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Abstract—The estimation of parameters and their errors is considered using the observed light curve
of the eclipsing binary system YZ Cas as an example. The error intervals are calculated using the
differential-correction and confidence-region methods. The error intervals and reliability of the methods
are investigated, and the reliability of limb-darkening coefficients derived from the observed light curve
analyzed. A new method for calculating parameter errors is proposed.
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1. INTRODUCTION

A comparative analysis of various methods for es-
timating parameter errors for one-, two-, three-, and
four-parameter functions and the observed light curve
of the eclipsing binary system YZ Cas was carried
out in [1] using numerical simulations. The numerical
simulations yielded estimates of the unknown param-
eters of the problem and their error intervals, which
were calculated using the differential-correction,
Monte Carlo, and confidence-region methods. The
error intervals and reliability of the various methods
were studied.

The current study is a continuation of the anal-
ysis begun in [1]. In contrast to the current study,
in [1], the trustworthiness of the methods used to
estimate the error intervals were evaluated using an
incomplete set of parameters. The analysis of the
observed light curve for the binary system YZ Cas
was based on three parameters: the radius of the
primary and secondary components r1 and r2 and
the orbital inclination of the binary i. In addition, the
residual used depended on these three parameters and
was minimized over the remaining, linear parameters,
which included the limb-darkening coefficients for the
primary and secondary stars x1 and x2 and the ratio
of the brightnesses at the centers of the stellar disks,

I
(1)
0 /I

(2)
0 . It is important that minimizing over linear

parameters does not change the statistics of the prob-
lem, only decreases the number of degrees of freedom.
This enabled us to analyze the errors in the non-linear
parameters r1, r2, and i in a mathematically rigorous
way. The error intervals were found as projections
onto the r1, r2, and i parameter axes of the three-
dimensional confidence region containing the values

of r1, r2, and i for which the residual was less than the
quantile corresponding to a specified confidence level.

In the current study, in addition to the parameters
listed above, the limb-darkening coefficients for the
primary and secondary stars are unknown. We obtain
fits to the observed light curve of YZ Cas using both
linear and quadratic limb-darkening laws.

We focus on the reliability of the limb-darkening
coefficients and their error intervals. This problem is
especially relevant in connection with the appear-
ance of high-accuracy photometric observations from
satellites such as COROT and KEPLER, which will
soon lead to the availability of massive databases
of precise photometric observations. Therefore, it is
important to know the reliability of estimates of pho-
tometric elements of both classical eclipsing binary
systems and eclipsing systems with exoplanets at
specified levels of accuracy.

As was emphasized in [1], in both the classical
least-squares method (or the differential-correction
method for non-linear problems) and the Monte Carlo
method, the errors of unknown parameters are es-
timated in the framework of a normal distribution,
which are obeyed by the central values of parameters,
and searches for the true values of the parameters are
carried out using statistics that arise from a normal
distribution (such as χ2

M statistics, where M is the
number of points in the observed light curve). How-
ever, it is most reasonable to calculate the errors of
parameters using the same statistics that were used
to search for the central values of the parameters
themselves (for example, the statistics for a residual
distributed as χ2

M ). Although the resulting parameter
errors will be larger than the errors found using the
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least-squares or Monte Carlo method, an approach
based on the use of confidence regions provides the
most trustworthy fits to observational data; it also
avoids the need to separately consider “internal” and
“external” errors in parameters.

2. MODEL FOR A CLASSICAL BINARY
SYSTEM AND A BINARY SYSTEM

WITH AN EXOPLANET

In view of the methodological character of our
work, we consider a simple model with two spherical
stars with thin atmospheres in circular orbits without
any effects due to the proximity of the components.
This model can easily be realized on modern comput-
ers, and makes it possible to obtain a large number of
solutions of the problem with a comparatively small
amount of computer time. This type of spherical-
star model for a binary system is physically based
on the case when the degree of Roche-lobe filling is
small, µ < 0.5. This occurs in the YZ Cas system,
and also in most cases of observed eclipsing stars with
exoplanets.

Our model considers the motion of the stellar disks
projected onto the plane of the sky, i.e., perpendicular
to the line of sight. Figure 1 shows the geometry
of the stellar disks during eclipse. Here, r1 and r2

are the radii of the primary and secondary star (or of
the star and planet), ∆ is the distance between the
centers of the stellar disks, and ρ and Ψ are polar
coordinates of an arbitrary point on the surface of the
disk of the primary (the coordinate origin is located
at the geometrical center of the disk). The distance
between the centers of the stellar disks is given by the
expression

∆2 = cos2 i + sin2 i sin2 θ, (1)

where i is the orbital inclination of the binary system
and θ is the current value of the orbital phase angle
(the orbit of the system is circular with radius a = 1).

For the brightness distribution over the disk of
each star, we used a linear limb-darkening law,

I(ρ) = I0

(
1 − x + x

√
1 − ρ2

r2

)
(2)

and also a quadratic limb-darkening law, which differs
from the linear law in the presence of a non-zero
quadratic limb-darkening coefficient y:

I(ρ) = I0

[
1 − x

(
1 −

√
1 − ρ2

r2

)
(3)

−y

(
1 −

√
1 − ρ2

r2

)2
⎤
⎦ .

Here, ρ is the polar distance from the center of the
stellar disk and r the radius of the stellar disk. The
brightness was assumed to be zero at any point in the
disk of the planet.

We denote I
(1)
0 and I

(2)
0 to be the brightnesses at

the disk centers, x1 and x2 the limb-darkening coef-
ficients, and y1 and y2 the quadratic limb-darkening
coefficients of the primary and secondary stars.

The unknown parameters of the model for the two

stars are r1, r2, i, I
(1)
0 , I

(2)
0 , x1, x2, and, in the case of

the non-linear limb-darkening law, y1 and y2.

The unit length in our models is the distance be-
tween the stellar centers (or the centers of the star and
planet), a = 1. There is no “third light” in the model.
The light curve of the binary system is determined by
the following three equations.

1. The total luminosity of the components, which
describes the out-of-eclipse brightness:

2π

r1∫
0

I(1)(ρ)ρdρ + 2π

r2∫
0

I(2)(ξ)ξdξ = Lfull. (4)

2. The loss of brightness in the first (secondary, in
the case of YZCas) minimum, due to the eclipse of the
smaller star by the larger companion:

Lfull − L(1)(θ) =
∫∫

S(∆)

I(2)(ξ)dS, (5)

where S(∆) is the area of overlap of the two disks.

3. The loss of brightness in the second (primary)
minimum, due to the eclipse of the larger star by the
smaller star:

Lfull − L(2)(θ) =
∫∫

S(∆)

I(1)(ρ)dS. (6)

Equations (1), (4), (5), and (6) fully describe the
observed light curve, and contain a set of parameters

that depends on the model considered: r1, r2, i, I
(1)
0 ,

I
(2)
0 , x1, x2, y1, y2. Substituting the brightness dis-

tribution function approximated by the corresponding
limb-darkening law (2) or (3) into the integral and
carrying out the integration yields a system of non-
linear, algebraic equations in the corresponding pa-
rameters.
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Fig. 1. Model for two eclipsing spherical stars, projected onto the plane of the sky.

3. DERIVATION OF THE COMPUTATIONAL
FORMULAS

In the linear limb-darkening law, the brightness at
a point in the stellar disk is

I(ρ) = I0

(
1 − x + x

√
1 − ρ2

r2

)
,

where ρ is the distance of the point from the disk
center, I0 the brightness at the disk center, x the
limb-darkening coefficient, and r the radius of the
star.

Introducing the new parameters

X0 = I0(1 − x)

X1 = I0x

⎫⎬
⎭ , (7)

we find that

I(ρ) =

(
X0 + X1

√
1 − ρ2

r2

)
. (8)

In the non-linear limb-darkening law, the bright-
ness at a point in the stellar disk is

I(ρ) = I0

[
1 − x

(
1 −

√
1 − ρ2

r2

)

−y

(
1 −

√
1 − ρ2

r2

)2
⎤
⎦ ,

where ρ is the distance of the point from the disk
center, I0 the brightness at the disk center, x, y the

limb-darkening coefficients, and r the radius of the
star. Introducing the new parameters

X0 = I0(1 − x − 2y)

X1 = I0(x + 2y)

X2 = I0y

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (9)

we obtain

I(ρ) =

(
X0 + X1

√
1 − ρ2

r2
+ X2

ρ2

r2

)
.

In these variables, the brightness at a point on the
stellar disk for the non-linear limb-darkening law dif-
fers from the corresponding brightness for the linear
law in the presence of an additional term containing
X2. This enables us to obtain a linear model by setting
X2 = 0 in the non-linear model. At orbital phase
θ = 0, component 1 eclipses component 2. The total
brightness of the star in the non-linear model is

L(s) = 2π

r∫
0

I(s)(ρ)ρdρ = X
(s)
0 πr2

s +
2
3
X

(s)
1 πr2

s

+
1
2
X

(s)
2 πr2

s , s = 1, 2.

The total brightness of the system of two stars in
the non-linear model outside of eclipse is

Lfull = L(1) + L(2) = X
(1)
0 πr2

1 (10)

+
2
3
X

(1)
1 πr2

1 +
1
2
X

(1)
2 πr2

1 + X
(2)
0 πr2

2

+
2
3
X

(2)
1 πr2

2 +
1
2
X

(2)
2 πr2

2.

ASTRONOMY REPORTS Vol. 53 No. 8 2009



PARAMETER ERRORS IN INVERSE PROBLEMS 725

To obtain a model for a system consisting of a star
and planet, it is sufficient to set L(2) = 0 (the planet
does not radiate).

To universalize the external form of the computa-
tional formulas and the light-curve minima, and to
decrease the number of equations needed, the eclips-
ing component (near component relative to a ter-
restrial observer) is ascribed the subscript n and the
eclipsed component (farther component relative to a
terrestrial observer) the subscript f . When directly
computing the light-curve minima at orbital phases
−π/2 < θ < π/2 (or cos θ > 0), we must replace the
variable r1 with rn, and the variable r2 with rf . At or-
bital phases cos θ < 0, we must carry out the opposite
substitution, replacing the variable r1 with rf , and the
variable r2 with rn.

In the new notation, the drop in brightness during
eclipse is

Ldec(∆, rf , rn,X
(f)
0 ,X

(f)
1 ,X

(f)
2 ) (11)

=
∫∫

S(∆)

I(f)(ρ)dS,

where ∆ is the distance between the disk centers and
S(∆) the area of overlap of the disks.

To compute the integral (11), as was done in [1],
we introduce the functions

Ax ≡

⎧⎪⎨
⎪⎩

π, x < −1,
arccos x, −1 ≤ x ≤ 1,
0, x > 1

(12)

and

Qx ≡
{√

x, x ≥ 0,
0, x < 0,

Ψ(∆, x, y) ≡ A
(

x2 + ∆2 − y2

2x∆

)
,

Q (∆, rf , rn)

≡ Q
{[

r2
f − (∆ − rn)2

] [
(∆ + rn)2 − r2

f

]}
,

together with a polar-coordinate system with its ori-
gin at the center of the disk of the eclipsed star and the
polar angle ϕ measured from the center of the disk of
the eclipsed component “f” to the center of the disk of
the eclipsing component “n” (Fig. 1). We then have

Ldec(∆, rf , rn,X
(f)
0 ,X

(f)
1 ,X

(f)
2 ) (13)

= X
(f)
0 Ldec

0 (∆, rf , rn) + X
(f)
1 Ldec

1 (∆, rf , rn)

+ X
(f)
2 Ldec

2 (∆, rf , rn),

and the expressions for Ldec
0 and Ldec

1 obtained in [1]:

Ldec
0 (∆, rf , rn) = Ψ(∆, rf , rn)r2

f (14)

+ Ψ(∆, rn, rf )r2
n − 1

2
Q (∆, rf , rn) ,

Ldec
1 (∆, rf , rn) (15)

=

r2
f∫

0

Ψ(∆,
√

ρ, rn)
√

1 − ρ

r2
f

dρ.

Analogous to the way in which Ldec
0 and Ldec

1 were
obtained in [1], we obtain for Ldec

2 :

Ldec
2 (∆, rf , rn) = 2

rf∫
0

ρ3Ψ(∆, ρ, rn)dρ (16)

= Ψ(∆, rf , rn)
r4
f

2
+

r2
n

2
(
2∆2 + r2

n

)
Ψ(∆, rn, rf )

− 1
8
(
∆2 + 5r2

n + r2
f

)
Q (∆, rf , rn) .

The partial derivatives of Ldec
2 have the form

∂Ldec
2 (∆, rf , rn)

∂∆
= 2∆r2

nΨ(∆, rn, rf ) (17)

−
∆2 + r2

n + r2
f

2∆
Q(∆, rf , rn),

∂Ldec
2 (∆, rf , rn)

∂rf
= 2r3

fΨ(∆, rf , rn)rf , (18)

∂Ldec
2 (∆, rf , rn)

∂rn
= 2rn

(
∆2 + r2

n

)
(19)

× Ψ(∆, rn, rf ) − 2rnQ(∆, rf , rn).

