken into
account.

The fact that the confidence area for the χ2
M statis-

tics exceeds that for the χ2
P statistics does not imply

that the χ2
M method is worse. In addition to every-

thing else, the χ2
M method also takes into account

the uncertainty of the fitting results due to possible
inadequacy of the model. Therefore, if it is necessary
to make an important judgement about the results
of model-fitting, precisely the χ2

M method is recom-
mended for the estimation of the associated parameter
errors.

7.5. Method Based on Fisher FM,N−M Statistics

As in the χ2
M technique, this method does not

assume adequacy of the model. In addition, in con-
trast to the χ2

M method, no a priori knowledge of
the dispersion of the observations is required. The
dispersion is derived from the observed scatter of the
points in the studied light curve. On this basis, there
is some consensus that the FM,N−M method is the
most general and uses the smallest number of model
assumptions. The only assumption is that observa-
tional data have normal distributions in the vicinities
of selected sections of the light curve.

The confidence-area methods based on the χ2
M

and Fisher FM,N−M statistics are similar. In both,
the confidence areas vary appreciably for different
realizations of the observational data; the number of
cases when the area degenerates to a null set is α =
1 − γ. Nevertheless, the confidence areas obtained
for these statistics are different. We carried out ad-
ditional calculations aimed at a more detailed study
of the difference in the confidence areas obtained for
FM,N−M and χ2

M statistics. In particular, we used the
confidence-area method to search for the unknown
parameter β1 using the indicated statistics for the
functions (74) and

f(θ, β1) = cos θ + β1e
θ. (83)

We obtained true values for the function ξ̄1 . . . ξ̄101
at points θ1 . . . θ101 uniformly distributed along the
horizontal-axis interval [0, 2] for the specified value
β̄1 = 2. Further, a sample of normally distributed ran-
dom ξj

1 . . . ξj
101 was generated for j = 1 . . . 12, so that

M(ξj
m) = ξ̄m and σ(ξj

m) = 0.03 (m = 1 . . . 101).
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Fig. 10. Experimentally derived histogram of the distribution density for the coinfidence-interval half-widths for the functions
(a) f(θ, β1) = cos θ + β1 sin θ and (b) f(θ, β1) = cos θ + β1e

θ. The intervals are obtained using χ2
M (gray histogram) and

FM,N−M (light histogram) statistics as a result of 104 trials. N is the number of values for which the confidence-interval
half-width ∆β1/2 coincides with the corresponding step of the histogram.

As before, we calculated ξm =
1

Nm

∑Nm
j=1 ξj

m,

Nm = 12 for the Fisher statistics. Accordingly, we
adopted in (45) and (46) M = 101, wm = 12, and
ε0 = 0.03 (in this case, the standard deviation
σ(ξm) = σm = 0.03/

√
12 = 0.008660).

For the χ2
M statistics, we adopted M = 101 ×

12 = 1212, introduced the new values θ′12(m′−1)+j =

θm′ , and calculated the ξm, so that ξ12m′+j = ξj
m′

(m′ = 1 . . . 101, j = 1 . . . 12); in terms of observa-
tions, this is equivalent to the statement that each of
the groups of 12 values of ξ1...12, ξ13...24, . . . ξ1200...1212

is obtained at the same phase. Accordingly, wm = 1
and ε0 = 0.03 in (45) and (46) (in this case, the
standard deviation σ(ξm) = σm = 0.03).

Further, the error intervals ∆(β1) were calculated
using each of the statistics. The confidence interval
∆(β1) was calculated using the ξ1 . . . ξ1212 (χ2

1212
statistics) and ξ1 . . . ξ101 (Fisher statistics), which
were obtained each time from the same sample of
ξj
1 . . . ξj

101 using the above techniques.
Figures 10a and 10b present histograms of the

density of the distribution of the confidence-interval
half-width ∆β1/2 for (74) and (83) for F101,1212−101

and χ2
1212 statistics. Figure 10 shows that the max-

imum confidence intervals obtained for the χ2
1212

statistics exceed the maximum confidence intervals
for the Fisher statistics by about a factor of two. In
each of the statistics, the probability that a correct
model is rejected is fully consistent with the value
α = 100% − 68.2% = 31.8% specified a priori.

The real “observed” curve is not ideal; i.e., it does
not contain ξ values obtained for the same θ (at the
same phase). In this connection, we carried out a
simulation to analyze realizations of ξ1 . . . ξ1212 in
which θ1 . . . θ1212 was taken to be uniformly dis-
tributed along the horizontal axis (let us call corre-
sponding statistics as conventional Fisher statistics).
In this case, conventional Fisher statistics are a priori
not applicable, but are nonetheless used in practice.
The validity of the Fisher statistics for such a sample
of ξm was studied using the examples of (74) and (83).

When calculating the residual using conventional
Fisher statistics, the “perturbed” curve for the func-
tion ξ1 . . . ξ1212 was subdivided into 101 intervals
of equal length in θ, with each interval containing
12 points. The average values of θk and ξk (where
k = 1 . . . 101) inside the interval were calculated from
these points, as well as the estimated dispersion σobs.
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Fig. 11. Experimentally derived histogram of the distribution density for the confidence-interval half-widths of the functions
(a) f(θ, β1) = cos θ + β1 sin θ and (b) f(θ, β1) = cos θ + β1e

θ. The intervals are obtained using χ2
M (gray histogram) and

conventional Fisher FM,N−M (light histogram) statistics as a result of 104 trials. The conventional FM,N−M statistics are
approximate, since they are constructed by averaging the individual measurements (uniformly distributed along the horizontal
axis) inside selected intervals. N is the number of values for which the coinfidence-interval half-width ∆β1/2 coincides with
the corresponding step of the histogram.

