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Abstract—An algorithm for the numerical solution of Kepler’s equation with machine precision is presented.
The convergence of the iterative sequence of Newton’s method is proved for the indicated initial approxima-
tion. The problem of finding a numerical solution to Kepler’s equation as a f loating point number is formu-
lated. Aspects related to computations near machine zero are taken into account. We analyzed the accuracy
of the possible result. A problem is identified that arises when tending for the highest possible accuracy and a
solution is proposed. An estimate is given of the computer time required to solve Kepler’s equation by this
method.
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1. INTRODUCTION
As a rule, in problems related to the motion of stars

(as well as other cosmic bodies) in elliptical orbits,
including the problem of interpreting the light curves
of binary systems (see, for example, [1–4]), it becomes
necessary to solve Kepler’s equation:

(1)
relative to  at given values of  (eccentricity) and 
(mean anomaly).

This equation is a transcendental equation, which
has a unique solution for . Various methods
for solving this equation are currently known. For
example, the solution is often used by the method of
expansion in powers of  [5]. This method is mainly
useful in the analytical study of motion in an eccentric
orbit, assuming small  not exceeding the Laplace
limit 0.6627…. However, the accuracy of the numeri-
cal results obtained by the power series method deteri-
orates with increasing values of . At the same time, in
many problems, it is desirable to obtain a solution to
Kepler’s equation with the maximum accuracy possi-
ble, based on the computer format used for represent-
ing real numbers. Although modern computers can
operate on numbers whose accuracy is much higher
than the accuracy of modern observations (for exam-
ple, the accuracy of 80-bit extended-precision num-
bers with a 64-bit mantissa corresponds to 19 decimal
signs), we assume that obtaining the result with the
highest possible accuracy is still relevant for the fol-
lowing reasons.

First, sometimes, to increase the computation
speed, it is advisable to use a machine representation
of less bit depth than the maximum possible, since the

same operations with numbers of less bit capacity are
performed faster. For example, to speed up calcula-
tions, it sometimes makes sense to use not 80-bit
extended-precision numbers, but 64-bit double-pre-
cision numbers (with a 52-bit mantissa corresponding
to 15–16 decimal signs). Or maybe even 32-bit single-
precision numbers with a 24-bit mantissa correspond-
ing to seven decimal signs. And the lower the accuracy,
due to the computer format used for representing the
real number, the more important it is to prevent losses
associated with the peculiarities of solving this
problem.

Secondly, the solution to Kepler’s equation is usu-
ally an intermediate result used for further calcula-
tions, which are sometimes very difficult. And, in the
course of these calculations, some loss of accuracy is
also possible (see, for example, [6]). However, it is not
always possible to reliably estimate and correctly take
into account these losses in accuracy. Thus, it is useful
to have the maximum possible margin of accuracy in
calculating the solution to Kepler’s equation.

Third, even if the error associated with the calcula-
tion of the theoretical value of a physical quantity is
much less than the observation error, in some cases
such a computational error can significantly distort
the results associated with the statistical analysis of
observations. Thus, in [7], using the example of the
interpretation of the transit light curve of the system
HD 209458, it was shown how an error in calculating
the model light curves leads to a statistically significant
change in the residual .

Also, the need for high accuracy can manifest itself
regardless of the accuracy of observations when solv-
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SOLUTION OF KEPLER’S EQUATION 1061
ing the problem of minimizing the residual  during
the interpretation of the transit light curve. Many non-
linear optimization methods (for example, the Leven-
berg–Marquardt method) use the derivatives of the
expression to be minimized (or the functions included
in it), and the convergence of the method sequence
can be significantly affected by the accuracy of calcu-
lating these derivatives, the expression for which
includes the solution of Kepler’s equation for various

 and  and at fixed values of the observational data
(the measurement accuracy of which does not matter
for the minimization process).

To date, there are various algorithms for solving
Kepler’s equation, based on rapidly converging itera-
tive sequences of real numbers. However, f loating
point numbers are different from real numbers, and
the difference between floating point calculations and
corresponding real calculations can become signifi-
cant if these calculations involve evaluating expres-
sions close to machine zero. And, in some cases,
rounding errors in intermediate results cause a notice-
able loss of precision in the final result.

We will consider this problem using an example
from [8, 9], which describes an algorithm for solving
Kepler’s equation based on an iterative sequence of
real numbers that quickly converges to the required
result. It should be noted here that this convergence
statement is true for . An elementary
numerical check can make sure that the sequence
diverges for  and . It is
possible that this divergence is eliminated by choosing
the correct initial approximations for the correspond-
ing ranges of parameters. However, even for

, if we implement this algorithm with 64-bit
double precision numbers, we can find that for some
values of the initial data the corresponding sequence of
floating point numbers does not approach the
required result closer than a certain value, a noticeably
larger error in the last bit. It is possible to indicate such

 and  that the sequence of computer numbers con-
structed according to the mentioned algorithm does
not approach the solution of Kepler’s equation closer
than by , where  is the error in the last digit
of double precision numbers. Consequently, the solu-
tion of Kepler’s equation for such values of the param-
eters according to this algorithm is possible with an
error not less than . If, as a condition for interrupt-
ing the iterative loop in the program, we set the
achievement of greater accuracy, then the loop
becomes infinite.