For a circular orbit, the distance between the disk
centers ∆ depends on the phase θ and orbital inclina-
tion i as

∆(θ, i) =
√

cos2 i + sin2 i sin2 θ. (20)

The brightness of the binary system depends on the
phase θ as follows:

L(θ, i, r1, r2,X
(1)
0 ,X

(1)
1 ,X

(2)
0 ,X

(2)
1 ) (21)

= Lfull −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ldec(∆(θ, i), r1, r2,X
(1)
0 ,X

(1)
1 ,X

(1)
2 ),

cos θ < 0,
Ldec(∆(θ, i), r2, r1,X

(2)
0 ,X

(2)
1 ,X

(2)
2 ),

cos θ > 0.

Introducing the functions

L
(1)
0 (θ, r1, r2, i) (22)

ASTRONOMY REPORTS Vol. 53 No. 8 2009



726 ABUBEKEROV et al.

= πr2
1 −

{
Ldec

0 (∆(θ, i), r1, r2), cos θ < 0,
0, cos θ > 0,

L
(1)
1 (θ, r1, r2, i)

=
2
3
πr2

1 −
{

Ldec
1 (∆(θ, i), r1, r2), cos θ < 0,

0, cos θ > 0,

L
(1)
2 (θ, r1, r2, i)

=
1
2
πr2

1 −
{

Ldec
2 (∆(θ, i), r1, r2), cos θ < 0,

0, cos θ > 0,

L
(2)
0 (θ, r1, r2, i)

= πr2
2 −

{
Ldec

0 (∆(θ, i), r2, r1), cos θ > 0,
0, cos θ < 0,

L
(2)
1 (θ, r1, r2, i)

=
2
3
πr2

2 −
{

Ldec
1 (∆(θ, i), r2, r1), cos θ > 0,

0, cos θ < 0,

L
(2)
2 (θ, r1, r2, i)

=
1
2
πr2

2 −
{

Ldec
2 (∆(θ, i), r2, r1), cos θ > 0,

0, cos θ < 0,

we can write the total brightness as the linear combi-
nation

L(θ, r1, r2, i,X
(1)
0 ,X

(1)
1 ,X

(2)
0 ,X

(2)
1 ) (23)

= X
(1)
0 L

(1)
0 (θ, r1, r2, i) + X

(1)
1 L

(1)
1 (θ, r1, r2, i)

+ X
(1)
2 L

(1)
2 (θ, r1, r2, i) + X

(2)
0 L

(2)
0 (θ, r1, r2, i)

+ X
(2)
1 L

(2)
1 (θ, r1, r2, i) + X

(2)
2 L

(2)
2 (θ, r1, r2, i).

The partial derivatives of a function of the to-
tal brightness are expressed in terms of the partial
derivatives of the functions Ldec

0 , Ldec
1 , and Ldec

2 with
respect to the variables ∆, rf , and rn and the partial
derivatives of ∆(θ, i) with respect to θ and i.

We will show that the function Ldec
1 can be ex-

pressed in terms of the elliptical functions Π, E, and F
and the function Θ, for whose calculation there exist
efficient algorithms [2]:

Ldec
1 (∆, r1, r2) =

2π
3

Θ(rn − ∆)r2
f (24)

+ Q
[

1
r2
f − (rn − ∆)2

]

×
{

2r3
f (∆ + rn)

3(∆ − rn)
Π

(
− 4∆rn

(rn − ∆)2
;

Ψ(∆, rn, rf )
2

∣∣∣∣∣ 4∆rn

r2
f − (rn − ∆)2

)

− 2
9

[
3rf (∆2 − r2

n)

+
[r2

f − (rn − ∆)2][(rn + ∆)2 − r2
f ]

rf

]

× F

(
Ψ(∆, rn, rf )

2

∣∣∣∣∣ 4∆rn

r2
f − (rn − ∆)2

)}

+
2

9rf
Q

[
r2
f − (rn − ∆)2

]
(7r2

n + ∆2 − 4r2
f )

× E

(
Ψ(∆, rn, rf )

2

∣∣∣∣∣ 4∆rn

r2
f − (rn − ∆)2

)
.

4. GENERAL RELATIONS
FOR THE LEAST-SQUARES METHOD

Since our goal is to elucidate the relationship be-
tween various methods for estimating parameter er-
rors, let us recall some relationships from mathemat-
ical statistics that are relevant to our calculations.

Let us consider a linear model specified by the
sequential set of functions g0(θ) . . . gP (θ) and the lin-
ear functions expressed in terms of them1

f lin(θ, α1 . . . αP ), defined for real α1 . . . αP and θ
from the set {θ1 . . . θM}:

f lin(θ, α1 . . . αP ) = g0(θ) +
P∑

p=1

gp(θ)αp. (25)

Here, {θ1 . . . θM} corresponds to the set of M points
at which observations are conducted. Let us specify
the vector (α1 . . . αP )T , corresponding to the set
of true values of the physical quantities (here, M
is the total number of observational points), and
the vector (w1 . . . wM )T representing the weight-
ing coefficients, assuming that the matrix Aqp =∑M

m=1 gq(θm)gp(θm)wm is non-degenerate. We also
specify a vector representing the random observed
quantities ξ = (ξ1 . . . ξM )T , assumed to be statisti-
cally independent, i.e., cov(ξi, ξj) = 0 for i �= j, and
to be normally distributed with the mathematical ex-
pectation values M(ξk) = f lin(θk, α1 . . . αP ). More-
over, we assume that the measurements of the ran-
dom quantities ξ1w1 . . . ξMwM are equally accurate;
i.e., σ2(ξ1w1) = σ2(ξ2w2) = . . . = σ2(ξMwM ) = ε2

0,
where σ2(·) denotes the operation of calculating the

1 The form f lin [(25)] in which the first term is independent
of the linear parameter is chosen here for convenience in
practical use.
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dispersion and ε2
0 is called the unit-weight dispersion.

Denoting σ2(ξm) = σ2
m, we find that wm = ε2

0/σ
2
m.

We specify the residual functional for a given model
by the expression

Rlin(α1 . . . αP , ξ1 . . . ξM) (26)

=
M∑

m=1

[
ξm − f lin(θm, α1 . . . αP )

]2
wm

=
M∑

m=1

⎛
⎝ξm − g0(θm) −

P∑
p=1

gp(θm)αp

⎞
⎠

2

wm.

The values of the parameters αc
1(ξ) . . . αc

P (ξ) yielding
the minimum of the residual functional (26) for fixed
ξ1 . . . ξM (which we will call their central values), are
obtained from the solution of the system of P linear
equations

∂ Rlin(α1 . . . αP )
∂αq

= 2Bq (27)

− 2
P∑

p=1

Aqpαp = 0, q = 1 . . . P,

where

Aqp =
M∑

m=1

gq(θm)gp(θm)wm, (28)

Bq =
M∑

m=1

[ξm − g0(θm)]gq(θm)wm.

These values are equal to

αc
p(ξ) =

P∑
q=1

Ainv
qp Bq (29)

=
M∑

m=1

[ξm − g0(θm)]wm

P∑
q=1

Ainv
qp gq(θm),

p = 1 . . . P,

where Ainv
qp are elements of the inverse matrix to A:

Ainv
qp ≡ (A−1)qp .

Thus, the central values of αc
1(ξ) . . . αc

P (ξ) are ex-
pressed as linear combinations of the ξ1 . . . ξM , and
are consequently normally distributed. Their math-
ematical expectation values are α1 . . . αP [which is
obtained if we take the mathematical expectations of
both parts of (29) and substitute them into (25)]. Us-
ing the linearity of the covariance operation cov(·, ·),

the statistical independence of ξ1 . . . ξM , and the fact
that cov(ξi, ξi) = σ2(ξi) = ε2

0/wi, we find the covari-
ance matrix of the parameters αc

1 . . . αc
P :

cov(αc
p(ξ), α

c
q(ξ)) (30)

=
M∑

m=1

(σ2(ξm)w2
m

P∑
i,j=1

Ainv
ip Ainv

jq gi(θm)gj(θm))

= ε2
0

P∑
i,j=1

(Ainv
ip Ainv

jq

M∑
m=1

wmgi(θm)gj(θm) = ε2
0A

inv
pq ).

The dispersions of the central values of
αc

1(ξ) . . . αc
P (ξ) are the diagonal elements of the

covariance matrix:

σ2(αc
p(ξ)) = ε2

0A
inv
pp . (31)

In the model obtained via the linear substitution of
parameters using the non-degenerate matrix Ci

p,

α′
p = C0 +

P∑
i=1

Ci
pαi,

the dispersions of the new parameters α′
1...α

′
P are

found from the formula

σ2(α′c
p) =

P∑
i,j=1

Ci
pC

j
pcov(αc

i , α
c
j). (32)

Knowing the dispersion of the central value of a
parameter, we can construct the interval within which
the true value of the parameter falls with a specified
probability. For this, it is sufficient to note that it
follows from the normal distribution for the central
value of the parameter that

P
(∣∣αc

p(ξ) − ᾱp

∣∣ ≤ κ(γ)σ(αc
p(ξ))

)
= γ, (33)

where P denotes the probability that a condition is
satisfied; κ depends on a chosen probability (confi-
dence level) γ, and is given by the root of the equation√

2
π

κ∫
0

exp
(
− t2

2

)
dt = γ.

For example, the confidence level γ = 0.6827,
0.9545, and 0.9973 for κ = 1, 2, and 3, respectively
(corresponding to 1, 2, or 3σ).

When ε0 is not known (for example, as in the
case of a real observed light curve), in place of (31),
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we must find the errors using formulas obtained by
replacing ε0 in (31) and (30) with the quantity wq [4]:

υ2
0(ξ) =

Rlin(αc
1(ξ) . . . αc

P (ξ), ξ1 . . . ξM )
M − P

, (34)

called the rms estimated unit-weight dispersion. The
resulting rms estimates for the dispersions (which are
random quantities) are

σ2
est(α

c
p(ξ)) ≡ υ2

0(ξ)A
inv
pp . (35)

Here, υ0 is a random quantity, and (αc
p(ξ) −

ᾱp)/σest(αc
p(ξ)) obeys a Student distribution with

M − P degrees of freedom. However, this is already
close to a normal distribution for sufficiently large
M − P � 10, and we can assume P(|αc

p(ξ) − ᾱp| ≤
κσ(αc

p(ξ))) � P(|αc
p(ξ) − ᾱp| ≤ κσest(αc

p(ξ))); i.e.,
the probability that the true value falls in an interval
constructed by multiplying the rms estimate of the
dispersion2 by the corresponding coefficient κ(γ) will
be fairly close to γ.

Let us now consider a model specified by an arbi-
trary, in general non-linear, function f(θ, β1 . . . βP ),
defined for θ ∈ {θ1 . . . θM} and for the vectors
(β1 . . . βP )T ∈ B, where B is some region of real,
Euclidean space. We assume that f(θ, β1 . . . βP ) is
differentiable with respect to β1 . . . βP over this entire
region.

As for the linear model, we specify the β1 . . . βP ,
w1 . . . wM , the normally distributed random quanti-
ties ξ1 . . . ξM , the unit-weight dispersion ε0, and the
residual functional. The random quantities ξ1 . . . ξM

display a normal distribution, and

M(ξk) = f(θk, β1 . . . βP ), (36)

σ2(ξ1w1) = σ2(ξ2w2) = . . . = σ2(ξMwM ) = ε2
0,

where M(ξk) denotes the mathematical expectation of
ξk and σ2(·) the operation of finding the dispersion.

We also assume that the matrix

Aqp(β1 . . . βP ) (37)

=
M∑

m=1

∂f

∂βq
(θm, β1 . . . βP )

∂f

∂βp
(θm, β1 . . . βP )wm

2 Note that variation of the rms estimates of the dispersions
(which are random quantities) from sample to sample, i.e.,
their scatter for various measurements of the same curve,
can be appreciably larger than the difference between the
Student and Gaussian distributions. This scatter is inversely
proportional to the square root of the number of points in the
light curve.

is non-degenerate for (β1 . . . βP )T ∈ B. We will also
denote the elements of the inverse matrix to (37) as
Ainv

qp (β1 . . . βP ).

The residual functional is specified by the expres-
sion

R(β1 . . . βP , ξ1 . . . ξM) (38)

=
M∑

m=1

[ξm − f(θ, β1 . . . βP )]2wm,

and we assume that, for fixed ξ1 . . . ξM , it is convex
in the variables β1 . . . βP and reaches its minimum in
the region of B.

In the differential-correction method, the function
f is replaced by a Taylor series expansion up to a
linear term at the minimum of the residual functional.
Dispersions found from a least-squares solution for
the corresponding linear model are used as estimates
of the dispersions of the optimal values β1 . . . βP .