As in the previous numerical experiment, the di-
mension of the Fisher distribution was F101,1212−101.
Only the uncertainty in ξ was taken into account,
not the uncertainty in θ (this is the most common
technique). If the uncertainty in θ is taken into
account, the distribution of the confidence areas may
deviate slightly from an exact Fisher distribution.

Figures 11a and 11b present histograms for the
distribution density of the half-width of the interval
∆β1/2 obtained as a result of 104 trials using the χ2

1212
and Fisher F101,1212−101 statistics for (74) and (83).
While the result for the χ2

1212 statistics is consistent
with the expected probability for rejecting a correct
model of α = 31.8%, the results for the conventional
Fisher statistics deviate appreciably from the theoret-
ical value for α. For example, α was found to be ∼20%
and 0% for (74) and (83), based on 1000 trials. Thus,
averaging points inside intervals affects not only the
confidence interval, but also conclusions about the
adequacy of the model. Recall that, when fitting the
perturbed curve ξ1 . . . ξ1212, when the averaged ξj

display a single value θj , the results of the fitting for
the Fisher statistics are fully consistent with the pre-

specified α. Thus, when the Fisher FM,N−M statistics
are used, the minimum scatter of the observational
data ξj along the horizontal axis within a single inter-
val is required. In this case, both the probability that
the model is adequate to the observational data and
the length of the interval (on average) incompetently
increase. This incompetent increase in the probabil-
ity that the model is adequate depends strongly on
the type of the function ξ(θ), with the incompetent
increase being higher for functions with stronger de-
pendences (Fig. 11).

Like the χ2
P and χ2

M methods, the FM,N−M tech-
nique requires projecting the confidence area (which
covers the exact solutions with a specified probability
γ) onto the parameter axes, resulting in an increase of
the probability of encompassing the exact solution.

Summarizing, the differential-correction and
Monte-Carlo methods yield lower boundaries for the
errors of model parameters corresponding to highly
idealized a priori model assumptions. The χ2

P method
yields intermediate values for the parameter errors,
and is also based on the idealized assumption that
the model used is adequate to the data. The χ2

M
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and FM,N−M methods yield upper boundaries for the
parameter errors. These methods are free of artificially
idealized model assumptions, and so yield the most
reliable fitting results. The χ2

M and FM,N−M methods
are recommended when conservative judgements
about the results of fitting observational data are
desired.

8. CONCLUSION

Our numerical simulations show the effective-
ness of various approaches for calculating parameter
errors.

The error interval depends dramatically on the
selected statistics and assumed a priori information
about the model. We stress again that, even in one-
parameter problems, the parameter error obtained
using the differential-correction and Monte-Carlo
methods, on the one hand, and using χ2

M and
FM,N−M statistics, on the other and, differ appre-
ciably.

Our simulations have demonstrated that the
parameter errors calculated using the differential-
correction and Monte-Carlo methods are similar.
Depending on the problem, either of these methods
may be preferred.

We emphasize that, when the differential-
correction and Monte-Carlo methods are used in
multi-parameter problems, we are dealing with the
probability of the number of coincidences of the true
parameter values with each interval individually. As
the simulations show, this probability corresponds
to the specified probability. The probability of some
number of joint coincidences with the error in-
tervals will be lower than the specified probability
by ∼15−20% [for the model functions (74)–(81)].
Consequently, when joint coincidences with the error
intervals is considered, these methods cannot be
considered reliable.

At the same time, our simulations have demon-
strated the trustworthiness of the confidence-area
method for the above problems. The number of co-
incidences of the confidence area with the “true”
parameter values fully corresponds to the specified
probability γ, so that the number of simultaneous
coincidences of the projected areas will not be lower
than γ (since this is the number of coincidences with
a parallelepiped in which the confidence area is in-
scribed).

The confidence area depends on the applied statis-
tics (in the case of χ2

M and FM,N−M statistics, on the
specific observed realization of the function consid-
ered). By the “half-width of the projected confidence
area,” we mean one of its most probable values. In the
one-dimensional case, we adopt one of the ∆β1/2 val-
ues in the proximity of the maximum of the histogram

of the distribution density ∆β1/2 (Fig. 3) as the half-
width of the confidence interval. In other words, we
adopt some most probable value for the confidence
area. When using χ2

M and FM,N−M statistics, coin-
cidence with the confidence area does not depend only
on the position of its center relative to the true values,
but also to the area’s size and its existence (i.e., the
area may turn out to form a null set). This can be in-
terpreted as follows: in the differential-correction and
confidence-area methods with the χ2

P statistics, the
model is assumed to be adequate to the observational
data, and the confidence intervals for these methods
are smaller than the confidence areas obtained using
the χ2

M and Fisher FM,N−M statistics (we mean here
the area near the maximum of its distribution). When
error calculation is based on χ2

P statistics, it must be
borne in mind that the model’s adequacy is assumed
in advance.

The confidence areas obtained for χ2
M and

FM,N−M statistics exceed the areas obtained for χ2
P

statistics by a factor of two to three (Figs. 8 and
9). As was already noted, the larger confidence area
obtained for χ2

M and FM,N−M statistics is due to the
fact that, in addition to calculating the confidence
area itself, we also check the model’s adequacy to the
observational data. When Fisher statistics FM,N−M

are used, it must be borne in mind that the scatter of
the data within a selected averaging interval increases
the mean parameter-error intervals, increasing the
probability that the model is adequate (Fig. 11a).

Taking into account all our presented calcula-
tions and considerations, authors usually prefer the
confidence-area method with χ2

M statistics.
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