We denote βc
1(ξ) . . . βc

P (ξ) to be the parameter
values (which we will call central values) providing
the minimum of the residual function
R(β1 . . . βP , ξ1 . . . ξM ) for specified ξ1 . . . ξM , and set
in (25), and then (28) and (29),

αp = βp − βc
p(ξ), (39)

g0(θ) = f(θ, βc
1(ξ) . . . βc

P (ξ)),

gp(θ) =
∂f

∂βc
p

(θ, βc
1(ξ) . . . βc

P (ξ)),

where p = 1 . . . P . Then, the quantities

covo(βc
q(ξ), β

c
p(ξ)) ≡ ε2

0A
inv
qp (βc

1(ξ) . . . βc
P (ξ)) (30′)

and

σ2
o(β

c
p(ξ)) ≡ ε2

0A
inv
pp (βc

1(ξ) . . . βc
P (ξ)), (31′)

obtained by substituting (39) into (30) and (31) for
the covariances and dispersions of the central values
in the linear model are taken as estimates of the
covariances and dispersions βc

1(ξ) . . . βc
P (ξ). In the

case of a real observed light curve, when the unit-
weight dispersions are unknown, analogous to the
linear case, we use in place of ε0 the rms estimate of
the unit-weight dispersion

υ2
0(ξ) =

R(βc
1(ξ) . . . βc

P (ξ), ξ1 . . . ξM )
M − P

(34′)

and the corresponding approximate rms estimates of
the parameter dispersions

σ2
est(β

c
p(ξ)) ≡ υ2

0(ξ)A
inv
pp (βc

1(ξ) . . . βc
P (ξ)). (35′)
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Using this approximation in the computations as-
sumes that we can neglect variations in the deriva-
tives of the function f in (37) calculated with the cen-
tral parameter values when ξ is varied in the vicinity
of its mathematical expectations.

It is obvious that, if the function f(θ, β1 . . . βP )
is linear in β1 . . . βP , then (31′)–(35′) coincide with
(31)–(35); i.e., in the case of a linear function,
the differential-correction method is identical to the
least-squares method. Note that the described meth-
ods make the assumption that the model used is fully
correct, and statistics for a normal distribution are
used to estimate the parameter errors.

In the model obtained via the reversible parameter
substitution

β′
p = φp(β1 . . . βP ), (40)

where φ are smooth functions and the matrices
∂φp(β1 . . . βP )

∂βi
are non-degenerate, we can ob-

tain an expression for approximate estimates of the
central-value dispersions for the new parameters
β′c

1(ξ) . . . β′c
P (ξ) by replacing the right-hand side

of (40) with a Taylor expansion up to the linear
term at the point (βc

1(ξ) . . . βc
P (ξ))T , setting in for-

mula (32) Ci
p =

∂φp(βc
1(ξ) . . . βc

P (ξ))
∂βc

i

and replacing

there the covariances αc
1(ξ) . . . αc

P (ξ) with the corre-
sponding approximate estimates of the covariances
(βc

1(ξ) . . . βc
P (ξ)):

σ2
o(β

′c
p(ξ)) (41)

=
P∑

i,j=1

∂φp(βc
1(ξ) . . . βc

P (ξ))
∂βc

i

∂φp(βc
1(ξ) . . . βc

P (ξ))
∂βc

j

× covo(βc
i (ξ), β

c
j (ξ)).

We should make an important comment about the
described least-squares method (and, in the case of a
non-linear model, the differential-correction method).
In these methods, the statistical hypothesis H of the
adequacy of the model to describe the observational
data is usually not verified, and instead it is imme-
diately assumed that the model used is correct. In
other words, when adopting the hypothesis H in this
case, the possibility that the researcher could make
an error of the second kind (the model is not correct,
but is adopted in accordance with some statistical
criterion) is excluded. Precisely because of this, and
also due to the use of a simple statistical normal
distribution when estimating the uncertainties in the
unknown parameters [see (31), (35), (31′), (35′)], it is
possible to obtain relatively small parameter errors in
the least-squares and differential-correction methods
(and also in the Monte Carlo method).

In reality, it is not known a priori how appropri-
ate the assumption of the correctness of the model
is, since, as a rule, the number of observed points
in the light curve is much larger than the number
of unknown parameters, so that the search for the
parameters of the problem is strongly overdetermined.
Therefore, the search for the parameters and their un-
certainties should be carried out jointly with a statis-
tical verification of the hypothesis H of the adequacy
of the model. Further, as was noted in [5, 8, 12], the
acceptance or rejection of a hypothesis H according
to some statistical criterion does not provide a final,
logical basis for its ultimate acceptance or rejection
(because of the statistical nature of the criterion).
Four cases are possible.

1. The hypothesis H is correct and is accepted by
the criterion.

2. The hypothesis H is incorrect and is rejected by
the criterion.

3. The hypothesis H is correct, but is rejected by
the criterion (an error of the first kind).

4. The hypothesis H is incorrect, but is accepted
by the criterion (an error of the second kind).

There exists for a selected statistical criterion a
non-negative probability to admit an error of the first
kind, denoted α0 ≥ 0. The quantity α0 is called the
significance level of the criterion. It is obvious that, in
the case of an adequate model, the probability of case
(1) is γ = 1 − α0.

For example, we can use the following criterion to
verify a hypothesis H (for more detail, see [8, 12]). Let
us choose some random quantity (statistic) ∆(ũ) that
depends on some experimental data ũ, with the dis-
tribution ∆(ũ) known (for example, this is a χ2

M dis-
tribution, where M is the number of observed points
in a light curve). We specify a priori some significance
level α0 and calculate the number ∆M (quantile) such
that P{∆(ũ) > ∆0} = α0 for all parameter values of
the model if the hypothesis H is correct. If we ob-
tain that ∆(ũ) > ∆M for any values of parameters
for a specific realization of the experimental data (a
specific light curve) ũ, the hypothesis H is rejected.
On the contrary, if (∆(ũ) ≤ ∆M), the hypothesis H is
accepted. At the same time, we must not forget that
the model is accepted, not because it is necessarily
correct, but because there is no basis for it to be
rejected.

In the best cases, the criterion that the mini-
mum reduced chi-squared residual be close to unity
is used when applying the least-squares, differential-
correction, or Monte Carlo method to find parameters

and their uncertainties:
χ2

M−P

M − P
� 1, where P is the

number of unknown parameters. However, here, no
quantitative measure of the adequacy of the model to
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Fig. 2. A one-parameter problem. The dependence of
the residual R(α, ξ) on the parameter α for a fixed vec-
tor comprising the random quantities ξ and the main
statistical quantities. Rmin(ξ) is the minimum residual
in terms of α, R(α, ξ); ∆P (γ) (P = 1) the quantile of
the χ2

P (P = 1) distribution; ∆M (γ) the quantile of the
χ2

M distribution; 2δ1(γ) and 2δM (γ, ξ) the widths of the
confidence intervals obtained from methods using the
statistics R(α, ξ) − Rmin(ξ), R(α, ξ) distributed as χ2

P

(P = 1) and χ2
M , respectively (see text for detail).

the observational data is considered, namely the sig-
nificance level α0 at which the model can be rejected.
We have investigated this question here (see below).

5. ANALYTICAL RELATION
BETWEEN THE ERROR INTERVALS

OBTAINED USING STATISTICS
DISTRIBUTED AS χ2

M AND χ2
P ,

AND THE DIFFERENTIAL-CORRECTION
METHOD

In our previous study [1], we established via nu-
merical simulations that, on average, the error in-
terval obtained using the confidence-region method
based on a statistic distributed as χ2

M , where M is
the number of measurement points (we will call this
the χ2

M method), exceeds the corresponding interval
obtained using the differential-correction method by
a factor of three to five. The error interval obtained
using the χ2

M method also exceeds the corresponding
interval obtained using the confidence-region method
based on a statistic distributed as χ2

P , where P is the
number of parameters being searched for (we will call
this the χ2

P method). The sizes of the confidence in-
tervals obtained using the least-squares method with
exact values of the dispersions and the χ2

P method
do not depend on the sample of random quantities,
in contrast to the χ2

M confidence intervals, which are
themselves random quantities. We present below a

rigorous analytical relation between the error intervals
for the above methods for a linear model. Namely, we
derive the function ap(t) for the distribution of the
ratio of the confidence interval for the χ2

M method to
its value for the χ2

P method. In the one-dimensional
problem (P = 1), the χ2

P confidence interval coin-
cides with the corresponding interval for the least-
squares method, while, for arbitrary P , these intervals
are related by a well defined dependence (which will be
presented below). We also study the behavior of ap(t)
as a function of the number of observational points M
and the selected confidence level γ.

Let us first consider the one-dimensional case.
We consider the residual in a one-parameter linear
model that depends quadratically on the one param-
eter α. We also assume for convenience that ε0 = 1
(the statements below will remain valid for any ε0).
This residual can be written in the form (as follows
from (26), where the terms that are quadratic in α do
not contain the random quantities ξ)

Rlin(α, ξ) = C[α − αc(ξ)]2 + Rlin
min(ξ), (42)

where Rlin
min is its minimum value in terms of α,

reached for αc(ξ), and the coefficient C is expressed in
a well defined way in terms of the specified parameters
of the model (w and g), and does not depend on the
sample of random quantities ξ.

The quantile ∆n(γ) for γ ∈ (0, 1) is given by

χ2
n(∆n(γ)) = γ;

i.e., as an inverse function to χ2
n.

Let us briefly recall the residual distribution. We
showed in [1] that the residuals are distributed as

Rlin(α, ξ) − Rlin
min(ξ) ∼ χ2

1, (43)

Rlin(α, ξ) ∼ χ2
M , (44)

Rlin
min(ξ) ∼ χ2

M−1, (45)

where α is the true value of the parameter α, and the
symbol ∼ denotes “distributed as.” Figure 2 depicts
the dependence of the residual R(α, ξ) on the param-
eter α for a fixed sample of random quantities ξ and
its dependence on the main statistical parameters.
The parabola representing this dependence in a linear
model can shift in the upper half-plane for different
ξ, while maintaining its shape, since the coefficient of
the quadratic term in α does not depend on ξ.

The error interval obtained using the χ2
1 method for

a specified confidence level γ is defined as the distance
between the roots of the quadratic equation in α:

C[α − αc(ξ)]2 + Rlin
min(ξ) (46)

= Rlin
min(ξ) + ∆1(γ).
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We denote half this interval as δ1(γ). It is obvious that
δ1(γ) obeys the relation

Cδ2
1(γ) = ∆1(γ) (47)

and is independent of the sample of random quantities
ξ. We thus have

C =
∆1(γ)
δ2
1(γ)

. (48)

The error interval obtained using the χ2
M method

for a specified confidence level γ is the distance be-
tween the roots of the quadratic equation in α:

C[α − αc(ξ)]2 + Rlin
min(ξ) = ∆M (γ). (49)

We set δM (γ, ξ) equal to half this interval when this
last equation has positive roots (i.e., the correspond-
ing confidence set is not empty) and equal to zero
otherwise. For positive values of δM (γ, ξ),

Cδ2
M (γ, ξ) + Rlin

min(ξ) = ∆M(γ). (50)

The quantity δM (γ, ξ) depends on the random quan-
tities ξ and is itself a random quantity. Using (45) we
obtain

∆M (γ) − Cδ2
M (γ, ξ) ∼ χ2

M−1. (51)

This last expression indicates that

P((∆M (γ) − Cδ2
M (γ, ξ)) < t) = χ2

M−1(t). (52)

We obtain from this last expression via straight-
forward linear and shift transformations in t and us-
ing (48)

P
(

δ2
M (γ, ξ)
δ2
1(γ)

> t

)
(53)

= χ2
M−1 (∆M(γ) − ∆1(γ)t) .

It follows from (45) that the probability that
δM (γ, ξ) > 0 (i.e., that the confidence interval is non-
zero for a specified confidence level γ), is
χ2

M−1(∆M (γ)).

The corresponding conditional probability is

P
(

δM (γ, ξ) > 0| δM (γ, ξ)
δ1(γ)

> t

)
(54)

=
χ2

M−1

(
∆M (γ) − ∆1(γ)t2

)
χ2

M−1(∆M (γ))

or

P
(

δM (γ, ξ) > 0| δM (γ, ξ)
δ1(γ)

≤ t

)
(55)

= 1 −
χ2

M−1

(
∆M (γ) − ∆1(γ)t2

)
χ2

M−1(∆M (γ))
.

The right-hand side of this last expression is
a function of the distribution of positive values of
δM (γ, ξ)

δ1(γ)
, which is the ratio of the confidence interval

for the χ2
M method to the corresponding interval

obtained when the main statistic is distributed as χ2
1,

for a specified confidence level γ. The corresponding
density of the distribution a1(t), obtained by differ-
entiating the distribution function (with accuracy to
within a normalization coefficient A1), is equal to

a1(t) = A1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e
1
2(∆1(γ)t2−∆M (γ))t

(
∆M(γ) − ∆1(γ)t2

)M−3
2 ,

0 < t <

√
∆M (γ)
∆1(γ)

,

0, t ≤ 0 or t ≥
√

∆M(γ)
∆1(γ)

.

This function reaches its maximum when

tmax1 =

√
2 − M + ∆M (γ) +

√
(2 − M)2 + ∆M (γ)(−2M + ∆M (γ) + 8)

2∆1(γ)
. (56)

Since the problem is one-dimensional, the confi-

dence interval δ1(γ) coincides with the interval ob-

tained using the least-squares method for the corre-
sponding confidence level.

The above can be generalized to the case of a
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model with P parameters by obtaining the distribu-
tion of the ratio of the projections of the confidence
regions determined using the χ2

M method and the
χ2

P method. The distribution of the corresponding
residuals is

R(α1 . . . αP , ξ) − Rmin(ξ) ∼ χ2
P , (57)

R(α1 . . . αP , ξ) ∼ χ2
M , (58)

Rmin(ξ) ∼ χ2
M−P . (59)

Recall that, in the χ2
P and χ2

M methods, by con-
fidence interval, we mean the projection of the con-
fidence region obtained from the main corresponding
statistic onto the axis for the corresponding parame-
ter. This projection is found as the distance between
the roots of the equation obtained by equating the
residual minimized over all parameters except for one
with the quantile for the selected confidence level.

Replacing throughout the previous derivations ex-
cept in (43) and (44) R(α, ξ) with the P-parameter
residual minimized over all parameters α except for
one; and χ2

1, χ2
M−1, ∆1(γ), and δ1(γ) with χ2

P , χ2
M−P ,

∆P (γ), and δP (γ), we find that the distribution func-
tion is equal to

P
(

δM (γ) > 0| δM (γ, ξ)
δP (γ)

≤ t

)
(60)

= 1 −
χ2

M−P

(
∆M (γ) − ∆P (γ)t2

)
χ2

M−P (∆M (γ))
,

while the density of the distribution of positive values
δM (γ, ξ)

δP (γ)
(with accuracy to within a normalization

coefficient Ap) is

aP (t) = Ap

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
1
2(∆P (γ)t2−∆M (γ))t

(
∆M (γ) − ∆P (γ)t2

)M−P−2
2 , 0 < t <

√
∆M (γ)
∆P (γ)

,

0, t ≤ 0 or t ≥
√

∆M(γ)
∆P (γ)

.

The maximum of this function is reached when

tmaxP =

√
1 + P − M + ∆M (γ) +

√
(1 + P − M)2 + ∆M(γ)(2P − 2M − 2 + ∆M (γ) + 8)

2∆P (γ)
. (61)

Figure 3 shows the behavior of the density function
a1(t) as a function of the confidence level γ for the χ2

M

method. Recall that, in the one-parameter problem,
the projection of the confidence region obtained using
a statistic that is distributed as χ2

P coincides with the
confidence interval obtained using the least-squares
method. Figure 3 shows that the most probable value
ratio of the confidence intervals obtained using the
χ2

M method and the least-squares method depends
on the chosen confidence level. For example, with
γ = 0.68 and γ = 0.99, the most probable confidence
interval obtained using the χ2

M method exceeds the
confidence interval for the least-squares method by

about a factor of four and a factor of∼2.1, respectively.
These calculations were carried out for M = 101.

Further, we investigated the behavior of the maxi-
mum of aP (t) as a function of γ and the dimension of
the χ2

M distribution. Figure 4 presents a set of these
dependences for M = 50, 100, 500, and 1000. Note
that the dependence has a universal character for a
linear model; i.e., it is independent of the coefficients
of the linear function considered. Figure 4 shows that
the excess of the χ2

M confidence intervals over the
least-squares confidence intervals grows (compara-
tively weakly) with increasing dimension M of the χ2

M
distribution (i.e., with the number of observational
points M ). It also follows from Fig. 4 that the ratio of
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Fig. 3. Differential density of the distribution function for
the ratio of the confidence interval ∆(χ2

M ) (obtained us-
ing the χ2

M method with an adequate model) to the confi-
dence interval obtained using the differential-correction
method. The case of a one-dimensional function with
M = 101 and γ = 0.5, 0.6827, 0.86, 0.95, 0.99 is shown.

the most probable χ2
M confidence interval to the least-

squares confidence interval decreases with increasing
γ. This dependence is shown in Fig. 5.

This raises the question of why the confidence
intervals in the differential-correction method (which
are identical to the intervals for the least squares
method for linear models) and Monte Carlo method
are appreciably smaller than those obtained for the
χ2

M method. In the one-dimensional case (P = 1),
the problem of projecting the confidence region onto
the parameter axis does not arise, and the difference
between the confidence intervals is clearly associated
with two circumstances.

1. When using the χ2
M statistic (residual), there is

no initial assumption that the model used is correct.
In practice, this means that the surface of the residual
functional (Fig. 2) for the χ2

M statistic for various
realizations of the observational data can be shifted
both along the parameter axis (in the “horizontal” di-
rection) and along the axis for the residual functional
(in the “vertical” direction). For some realizations
of the observational data, the confidence region can
even degenerate into an empty set (the number of
such cases should be close to the adopted signifi-
cance level, α = 1 − γ). The surface of the residual
functional (Fig. 2) for the χ2

P statistic for various
realizations of the observational data can only be
shifted along the parameter axis (in the “horizon-
tal” direction). The corresponding confidence region
never degenerates into an empty set.

2. For equal conditions, the distribution of χ2
M

confidence intervals, obtained assuming that the
model is adequate and using the χ2

M method is
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Fig. 4. Case of a one-parameter problem. Dependence
of the maximum of the differential distribution function
of the ratio of the confidence interval obtained using a
main statistic distributed as χ2

M to the confidence interval
obtained using the differential-correction method on the
confidence level γ for numbers of observational points
M = 10, 50, 100, 500, and 1000. These data were ob-
tained for a one-dimensional linear model function (the
form of this function is not important; the dependence
shown is universal).

broader (Fig. 3) than the normal distribution of the
central parameter values used in the differential-
correction method (in which the model is assumed
to be adequate by definition). The characteristic
parameters of these distributions are, in the former
case, the most probable χ2

M error interval and, in
the latter case, the root-mean-square (rms) estimate
of a standard deviation σ multiplied by a coefficient
corresponding to the selected confidence level (which
coincides with the χ2

P interval in the one-dimensional
case). The parameter tmax is the ratio of the first to the
second of these parameters.

In the multi-parameter case (P > 1), the effect of
having to project a multi-dimensional (in the spatial
parameters) confidence region onto the parameter
axes is added to the reasons indicated above. This
must be done in order to make the transition from an
“exact” confidence region to the values of the confi-
dence intervals. Since the projection of the confidence
region is replaced by its volumization as a parallelop-
iped whose volume is larger, the corresponding prob-
ability for overlapping the exact solution additionally
grows.

Thus, when choosing the confidence level γ for
the confidence intervals, we must understand that the
probability P that they encompass the exact solution
of the corresponding confidence region is P < γ in the
differential-correction or Monte Carlo methods, while
the probability of encompassing the exact solution
by the corresponding parallelopiped volumizing the
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Fig. 5. The one-parameter problem. Dependence of the
maximum of the differential distribution function for the
ratio of the χ2

M and differential-correction confidence in-
tervals on the number of points M for specified confidence
levels γ = 0.5, 0.6827, 0.86, 0.95, and 0.99.
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Fig. 6. Multi-parameter case. The quantity kP tmax for the
multi-parameter problem as a function of the number of
observational points M and of γ for P = 10. The confi-
dence level is indicated next to the corresponding curve.
It is striking that the probability that the true value of
the parameter falls into the projection of the χ2

M confi-
dence region is higher than the specified confidence level
when γ = 0.6827: it is equal to ∼0.80. At the same time,
the probability that the true solution falls into the error
interval for the differential-correction method is equal to
the specified confidence level, γ = 0.6827. See text for
details.

“exact” confidence region is P > γ in the χ2
M method.

In the χ2
M method, the probability of encompassing

the exact solution of the corresponding confidence
region is P = γ.

In the case of a non-linear model, there is an-
other reason why the error intervals obtained using
the differential-correction method can be reduced: the
application of a linearization procedure. However, in
the model used by us, this factor does not appre-

ciably affect the results, as is indicated by the fact
that the estimates of the dispersions of the param-
eters obtained using the differential-correction and
Monte Carlo methods do not substantially differ. The
appreciable difference between the intervals obtained
using the different methods is due precisely to the
use of different statistics, as well as differences in the
assumptions concerning the correctness of the model.

5.1. New Method for Estimating
the Parameter Errors

Thus, when the dependence of a function describ-
ing a model on the unknown parameters is linear,
then (56) and (61) enable, based on the Monte Carlo
or differential-correction method via multiplication by
the coefficient tmax (or kP tmax, see below), the deriva-
tion of the size of the error interval for an unknown
parameter in the framework of the χ2

M confidence
regions; this distribution is the most probable among
the cases in which the model is not rejected. Having
obtained the size of the Monte Carlo or differential-
correction error interval and convinced ourselves that
the model is adequate in the framework of the χ2

M
method (for which it is sufficient to calculate the
minimum corresponding residual), we can draw pre-
liminary conclusions of a probabilistic nature about
the size of the χ2

M confidence interval, without turning
directly to the more labor-intensive determination of
the sizes of the projection of the confidence region
onto the parameter axis.

We emphasize again that tmax is the most prob-
able ratio of the projection of the χ2

M and χ2
P con-

fidence regions. As was noted above, in the one-
dimensional case, the projection of the χ2

P confidence
region is equal to the confidence integral yielded by
the differential-correction method [1]. Therefore, the
value of tmax for the one-dimensional case is the most
probable ratio of the projection of the χ2

M confidence
region and the differential-correction confidence in-
terval. Values of tmax for the one-dimensional problem
are given in Table 1.

Table 1 shows that tmax differs appreciably from
unity, reflecting the reduction in the parameter errors
obtained using the differential-correction method (a
normally distributed statistic).

Tables 2–5 present values of tmax for the multi-
parameter case with P = 3, 6, 10, and 50. In the
multi-dimensional problem, the projection of the χ2

P
confidence region is not equal to the confidence in-
tervals obtained using the differential-correction or
Monte Carlo methods [1]. Therefore, for convenience
in comparing the ratio of the projection of the χ2

M
confidence region to the differential-correction con-
fidence interval, Table 6 presents the corresponding
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Table 1. Parameter tmax for the one-parameter problem as a function of M and γ for P = 1. (The confidence interval
obtained using the χ2

P method coincides with that for the differential-correction method)

M
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 8.49 5.20 3.98 3.32 2.89 2.58 2.33 2.11 1.89 1.76 1.58

20 10.4 6.21 4.68 3.87 3.35 2.98 2.68 2.42 2.16 2.01 1.79

30 11.7 6.89 5.16 4.25 3.67 3.25 2.92 2.64 2.35 2.18 1.94

40 12.7 7.41 5.53 4.54 3.92 3.47 3.11 2.81 2.50 2.31 2.05

50 13.5 7.84 5.84 4.79 4.12 3.64 3.27 2.95 2.62 2.42 2.15

60 14.1 8.22 6.10 5.00 4.30 3.80 3.41 3.07 2.73 2.52 2.23

70 14.7 8.54 6.34 5.18 4.45 3.93 3.53 3.17 2.82 2.60 2.31

80 15.3 8.84 6.55 5.35 4.59 4.06 3.63 3.27 2.90 2.68 2.37

90 15.8 9.11 6.74 5.50 4.72 4.17 3.73 3.36 2.98 2.75 2.43

100 16.2 9.35 6.92 5.64 4.84 4.27 3.82 3.44 3.05 2.81 2.49

200 19.5 11.1 8.20 6.67 5.70 5.02 4.49 4.03 3.57 3.29 2.90

300 21.7 12.3 9.06 7.36 6.29 5.53 4.94 4.44 3.93 3.61 3.18

400 23.3 13.3 9.73 7.89 6.74 5.93 5.29 4.75 4.20 3.87 3.40

500 24.7 14.0 10.3 8.33 7.11 6.25 5.58 5.01 4.43 4.08 3.58

600 25.9 14.7 10.8 8.71 7.44 6.54 5.83 5.23 4.63 4.26 3.74

700 26.9 15.3 11.2 9.05 7.72 6.78 6.06 5.43 4.80 4.41 3.88

800 27.9 15.8 11.6 9.35 7.98 7.01 6.25 5.61 4.96 4.56 4.00

900 28.7 16.3 11.9 9.63 8.21 7.21 6.43 5.77 5.10 4.69 4.12

1000 29.5 16.7 12.2 9.88 8.42 7.40 6.60 5.92 5.23 4.81 4.22

1500 32.7 18.5 13.5 10.9 9.31 8.17 7.29 6.53 5.77 5.30 4.65

2000 35.2 19.9 14.5 11.7 9.99 8.77 7.82 7.00 6.19 5.68 4.99

2500 37.2 21.0 15.3 12.4 10.6 9.26 8.26 7.39 6.53 6.00 5.27

3000 39.0 22.0 16.1 13.0 11.0 9.68 8.63 7.73 6.83 6.27 5.50

3500 40.5 22.9 16.7 13.5 11.5 10.1 8.97 8.03 7.09 6.52 5.71

4000 41.9 23.6 17.2 13.9 11.9 10.4 9.27 8.30 7.33 6.73 5.90

4500 43.2 24.4 17.8 14.3 12.2 10.7 9.54 8.54 7.54 6.93 6.08

5000 44.4 25.0 18.2 14.7 12.5 11.0 9.79 8.77 7.74 7.11 6.23

5500 45.4 25.6 18.7 15.1 12.8 11.2 10.0 8.98 7.93 7.28 6.38

6000 46.4 26.2 19.1 15.4 13.1 11.5 10.2 9.17 8.10 7.44 6.52

6500 47.4 26.7 19.5 15.7 13.4 11.7 10.4 9.35 8.26 7.58 6.65

7000 48.3 27.2 19.8 16.0 13.6 11.9 10.6 9.53 8.41 7.72 6.77

7500 49.1 27.7 20.2 16.3 13.9 12.1 10.8 9.69 8.56 7.86 6.89

8000 49.9 28.1 20.5 16.5 14.1 12.3 11.0 9.84 8.69 7.98 7.00

8500 50.7 28.6 20.8 16.8 14.3 12.5 11.2 9.99 8.82 8.10 7.10

9000 51.4 29.0 21.1 17.0 14.5 12.7 11.3 10.1 8.95 8.22 7.20

9500 52.1 29.4 21.4 17.3 14.7 12.9 11.5 10.3 9.07 8.33 7.30

10 000 52.8 29.7 21.7 17.5 14.9 13.0 11.6 10.4 9.19 8.43 7.39
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Table 2. Parameter tmax for the multi-parameter problem as a function of M and γ for P = 3. (The quantity kP tmax must
be used to translate to the confidence interval obtained using the differential-correction or Monte Carlo methods; the
values of kP were taken from Table 6)

M
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 1.71 1.60 1.55 1.51 1.48 1.45 1.42 1.39 1.35 1.32 1.28

20 1.93 1.78 1.71 1.67 1.64 1.61 1.59 1.56 1.52 1.48 1.43

30 2.10 1.92 1.84 1.79 1.76 1.73 1.71 1.68 1.63 1.60 1.54

40 2.24 2.03 1.94 1.89 1.86 1.83 1.80 1.77 1.72 1.69 1.62

50 2.36 2.13 2.03 1.98 1.94 1.91 1.88 1.85 1.80 1.76 1.69

60 2.46 2.21 2.11 2.05 2.01 1.98 1.95 1.92 1.87 1.83 1.75

70 2.56 2.29 2.18 2.11 2.07 2.04 2.01 1.98 1.93 1.89 1.81

80 2.64 2.36 2.24 2.17 2.13 2.10 2.07 2.03 1.98 1.94 1.86

90 2.71 2.42 2.30 2.23 2.18 2.15 2.12 2.08 2.03 1.99 1.90

100 2.78 2.48 2.35 2.28 2.23 2.20 2.16 2.13 2.07 2.03 1.95

200 3.30 2.91 2.74 2.65 2.59 2.55 2.51 2.47 2.41 2.36 2.26

300 3.64 3.20 3.01 2.90 2.84 2.79 2.75 2.70 2.64 2.58 2.47

400 3.91 3.43 3.22 3.10 3.03 2.98 2.93 2.88 2.81 2.75 2.63

500 4.13 3.62 3.39 3.27 3.19 3.13 3.09 3.03 2.96 2.90 2.77

600 4.32 3.78 3.54 3.41 3.33 3.27 3.22 3.16 3.09 3.02 2.89

700 4.49 3.93 3.68 3.54 3.45 3.39 3.34 3.28 3.20 3.13 2.99

800 4.64 4.05 3.80 3.65 3.56 3.50 3.44 3.38 3.30 3.23 3.09

900 4.78 4.17 3.90 3.75 3.66 3.59 3.54 3.48 3.39 3.32 3.18

1000 4.91 4.28 4.00 3.85 3.75 3.68 3.63 3.57 3.48 3.40 3.25

1500 5.43 4.73 4.42 4.24 4.13 4.06 3.99 3.93 3.83 3.75 3.58

2000 5.83 5.07 4.74 4.55 4.43 4.35 4.28 4.20 4.10 4.01 3.84

2500 6.17 5.36 5.00 4.80 4.67 4.58 4.51 4.44 4.33 4.23 4.05

3000 6.45 5.60 5.23 5.02 4.88 4.79 4.71 4.64 4.52 4.42 4.23

3500 6.71 5.82 5.43 5.21 5.07 4.97 4.89 4.81 4.70 4.59 4.39

4000 6.93 6.02 5.61 5.38 5.24 5.14 5.05 4.97 4.85 4.74 4.53

4500 7.14 6.19 5.78 5.54 5.39 5.29 5.20 5.11 4.99 4.88 4.66

5000 7.33 6.36 5.93 5.68 5.53 5.42 5.34 5.25 5.12 5.01 4.78

5500 7.51 6.51 6.07 5.82 5.66 5.55 5.46 5.37 5.24 5.13 4.90

6000 7.67 6.65 6.20 5.94 5.78 5.67 5.58 5.48 5.35 5.24 5.00

6500 7.83 6.78 6.32 6.06 5.90 5.78 5.69 5.59 5.46 5.34 5.10

7000 7.97 6.91 6.44 6.17 6.01 5.89 5.79 5.69 5.56 5.44 5.19

7500 8.11 7.03 6.55 6.28 6.11 5.99 5.89 5.79 5.65 5.53 5.28

8000 8.24 7.14 6.65 6.38 6.21 6.08 5.99 5.88 5.74 5.62 5.37

8500 8.37 7.25 6.75 6.48 6.30 6.18 6.07 5.97 5.83 5.70 5.45

9000 8.49 7.35 6.85 6.57 6.39 6.26 6.16 6.06 5.91 5.78 5.52

9500 8.60 7.45 6.94 6.66 6.47 6.35 6.24 6.14 5.99 5.86 5.60

10 000 8.72 7.55 7.03 6.74 6.56 6.43 6.32 6.21 6.06 5.93 5.67
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Table 3. Parameter tmax for the multi-parameter problem as a function of M and γ for P = 6. (The quantity kP tmax must
be used to translate to the confidence interval obtained using the differential-correction or Monte Carlo methods; the
values of kP were taken from Table 6)

M
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 1.23 1.22 1.21 1.20 1.19 1.18 1.17 1.16 1.15 1.14 1.13

20 1.22 1.24 1.25 1.26 1.27 1.27 1.27 1.27 1.27 1.26 1.24

30 1.26 1.28 1.30 1.32 1.33 1.34 1.35 1.35 1.35 1.34 1.33

40 1.31 1.32 1.34 1.36 1.38 1.39 1.40 1.41 1.41 1.41 1.39

50 1.35 1.36 1.39 1.41 1.43 1.44 1.45 1.46 1.47 1.46 1.45

60 1.40 1.40 1.42 1.45 1.47 1.48 1.50 1.51 1.52 1.51 1.50

70 1.43 1.44 1.46 1.48 1.50 1.52 1.54 1.55 1.56 1.56 1.54

80 1.47 1.47 1.49 1.51 1.54 1.56 1.57 1.59 1.60 1.60 1.58

90 1.50 1.50 1.52 1.54 1.57 1.59 1.61 1.62 1.63 1.63 1.62

100 1.54 1.53 1.55 1.57 1.60 1.62 1.64 1.65 1.67 1.66 1.65

200 1.78 1.75 1.76 1.79 1.82 1.84 1.87 1.89 1.91 1.91 1.90

300 1.94 1.91 1.92 1.94 1.97 2.00 2.03 2.06 2.08 2.08 2.07

400 2.08 2.03 2.04 2.06 2.09 2.12 2.16 2.19 2.21 2.22 2.20

500 2.19 2.14 2.14 2.16 2.19 2.23 2.26 2.30 2.32 2.33 2.31

600 2.28 2.23 2.23 2.25 2.28 2.32 2.35 2.39 2.42 2.42 2.41

700 2.37 2.30 2.31 2.33 2.36 2.40 2.44 2.47 2.50 2.51 2.49

800 2.44 2.38 2.38 2.40 2.43 2.47 2.51 2.55 2.58 2.59 2.57

900 2.51 2.44 2.44 2.46 2.50 2.54 2.58 2.61 2.65 2.66 2.64

1000 2.58 2.50 2.50 2.52 2.56 2.60 2.64 2.68 2.71 2.72 2.70

1500 2.84 2.75 2.74 2.77 2.80 2.85 2.89 2.94 2.98 2.99 2.97

2000 3.04 2.95 2.94 2.96 3.00 3.04 3.09 3.14 3.18 3.19 3.18

2500 3.21 3.11 3.09 3.12 3.16 3.20 3.26 3.31 3.35 3.37 3.35

3000 3.36 3.25 3.23 3.25 3.29 3.34 3.40 3.45 3.50 3.52 3.50

3500 3.49 3.37 3.35 3.37 3.42 3.47 3.52 3.58 3.63 3.65 3.63

4000 3.60 3.48 3.46 3.48 3.53 3.58 3.64 3.70 3.75 3.77 3.75

4500 3.71 3.58 3.56 3.58 3.63 3.68 3.74 3.80 3.86 3.87 3.85

5000 3.81 3.67 3.65 3.67 3.72 3.77 3.84 3.90 3.95 3.97 3.95

5500 3.90 3.76 3.74 3.76 3.80 3.86 3.92 3.99 4.05 4.06 4.04

6000 3.98 3.84 3.82 3.84 3.88 3.94 4.01 4.07 4.13 4.15 4.13

6500 4.06 3.91 3.89 3.91 3.96 4.02 4.08 4.15 4.21 4.23 4.21

7000 4.13 3.99 3.96 3.98 4.03 4.09 4.16 4.23 4.29 4.31 4.29

7500 4.20 4.05 4.03 4.05 4.10 4.16 4.23 4.30 4.36 4.38 4.36

8000 4.27 4.12 4.09 4.11 4.16 4.22 4.29 4.36 4.43 4.45 4.43

8500 4.34 4.18 4.15 4.17 4.22 4.29 4.36 4.43 4.49 4.51 4.49

9000 4.40 4.24 4.21 4.23 4.28 4.35 4.42 4.49 4.56 4.58 4.55

9500 4.46 4.29 4.27 4.29 4.34 4.40 4.48 4.55 4.62 4.64 4.61

10 000 4.51 4.35 4.32 4.34 4.39 4.46 4.53 4.61 4.67 4.70 4.67
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Table 4. Parameter tmax for the multi-parameter problem as a function of M and γ for P = 10. (The quantity kP tmax
must be used to translate to the confidence interval obtained using the differential-correction or Monte Carlo methods;
the values of kP were taken from Table 6)

M
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 1.16 1.13 1.12 1.10 1.09 1.08 1.08 1.07 1.06 1.05 1.04

20 1.08 1.10 1.12 1.13 1.13 1.14 1.14 1.14 1.14 1.14 1.13

30 1.05 1.10 1.13 1.15 1.16 1.18 1.19 1.19 1.20 1.20 1.20

40 1.06 1.11 1.15 1.17 1.19 1.21 1.22 1.24 1.25 1.25 1.25

50 1.07 1.12 1.16 1.19 1.22 1.24 1.26 1.27 1.29 1.30 1.30

60 1.08 1.14 1.18 1.21 1.24 1.27 1.29 1.31 1.32 1.33 1.34

70 1.09 1.15 1.20 1.23 1.27 1.29 1.32 1.34 1.36 1.37 1.37

80 1.11 1.17 1.21 1.25 1.29 1.32 1.34 1.36 1.39 1.40 1.40

90 1.13 1.18 1.23 1.27 1.31 1.34 1.36 1.39 1.41 1.43 1.43

100 1.14 1.20 1.25 1.29 1.32 1.36 1.39 1.41 1.44 1.45 1.46

200 1.28 1.33 1.38 1.43 1.47 1.51 1.55 1.59 1.63 1.65 1.66

300 1.38 1.42 1.48 1.53 1.58 1.62 1.67 1.71 1.76 1.78 1.81

400 1.46 1.50 1.56 1.61 1.66 1.71 1.76 1.81 1.86 1.89 1.92

500 1.53 1.57 1.62 1.68 1.73 1.79 1.84 1.90 1.95 1.98 2.01

600 1.59 1.63 1.68 1.74 1.80 1.85 1.91 1.97 2.03 2.06 2.09

700 1.64 1.68 1.74 1.79 1.85 1.91 1.97 2.03 2.09 2.13 2.16

800 1.69 1.73 1.79 1.84 1.91 1.97 2.03 2.09 2.15 2.19 2.22

900 1.74 1.78 1.83 1.89 1.95 2.01 2.08 2.14 2.21 2.25 2.28

1000 1.78 1.82 1.87 1.93 2.00 2.06 2.12 2.19 2.26 2.30 2.34

1500 1.95 1.99 2.04 2.11 2.18 2.25 2.32 2.39 2.47 2.52 2.56

2000 2.08 2.12 2.18 2.24 2.32 2.39 2.47 2.55 2.64 2.69 2.73

2500 2.20 2.23 2.29 2.36 2.44 2.52 2.60 2.68 2.77 2.83 2.88

3000 2.29 2.33 2.39 2.46 2.54 2.62 2.71 2.80 2.89 2.95 3.00

3500 2.38 2.41 2.47 2.55 2.63 2.71 2.80 2.90 3.00 3.06 3.11

4000 2.46 2.49 2.55 2.63 2.71 2.80 2.89 2.99 3.09 3.15 3.21

4500 2.53 2.56 2.62 2.70 2.78 2.88 2.97 3.07 3.18 3.24 3.30

5000 2.59 2.62 2.69 2.77 2.85 2.95 3.04 3.15 3.26 3.32 3.39

5500 2.65 2.68 2.75 2.83 2.92 3.01 3.11 3.22 3.33 3.40 3.46

6000 2.71 2.74 2.80 2.89 2.98 3.07 3.18 3.28 3.40 3.47 3.54

6500 2.76 2.79 2.86 2.94 3.03 3.13 3.24 3.35 3.47 3.54 3.60

7000 2.81 2.84 2.91 2.99 3.09 3.19 3.29 3.41 3.53 3.60 3.67

7500 2.85 2.89 2.96 3.04 3.14 3.24 3.35 3.46 3.59 3.66 3.73

8000 2.90 2.93 3.00 3.09 3.18 3.29 3.40 3.51 3.64 3.72 3.79

8500 2.94 2.97 3.04 3.13 3.23 3.34 3.45 3.57 3.69 3.77 3.84

9000 2.98 3.01 3.09 3.17 3.27 3.38 3.49 3.61 3.75 3.82 3.90

9500 3.02 3.05 3.13 3.22 3.32 3.43 3.54 3.66 3.79 3.87 3.95

10 000 3.06 3.09 3.16 3.26 3.36 3.47 3.58 3.71 3.84 3.92 4.00
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Table 5. Parameter tmax for the multi-parameter problem as a function of M and γ for P = 50. (The quantity kP tmax
must be used to translate to the confidence interval obtained using the differential-correction or Monte Carlo methods;
the values of kP were taken from Table 6)

M
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

50 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01

60 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03

70 1.00 1.01 1.02 1.02 1.02 1.03 1.03 1.03 1.04 1.04 1.04

80 0.991 1.00 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.05 1.05

90 0.982 1.00 1.01 1.02 1.03 1.03 1.04 1.05 1.05 1.06 1.07

100 0.973 0.996 1.01 1.02 1.03 1.04 1.04 1.05 1.06 1.07 1.08

200 0.913 0.967 1.00 1.03 1.05 1.07 1.08 1.10 1.12 1.14 1.16

300 0.881 0.953 0.998 1.03 1.06 1.09 1.11 1.14 1.17 1.19 1.22

400 0.864 0.947 1.00 1.04 1.08 1.11 1.14 1.17 1.21 1.24 1.27

500 0.856 0.945 1.00 1.05 1.09 1.13 1.16 1.20 1.24 1.27 1.32

600 0.852 0.946 1.01 1.06 1.11 1.15 1.18 1.22 1.27 1.30 1.35

700 0.852 0.948 1.02 1.07 1.12 1.16 1.20 1.25 1.30 1.33 1.39

800 0.854 0.952 1.02 1.08 1.13 1.18 1.22 1.27 1.32 1.36 1.42

900 0.857 0.956 1.03 1.09 1.14 1.19 1.24 1.29 1.34 1.38 1.44

1000 0.861 0.961 1.04 1.10 1.15 1.20 1.25 1.30 1.37 1.41 1.47

1500 0.886 0.989 1.07 1.14 1.20 1.26 1.32 1.38 1.45 1.50 1.58

2000 0.913 1.02 1.10 1.18 1.25 1.31 1.37 1.44 1.52 1.58 1.67

2500 0.939 1.04 1.13 1.21 1.28 1.35 1.42 1.49 1.58 1.65 1.74

3000 0.964 1.07 1.16 1.24 1.32 1.39 1.46 1.54 1.64 1.70 1.80

3500 0.987 1.09 1.18 1.27 1.35 1.42 1.50 1.58 1.68 1.75 1.86

4000 1.01 1.12 1.21 1.29 1.37 1.45 1.53 1.62 1.72 1.80 1.91

4500 1.03 1.14 1.23 1.32 1.40 1.48 1.57 1.66 1.76 1.84 1.95

5000 1.05 1.16 1.25 1.34 1.43 1.51 1.60 1.69 1.80 1.88 2.00

5500 1.06 1.17 1.27 1.36 1.45 1.53 1.62 1.72 1.83 1.92 2.04

6000 1.08 1.19 1.29 1.38 1.47 1.56 1.65 1.75 1.87 1.95 2.07

6500 1.10 1.21 1.31 1.40 1.49 1.58 1.67 1.77 1.90 1.98 2.11

7000 1.11 1.22 1.32 1.42 1.51 1.60 1.70 1.80 1.92 2.01 2.14

7500 1.13 1.24 1.34 1.44 1.53 1.62 1.72 1.82 1.95 2.04 2.18

8000 1.14 1.25 1.36 1.45 1.55 1.64 1.74 1.85 1.98 2.07 2.21

8500 1.15 1.27 1.37 1.47 1.56 1.66 1.76 1.87 2.00 2.09 2.24

9000 1.17 1.28 1.39 1.48 1.58 1.68 1.78 1.89 2.02 2.12 2.26

9500 1.18 1.30 1.40 1.50 1.60 1.70 1.80 1.91 2.05 2.14 2.29

10 000 1.19 1.31 1.41 1.51 1.61 1.71 1.82 1.93 2.07 2.17 2.32
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Table 6. Recalculation coefficient kP (γ) for the parameter tmax from Tables 2–5 in the ratio of the projection of the
confidence region obtained for the χ2

M method to the confidence interval obtained for the differential-correction or Monte
Carlo methods

P
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 6.08 3.96 3.10 2.61 2.28 2.04 1.85 1.68 1.52 1.43 1.31

6 11.8 6.92 5.08 4.08 3.43 2.96 2.59 2.28 1.98 1.81 1.59

10 17.6 9.81 7.00 5.49 4.53 3.85 3.31 2.86 2.43 2.18 1.87

50 48.9 25.4 17.3 13.1 10.4 8.56 7.14 5.95 4.83 4.19 3.39

values of the coefficient kP (γ) =

√
∆P (γ)
∆1(γ)

[this ex-

pression follows from (47) and is analogous to the
expression for δP (γ)], which must be applied to the
values of tmax from Tables 2–5. As is described for the
one-dimensional case above, the quantity kP tmax in
the multi-dimensional case is the ratio of the projec-
tion of the χ2

M confidence region to the differential-
correction or Monte Carlo confidence interval.

Table 7 and Fig. 6 present values of kP tmax for the
case P = 10. The character of the numerical values of
kP tmax from Table 7 is very close to the values of tmax
from Table 1, which shows the ratio of the χ2

M to the
differential-correction error intervals. A comparison
of Fig. 5 and Fig. 6 illustrates this clearly. Thus, in
the multi-parameter case, the numerical ratios of the
χ2

M and differential-correction error intervals remain
as before (their exact values are obtained from (56)
and (61); see also Tables 2–6).

Recall that, in the one-dimensional case, the prob-
abilities that the true parameter value falls in the
projection of the χ2

P confidence region and in the
differential-correction confidence interval are equal.
In the multi-dimensional case, the probability that the
true parameter value falls into the projection of the χ2

P
confidence region is higher than the corresponding
probability for the differential-correction confidence
interval.

Note that the results presented above were ob-
tained for a linear model. The use of a χ2

P statistic
to construct the confidence intervals was based on
the fact that the minimum residual is distributed as
χ2

M−P . However, this assertion is valid only for a
model that depends linearly on its parameters. When
this dependence is not linear, this assertion can be
valid only asymptotically, as M → ∞ [5, 8]. There-
fore, the results obtained can also be applied to non-
linear models, but only approximately, in an asymp-
totic sense.

5.2. Significance Level Corresponding
to the Reduced Chi-Squared Statistic

The adequacy of a model to describe observational
data is often judged based on the nearness to unity of
the minimum value of the residual R̂ ≡ R/(M − P ),
which is distributed as χ̂2

M−P (as is the random quan-

tity
ξ

M − P
, if ξ ∼ χ2

M−P ), where P is the number

of parameters over which the minimization is carried
out (an alternative criterion is nearness of the residual
Rmin, distributed as χ2

M−P , to the value M −P ). This
omits the quantitative characteristic of the adequacy
of the model, namely the significance level α0 = 1− γ
at which the model can be rejected (recall that α0 is
the number of errors of the first kind that will occur
if we reject the model). Figure 7 presents a graphical
depiction of the solution of the equation

∆M−P (1 − α0)
M − P

= q

for the significance level α0 as a function of the differ-
ence M −P (where M is the number of observational
points, P the number of unknown parameters, and
∆M−P (γ) a function of the dependence of the quantile
on the confidence level γ = 1 − α0) for a specified
quantile q for the χ̂2

M−P distribution. The value of q
was taken to be 0.5, 0.6, 0.7, 1.0, 1.1, 1.5, and 2.0.
This dependence can be written in the explicit form

α0(M − P ) = 1 − χ2
M−P (q(M − P )).

Figure 7 shows that α0 begins to approach its
asymptotic limit fairly rapidly (for M � 50). For ex-
ample, for q = 1, the asymptotic limit of α0 is ∼50%;
i.e., in this case, we will make an error of the first kind
(rejecting a correct model) in ∼50% of cases if we re-
ject the model. Consequently, there is no serious basis
to reject the model, and the model should therefore be
accepted.
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Table 7. Parameter kP tmax for the multi-parameter problem as a function of M and γ for P = 10 (see also Fig. 6)

M
γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 20.4 11.1 7.82 6.07 4.96 4.17 3.56 3.05 2.57 2.29 1.95

20 18.9 10.8 7.81 6.18 5.13 4.37 3.77 3.26 2.77 2.49 2.12

30 18.5 10.8 7.90 6.31 5.27 4.52 3.93 3.41 2.92 2.62 2.24

40 18.5 10.9 8.01 6.44 5.41 4.65 4.06 3.54 3.03 2.73 2.34

50 18.7 11.0 8.13 6.56 5.53 4.77 4.17 3.65 3.13 2.83 2.43

60 18.9 11.2 8.26 6.67 5.63 4.87 4.27 3.74 3.22 2.91 2.50

70 19.2 11.3 8.38 6.78 5.74 4.97 4.36 3.83 3.30 2.98 2.57

80 19.5 11.5 8.50 6.88 5.83 5.06 4.44 3.90 3.37 3.05 2.63

90 19.8 11.6 8.61 6.98 5.92 5.14 4.52 3.97 3.44 3.11 2.68

100 20.0 11.8 8.72 7.08 6.00 5.22 4.59 4.04 3.50 3.17 2.73

200 22.4 13.0 9.63 7.83 6.66 5.82 5.14 4.55 3.96 3.60 3.11

300 24.2 14.0 10.3 8.39 7.14 6.25 5.53 4.90 4.28 3.89 3.38

400 25.6 14.7 10.9 8.84 7.53 6.59 5.84 5.19 4.53 4.13 3.58

500 26.8 15.4 11.4 9.22 7.86 6.88 6.10 5.42 4.74 4.32 3.76

600 27.9 16.0 11.8 9.56 8.15 7.13 6.33 5.63 4.93 4.49 3.91

700 28.9 16.5 12.2 9.86 8.40 7.36 6.53 5.81 5.09 4.64 4.04

800 29.7 17.0 12.5 10.1 8.63 7.56 6.71 5.98 5.24 4.78 4.16

900 30.5 17.4 12.8 10.4 8.85 7.75 6.88 6.13 5.37 4.90 4.27

1000 31.2 17.8 13.1 10.6 9.04 7.92 7.04 6.27 5.49 5.02 4.37

1500 34.2 19.5 14.3 11.6 9.86 8.64 7.68 6.85 6.01 5.49 4.79

2000 36.6 20.8 15.2 12.3 10.5 9.20 8.18 7.30 6.41 5.86 5.11

2500 38.6 21.9 16.0 13.0 11.0 9.67 8.60 7.68 6.74 6.17 5.38

3000 40.2 22.8 16.7 13.5 11.5 10.1 8.97 8.00 7.03 6.44 5.62

3500 41.7 23.7 17.3 14.0 11.9 10.4 9.29 8.29 7.29 6.67 5.82

4000 43.1 24.4 17.8 14.4 12.3 10.8 9.58 8.55 7.52 6.88 6.01

4500 44.3 25.1 18.3 14.8 12.6 11.1 9.84 8.79 7.73 7.08 6.18

5000 45.5 25.7 18.8 15.2 12.9 11.3 10.1 9.00 7.92 7.25 6.33

5500 46.5 26.3 19.2 15.5 13.2 11.6 10.3 9.21 8.10 7.42 6.48

6000 47.5 26.9 19.6 15.8 13.5 11.8 10.5 9.40 8.27 7.57 6.61

6500 48.4 27.4 20.0 16.1 13.7 12.0 10.7 9.57 8.43 7.72 6.74

7000 49.3 27.9 20.3 16.4 14.0 12.3 10.9 9.74 8.58 7.86 6.86

7500 50.1 28.3 20.7 16.7 14.2 12.5 11.1 9.90 8.72 7.99 6.98

8000 50.9 28.8 21.0 17.0 14.4 12.6 11.3 10.1 8.85 8.11 7.09

8500 51.7 29.2 21.3 17.2 14.6 12.8 11.4 10.2 8.98 8.23 7.19

9000 52.4 29.6 21.6 17.4 14.8 13.0 11.6 10.3 9.10 8.34 7.29

9500 53.1 30.0 21.9 17.7 15.0 13.2 11.7 10.5 9.22 8.45 7.38

10 000 53.7 30.3 22.1 17.9 15.2 13.3 11.9 10.6 9.34 8.55 7.48
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∆M−P (1 − α0)

M − P
= q for the significance level α0 for P = 3 as a function of the number

of observational points M for a specified quantile q of the reduced statistic χ̂2
M−P . The value of q is indicated next to the

corresponding curve. When the minimum value of the reduced chi-squared is equal to unity, the corresponding significance
level α0 approaches 0.5.

At the same time, when q = 1.5, the asymptotic
limit for α0 is already close to ∼0%. In this case, we
will make an error of the first kind in ∼0% of cases if
we reject the model. Thus, here, there is no basis to
accept the model, and the model should be rejected.

Thus, we conclude that, if the reduced chi-squared
for the solution of an inverse parametric problem is
� 1.5, the model used is clearly inadequate to the
observational data. The resulting values of the un-
known parameters and their confidence intervals (er-
rors) are “poor”, and it is necessary to construct a
better model.

6. FITTING THE OBSERVED LIGHT CURVE
OF THE YZ Cas BINARY SYSTEM

Here, we analyze the normalized light curve of the
eclipsing binary system YZ Cas obtained in a red filter
(λ = 6700 Å) by Kron [6]. The observed light curve
included M = 42 points, ξ1 . . . ξ42. The dispersions
of each brightness measurement in magnitudes were
taken to be (σobs

m )2 = 1.77 × 10−6 [8], or (σobs
m )2 =

1.5015 × 10−6 on our (intensity) scale, taking into
account that Lfull = 1. The central value of each
point in the light curve was obtained by averaging
Nm = 12 points for m = 1 . . . 42 [3, 6].

We supplemented the fits of the observed light
curve of YZ Cas presented in [1] with fits for the
limb-darkening coefficient assuming a linear limb-
darkening law. Thus, our fitting of the light curve
was carried out over six parameters: r1, r2, i, x1, x2,

I
(1)
0 /I

(2)
0 . The minimization of the residual R between

the observed and theoretical light curves was carried
out using a gradient-descent method. The central
values and confidence intervals of the unknown pa-
rameters are presented in Table 8.

The calculation of the central values and error
intervals of r1, r2, i in the differential-correction and
confidence-region methods is described in detail
in [1], and we do not present this information here.
Note that we focus here specifically on the calculation
of the central values and confidence intervals of the
limb-darkening coefficients, together with verification
of the reliability of the resulting confidence inter-
vals. The errors in the limb-darkening coefficients
in the differential-correction method were obtained
using (41).

Since the use of statistics distributed as χ2
P and

χ2
M requires knowledge of the unit-weight dispersion

ε0, which is not precisely known for a real observed
light curve, we analyzed a model binary system whose
phases θ1...θ42 coincided with the observed phases
for YZ Cas. The true parameter values for the bi-
nary system were set equal to the central values ob-
tained from the fit of the observed light curve using
a linear limb-darkening model [1], i.e., r̄1 = 0.14408,
r̄2 = 0.07556, ī = 88.27◦, x1 = 0.2998, x2 = 0.4071.
The unit-weight dispersion was set equal to the rms
estimate υ0 obtained from this fitting of the observed
light curve, ε0 = 0.003422904. The weighting coef-
ficients wm and number of measurements at each
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Table 8. Fitting the observed light curve of YZ Cas with a linear limb-darkening law

Method r1 r2 i, deg x1 x2

Differential correction
(σest)

0.14408± 0.00023 0.07556± 0.00038 88.27 ± 0.090 0.2998± 0.02115 0.4071 ± 0.1172

Confidence regions,
FM,N−M (γ = 68.2%)

0.1442± 0.00217 0.07554± 0.00114 88.37± 0.57 0.2917± 0.1199 0.1959 ± 0.7666

Table 9. Fitting the model “observed” light curve of YZ Cas with a linear limb-darkening law. (The unit-weight rms is
taken to be ε0 = 0.003422904)

Parameter
Differential-
correction

method

Confidence-region
method, χ2

P

Confidence-region
method, χ2

M

Confidence-region
method, Fisher distribution

F

r1 0.14422± 0.00023 0.1439± 0.000641 0.1439± 0.0007767 0.1445± 0.00070

r2 0.07557± 0.00038 0.07538± 0.00103 0.07539± 0.001247 0.07564± 0.0011

i, deg 88.28 ± 0.091 88.42 ± 0.27 88.43 ± 0.33 88.19± 0.30

x1 0.3052± 0.01942 0.3013± 0.05321 0.3002± 0.06488 0.3007± 0.0589

x2 0.3759± 0.1184 0.3403± 0.3280 0.3213± 0.4015 0.3316± 0.3637

phase N1 . . . N42 we set equal to 12. Further, we call
this the model observed system.

The differential-correction method [using (31′))]
and confidence-region method based on χ2

M , χ2
P ,

and Fisher statistics (FM,N−M in the case with x1,

x2 r1, r2, i, I
(1)
0 /I

(2)
0 , and FM−3,N−M in the case

with r1, r2, i) were used to obtain the parameter
error intervals for the model observed system, as one-
dimensional projections of the confidence region at
the confidence level γ = 0.6827. Note that the error
intervals of the parameters obtained for the model
observed light curve differ from those for the observed
light curve from [6] due to the different realizations
of the light curve itself (in spite of the fact that the
unit-weight dispersion ε0 for the model curve was
set equal to the rms estimate for the observed curve,
ε0 = 0.003422904).

Table 9 presents the results of our fitting of the
model observed light curve of YZ Cas. Note that
the error intervals obtained for the confidence-region
method depend on the realization of the model ob-
served light curve. The results presented in Table 9
were all obtained using the same realization of the
model obsered light curve of YZ Cas.

Figures 8 and 9 present the residuals obtained
using the χ2

M method to calculate the limb-darkening
coefficients x1 and x2 (the residuals were minimized

over all remaining parameters, r1, r2, i, and I
(1)
0 /I

(2)
0 )

based on the model observed light curve. The model

can be rejected only at a high significance level, α0 =
0.3173 (the corresponding minimum reduced chi-
squared is ∼1.1; Fig. 7). Therefore, the model can
be considered to be adequate to the observational
data, and we can determine the confidence region for
the parameters at the confidence level γ = 0.6827,
which is not empty. However, the region of limb-
darkening coefficients for the smaller star x2 satisfy-
ing the model extends to negative values (the value
of x2 is contained in the interval from −0.0802 to
0.7228), in contradiction with the physical range of
these values, x2 > 0. Thus, the given accuracy of the
observed light curve (υ0 = 0.003423) does not enable
reliable calculation of the linear limb-darkening coef-
ficient for the smaller star based on an analysis of the
secondary minimum in the light curve (total eclipse)
of the YZ Cas binary system. The limb-darkening
coefficient for the larger star (annular eclipse) is de-
termined more certainly: x1 = 0.3002 ± 0.06488.

As follows from Table 9, the errors in x1 and x2
found using the differential-correction method (us-
ing a normally distributed statistic) are appreciably
smaller than the errors found using the χ2

M method
(in this case, the projections of the confidence region
onto the x1 and x2 parameter axes). When choos-
ing the errors derived from the differential-correction
method, we must bear in mind that these repre-
sent only “internal” errors, which can be appreciably
smaller than the “external” errors in parameters found
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M

and χ2
P distributions for the confidence level γ = 0.6827

(when using χ2
P statistics, the quantity ∆P (γ) is mea-

sured from the minimum residual).

from an analysis of another realization of the light
curve (for example, obtained at another epoch).

Our numerical simulations showed that reliably
determining the limb-darkening coefficient of the
smaller star in the YZ Cas binary system requires
increasing the accuracy of the observed light curve
by approximately an order of magnitude. We per-
turbed the light curve constructed with the “true”
parameter values, for which we adopted the central
values from Table 8: r̄1 = 0.14408, r̄2 = 0.07556,
ī = 88.27◦, x1 = 0.2998, x2 = 0.4071. Here, the unit-
weight dispersion root square was taken to be ε0 =
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σobs
m /

√
wm = 0.0003422904 (where the weight of

each point is wm = Nm = 12). Further, we fit the
resulting perturbed light curve.

Figure 10 presents the behavior of the residual
obtained using the χ2

M method to calculate the limb-
darkening coefficient x2. At the chosen confidence
level, γ = 0.6827, the model is adequate to the ob-
servational data, with x2 = 0.4205 ± 0.0399. Thus,
to reliably determine the limb-darkening coefficients
in classical binaries whose smaller components have
radii similar to that of the secondary component in
YZ Cas, the root square from unit-weight disper-
sion must be close to ε0 � 10−4. Such high-accuracy
light curves can be obtained with the COROT and
KEPLER orbiting photometric stations.

Analysis of the main minimum (annular eclipse)
indicates that the limb-darkening coefficient of the
larger star x1 is found reliably with ε0 = 0.0034: x1 =
0.3002 ± 0.06488 for the χ2

M method, where this indi-
cates the projection of the six-dimensional confidence
region onto the x1 axis.

6.1. Use of a Quadratic Limb-Darkening Law

We also fit the observed light curve assuming a
quadratic limb-darkening law [see (3)]. Here, we ob-
tained two different fits.

In the first case, the unknown parameters were r1,
r2, i, x1, x2, y1, and y2; in the second, the coefficients
x1 and x2 were fixed. We used the values of Van
Hamme [10] for x1 and x2, and the limb-darkening
law for the smaller component was assumed to be
linear. The fitting amounted to searching for the pa-
rameters r1, r2, i, and y1.

The results of this fitting are presented in Ta-
ble 10. The errors were obtained using the differential-
correction method (for the confidence level 0.6827).
When fitting the observed light curve over the entire
collection of parameters, the values of x1, x2, y1, and
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text for details.
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Table 10. Results of fitting the observed light curve of YZ Cas using a quadratic limb-darkening law (ε0 = 0.003422904)

r1 r2 i, deg x1 x2 y1

0.144324± 0.000308 0.753775± 0.000220 88.22 ± 0.099 0.331 0.383 −0.0134± 0.0100

Table 11. Half the error intervals for the limb-darkening coefficients for the YZ Cas components derived by fitting the
model observed light curve using a linear limb-darkening law, and the number of times the “true” values fall in these
intervals, N∆x1 and N∆x2 . (N is the number of times the exact solution falls in the error interval. ε0 = 0.003422904. The
number of times the exact solution falls in the confidence region D is indicated in parantheses.)

Method N∆x1 x1 ± ∆x1 N∆x2 x2 ± ∆x2 N

Differential-correction 6892 0.3052± 0.01942 6957 0.3759± 0.1184 4916

Monte Carlo 6899 0.3009± 0.02011 6884 0.4934± 0.1056 4871

Confidence region, χ2
P 9722 0.3013± 0.05321 9842 0.3403± 0.3280 9634 (6898)

Confidence region, χ2
M 8234 0.3002± 0.06488 8413 0.3213± 0.4015 8166 (6858)

Confidence region, FM,N−M 8112 0.3007± 0.0589 8306 0.3316± 0.3637 8060 (6827)

y2 lie outside the physically reasonable range and are
thus artefacts, although the best-fit light curve for
these values fits the observed light curve well, and is
very close to the light curve obtained for a linear limb-
darkening law.

In the second case, y1 = −0.0134 ± 0.0100. The
best-fit light curve is nearly identical (with accuracy
to the third digit after the decimal point) to the best-
fit light curve obtained using a linear limb-darkening
law (Fig. 11).

Thus, with ε0 = 0.0034, it is fully sufficient to
restrict our analysis to a linear limb-darkening law
when fitting the observed light curve. The corrections
for non-linearity of this law are negligibly small. The
test of reliability of the error intervals for the limb-
darkening coefficients is satisfied for a linear law.

6.2. Test of Reliability of the Limb-Darkening
Coefficients and Their Errors

We verified the trustworthiness of the error inter-
vals for x1 and x2 calculated for each method. We
carried out 10 000 perturbations of the model ob-
served light curve (for ε0 = 0.003422904) calculated
with the “true” parameter values, taken to be the cen-
tral values from Table 8: r̄1 = 0.14408, r̄2 = 0.07556,
ī = 88.27◦, x1 = 0.2998, x2 = 0.4071. We counted
the number of times the “true” values fell in the
corresponding confidence regions or their projections
(Table 11).

The confidence intervals for x1 and x2 calculated
as the projection onto the x1, x2 parameter axes of the
six-dimensional confidence regions obtained using
χ2

P , χ2
M , and Fisher statistics (FM,N−M in the case

with x1, x2 r1, r2, i, I
(1)
0 /I

(2)
0 , and FM−3,N−M in

the case with r1, r2, i) by solving the corresponding

inequalities for r1, r2, i, x1, x2, and I
(1)
0 /I

(2)
0 .

Table 11 shows that the number of times the ex-
act solution falls in the individual error intervals for
the differential-correction and Monte Carlo methods
corresponds to the probability γ = 68.2%, but the
number of joint “hits” is less than this probability
(N � 4900, which is ∼30% lower than the value N �
6800 corresponding to γ = 0.6827). In this case, the
confidence intervals for x1 and x2 are projections of
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for linear and quadratic limb-darkening laws (the curves
coincide with accuracy to within the third digit after the
decimal place). The points show the observational data
from [6].
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Fig. 12. Projection of the six-dimensional confidence re-
gion for the parameters r1, r2, i, x1, x2, and I

(1)
0 /I

(2)
0 onto

the plane of the parameters r1, x1, obtained by fitting the
model observed light curve for YZ Cas using statistics
distributed as χ2

P (small ellipse), the Fisher distribution
FM,N−M (medium ellipse), and χ2

M (large ellipse). The
rectangle in the center is the confidence region obtained
using the differential-correction or Monte Carlo method.
The deviations of the parameters from the central values
are shown. The adopted unit-weight dispersion square
root is ε0 = 0.003423. The confidence intervals obtained
using the differential-correction and Monte Carlo meth-
ods (using a normally distributed statistic) cover the ex-
act values of the parameters with the specified proba-
bility, γ = 0.68, while the corresponding confidence re-
gion (central rectangle) covers the exact solution with
a probability that is lower than γ, equal to 0.49. The
confidence regions D obtained using χ2

P , FM,N−M , and
χ2

M statistics cover the exact solution with probability
γ = 0.68, while the corresponding confidence intervals
(projections of the confidence region onto the r1 and x1

parameter axes) cover the exact parameter values with
a probabilities higher than γ, namely 0.9904 and 0.9722
for the χ2

P statistic, 0.8456 and 0.8234 for the χ2
M , and

0.8368 and 0.8112 for the FM,N−M statistic.

the six-dimensional confidence region for r1, r2, i, x1,

x2, and I
(1)
0 /I

(2)
0 onto the x1 and x2 parameter axes.

Falling into the confidence region D fully corresponds
to the specified confidence level γ = 68.2%. Since the
two-dimensional projection onto the (x1, x2) plane is
an elongated “ellipse,” number of coincidences with
the projection of the “ellipse” onto the x1 and x2

parameter axes appreciably exceeds the confidence
level γ = 68.2%. The situation when the χ2

P method
is used is analogous. Therefore, the parameter errors
obtained using the confidence-area method corre-
spond to a confidence level >γ, and are most pre-
ferred from the point of view of reliability. Figure 12
presents a comparison of the projected confidence
regions for the parameters r1 and x1 obtained using
various methods. Note that in our previous paper [1]
small rectangles show, as in Fig. 12 of the given paper,
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Fig. 13. Primary minimum (annular eclipse) of the model
observed light curve of YZ Cas together with theoret-
ical light curves obtained for the maximum and min-
imum values of r1, r2, x1, and x2 determined us-
ing the χ2

M method (outer curves), χ2
P method (mid-

dle curves), and differential-correction method (inner
curves). The adopted unit-weight dispersion square root
is υ0 = 0.003423.

the confidence regions obtained by the differential-
correction method.

In spite of the fact that the most probable con-
fidence interval obtained using the χ2

M method ex-
ceeds the corresponding interval obtained using the
χ2

P method, the χ2
P confidence interval contains the

true value of the parameter in ∼99% of cases, and the
χ2

M confidence interval in ∼85% of cases (for a one-
dimensional projection). This reflects the fact that the
probability of falling into the confidence intervals ob-
tained using the χ2

M method is determined largely, not
by the most probable value, but by the character of the
distribution of these intervals, which are themselves
random quantities.

6.3. “Internal” and “External” Errors

Our results clearly demonstrate and explain the
qualitative difference between the magnitudes of pa-
rameter errors derived using the differential-correc-
tion and confidence-region methods.

We constructed theoretical light curves using the
upper and lower values for r1, r2, x1, and x2 from
Table 9 and fixing the orbital inclination of the binary
to be i = 88.28◦ (Fig. 13; see also Fig. 12). The
data in these theoretical light curves form an “error
corridor”, within which the observed values of the
given realization of the light curve are located. The
error corridor for the differential-correction method is
fairly narrow, and some of the “observed” points in
the given realization densely press against its walls.
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The “observed” points in some realizations of the light
curve may lie outside the indicated error corridor.

The analogous error corridor for r1, r2, x1, and x2

derived using the χ2
M method (Fig. 13) is appreciably

broader, and clearly allows for the statistical unpre-
dictability of the light-curve realizations.

We emphasize again that, in adopting errors found
with the differential-correction or Monte Carlo meth-
ods, we must bear in mind that these include only “in-
ternal” errors, which may not overlap with the “inter-
nal” errors of the parameters found from an analysis
of another realization of the light curve (for example,
obtained at a different epoch). The probability that the
true parameters all fall into their error intervals in the
differential-correction method is substantially lower
(by a factor of ∼1.3−1.4) than the probability for each
error interval separately.

The basis for calling the errors determined using
the differential-correction and Monte Carlo methods
“internal” is that the “internal” statistical distribution
of the derived central values of the parameters are
used when computing these errors. The calculation of
the parameter errors in the confidence-region method
uses the “external” statistical distribution of the ob-
served light-curve values, so that the errors yielded
by this method can be considered to be “external”.

7. DISCUSSION

Our computations have shown that trustworthy
derivation of both limb-darkening coefficients based
on the light curve for the eclipsing system YZ Cas is
possible only if the accuracy of the individual mea-
surements is ε0 � 10−4 (on an intensity scale with
Lfull = 1). It is not possible to determine the limb-
darkening coefficient for the smaller star reliably when
ε0 � 10−3. Not only the absolute accuracy of the indi-
vidual brightness measurements for the system is im-
portant, but also the depth of the eclipse. For example,
in the YZ Cas system, the depth of the secondary
minimum (full eclipse) is∼10% of the total brightness
of the system, which is fully sufficient to determine the
limb-darkening coefficient with ε0 � 10−4. However,
if the depth of this eclipse were smaller, the required
accuracy of the individual measurements would be
higher. When fitting the primary minimum of the
YZ Cas light curve (annular eclipse), we are able to
reliable determine the linear limb-darkening coeffi-
cient x1 = 0.2917 ± 0.1199 for ε0 � 0.0034.

The light curves obtained using linear and
quadratic limb-darkening laws were identical, indi-
cating the smallness of non-linear limb-darkening
effects. This makes it possible to fit the light curve
reliably using a linear limb-darkening law when the
accuracy of the light curve measurements is ∼10−3.

Table 11 shows that the individual error inter-
vals for x1 and x2 derived using the Monte Carlo
and differential-correction methods contain the true
values in ∼68% of cases, while the both parame-
ters lie in their error intervals simultaneously in only
∼49% of cases. This reflects the non-reliability of the
differential-correction and Monte Carlo methods in
terms of the simultaneous incidence of the unknown
parameter values in their error intervals.

Recall that the confidence intervals for x1 and x2 in
the χ2

M method are projections of the six-dimensional

region of the parameters r1, r2, i, x1, x2, and I
(1)
0 /I

(2)
0

onto the x1 and x2 parameter axes. The probability
that a parameter falls in the confidence region D
corresponds fully to the specified confidence level γ =
68.2% (Table 11). Since the two-dimensional pro-
jection onto the (x1, x2) plane forms an elongated
“ellipse,” the number of “hits” in this projected “el-
lipse” appreciably exceeds the confidence level γ =
68.2%. The situation for the χ2

P method is analogous.
Therefore, the parameter errors obtained using the
confidence-region method correspond to >γ, and are
preferable in terms of their trustworthiness.

For example, Table 1 shows that, in the case of a
one-parameter model with γ = 0.90, with the number
of observational points M = 10 − 10 000, the param-
eter tmax varies from 1.89 to 9.19; i.e., this is the
factor by which the error of an unknown parameter
is reduced when derived using the Monte Carlo or
differential-correction methods.

One of the important results of our analysis are
the analytical relationships between the probable
values of the confidence intervals obtained using the
χ2

M and the errors obtained using the differential-
correction method for one-parameter and multi-
parameter problems [see (56) and (61)]. These show
that tmax (and kP tmax) decrease with growth in γ,
while this parameter grows comparatively weakly
with growth in M (Figs. 3–6).

We again note that formulas (56) and (61) (for
a linear dependence of the function describing the
model on the unknown parameters) can be used to
obtain the error interval for an unknown parameter
for the χ2

M confidence-region method that is most
probable among those for adequate models from the
corresponding error interval in the Monte Carlo or
differential-correction method via multiplication by
the coefficient tmax or kP tmax (see also Tables 1–7).
After finding the error interval for the Monte Carlo or
differential-correction method and verifying that the
model is adequate in the χ2

M method (for which it
is sufficient to calculate the minimum of the corre-
sponding residual), we can draw preliminary conclu-
sions of a probabilistic nature about the size of the
χ2

M confidence interval, without turning directly to
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the more labor-intensive determination of the sizes
of the projections of the confidence region onto the
parameter axes.

Briefly summarizing the results, the differential-
correction and Monte Carlo methods yield estimates
only of the “internal” parameter errors. At the same
time, the confidence-region method provides esti-
mates of the “external” errors of unknown parameters
(see in this connection the study of Popper [11]).

Let us make one more important comment. The
magnitude of the parameter errors obtained in the
differential-correction, Monte Carlo, and χ2

P methods
do not depend on the sample volume (number of
points M in the light curve), and are stable in the
sense that, the parameter errors for different realiza-
tions of a random process (light curve) with other
conditions the same will differ only comparatively
weakly (the corresponding differences are much less
than 100%). These “good” properties of these meth-
ods are associated with the fact that they assume a
priori that the model used is fully correct (the pos-
sibility of an error of the second kind is taken to be
negligible).

In the case of the χ2
M and Fisher FM,N−M meth-

ods, there is no such a priori assumption that the
model is fully correct, and the adequacy of the model
is verified using the observtional data in the process of
constructing the confidence regions. Therefore, in the
χ2

M and FM,N−M methods, the resulting parameter
errors depend on the sample volume M and vary
strongly from one realization of the random process
to another (for some realizations, the errors can even
degenerate into an empty set). The dependence of the
parameter errors in the χ2

M and FM,N−M methods
on the sample volume M is very weak. For example,
as follows from Table 1, when the number of points
M is varied by a factor of two, from 100 to 200,
the most probable value of relative error in the χ2

M
method varies for γ = 0.7 by a factor of ∼17%; when
the sample volume is varied by three orders of magni-
tude (from M = 10 to M = 10000), other conditions
being equal, the most probable value of relative error
varies by only a factor of ∼5. On the other hand, it
is possible to obtain reliable estimates of parameter
errors when a model is rejected at a fairly high signif-
icance level (corresponding to a reduced chi-squared
that is close to unity) in the χ2

M , FM,N−M , and χ2
P

methods.

8. CONCLUSION

We have shown that determining the errors of
parameters in the differential-correction and Monte
Carlo methods leads to a substantial reduction in the
magnitude of the errors. These methods yield only

the “internal” errors of the parameters for a given
realization of an observed light curve. The parameter
values for different realizations of a light curve can
even not have common values in the error intervals
derived using the differential-correction and Monte
Carlo methods.

The comparatively small parameter errors ob-
tained in the differential-correction and Monte Carlo
methods is due to the application of the a priori as-
sumption that the model is fully correct, and also the
application of a simple, normally distributed statistic;
at the same time, the solution of the inverse problem
is searched for using another statistic—χ2

M , which
is only derived from a normal distribution. It is much
more natural to search for the parameter errors using
the same statistic that is applied to find the central
parameter values, for example, the χ2

M statistic. It
is desirable not to apply the artificial assumption
that the model considered is fully correct; i.e., not to
exclude the possibility of an error of the second kind.
This requirement is satisfied by the χ2

M statistic [12].
Therefore, correct calculation of parameter errors
requires the use of the confidence-region method with
the χ2

M statistic, which makes it possible to judge the
“external” errors of model parameters, as well as as
the adequacy of the model itself.

Given the labor-intensive nature of computating
the sizes of projections of a confidence region onto
the parameter axes, we stress the importance of our
proposed new method for estimating parameter errors
(Tables 1–7, Figs. 4–6). Namely, in the case of a
linear dependence of the model function on the un-
known parameters, formulas (56) and (61) (see also
Tables 1–7) can be used to make preliminary conclu-
sions of a probabilistic nature about the sizes of the
χ2

M confidence intervals based on the corresponding
intervals for the Monte Carlo or differential-correction
methods via multiplication by tmax or kP tmax, without
the need for the more labor-intensive determination
of the projections of the confidence region onto the
parameter axes. If the confidence region is understood
in an asymptotic sense, our new method for estimat-
ing parameter errors can also be applied to non-linear
problems.
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