It should be noted that such a “failure” in the con-
vergence of a computer sequence is not a result of the
singularity and/or instability of the problem of solving
Kepler’s equation formulated on the set of real num-
bers. It is due precisely to a given computer represen-
tation of numbers. When we go to another representa-
tion, for example, to 80-bit extended-precision num-
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bers, for these parameters, the values of the iterative
sequence approach the solution to Kepler’s equation
with an accuracy of the order of the corresponding
machine . Also, there will be no such convergence
“failures” with a slight deviation from the above values
of  and , for example, when only their last digits
change. Moreover, the presence of such a “failure”
may also depend on the choice of the compiler used to
program the algorithm. Therefore, such “failures” of
convergence are difficult to detect by simple testing of
the program; with testing with a small number of
source data variants. However, this “failure” can man-
ifest itself when processing large amounts of data.

In this paper, an algorithm for solving Kepler’s
equation is constructed, which ensures the achieve-
ment of the machine accuracy of the result by taking
into account the peculiarities of calculations near the
machine zero. For this, the tangent method (Newton’s
method) is used, the error of which is reduced to
machine zero on average in about 5 iterations when
using extended precision numbers (the exact number
depends on the values of  and ). The construction
of an algorithm based on Newton’s method seems to
be the most suitable for our purposes, since it is in this
way that it is more convenient to control the influence
of the features of calculations near machine zero.

An essential point in using Newton’s method is the
choice of the initial approximation, at which the itera-
tive sequence certainly converges to the solution of
Kepler’s equation. Note that an arbitrarily chosen ini-
tial approximation may not provide optimal conver-
gence of the corresponding iterative sequence. The
iteration sequence may even be divergent for some val-
ues of the initial approximation. Therefore, the choice
of the initial approximation is important for solving
Kepler’s equation. At the same time, the problem of
numerically solving Kepler’s equation is formulated
precisely as the problem of finding the corresponding
floating point number. Testing the accuracy and speed
of the algorithm is also described.

2. CONSTRUCTING AN ITERATION 
SEQUENCE

For  and any real , we write Kepler’s
equation as

(2)
where

(3)

It is easy to see that ,
, that is, the function

 changes sign at the segment . Since
the function  is continuous and increasing for any

, Eq. (2) always has a unique solution.
In the trivial case , where  is an integer, its

solution is , i.e., .
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1062 ABUBEKEROV, GOSTEV
To solve this equation by the tangent method, it is
necessary to have an interval  containing the desired
solution, and such that the second derivative 
does not change sign on it, and one of the ends of this
interval  satisfies the condition

(4)

In this case, according to the well-known statement
[10], the sequence of the tangent method defined by
the iterative expression

(5)

converges to the desired solution if we take  as an ini-
tial approximation.

Let us take  as the closest number to  of the form
, where  is an integer. If , then

thus condition (4) is satisfied if we take the interval
 as . If , then

thus condition (4) is satisfied if we take the interval
 as . Therefore, if we choose 

as the initial approximation, the sequence of the tan-
gent method converges to the required solution of
Eq. (1). Note that this initial condition can be
improved by noting that if  is a nontrivial solution to
Eq. (1), then

that is, the solution to the equation belongs to the
interval [ ]. Therefore, if , we can
take  as an improved initial approxi-
mation , and if , then take .
Condition (4) will also be fulfilled when it is replaced

 by .
Substituting (3) into (5), we obtain

(6)

Thus, sequence (6) converges to the required solu-
tion of Kepler’s equation if we take as the initial
approximation

where m is an integer at which the value of
 takes on a minimum value. The iter-

ative sequence  constructed above is monotonic,
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and each of its terms is closer to the required solution
than the previous ones.

It should be noted that the problem of solving
Kepler’s equation for an arbitrary value of the mean
anomaly can be reduced to the problem of solving
Kepler’s equation within the first cycle. We consider
the general case for convenience in the practical
implementation of the method, including in order to
exclude the application of the operation of obtaining
the remainder of division by  to the mean anomaly,
taking into account that the architecture of modern
computers allows calculating the values of trigonomet-
ric functions for any values of the argument at the
hardware level.

We emphasize that it is the choice of the initial
approximation  that plays an essential role. The
specified behavior of the iterative sequence cannot
guarantee random selection. For example, choosing as
an initial approximation  will, in many cases,
also give a converging sequence, and some authors
suggest such a choice (see, e.g., [11]). However, there
may be values of  and  at which the members of the
sequence with  are significantly removed from
the sought solution, for example, if  and

 (see Fig. 1). The paper [11] also pointed
out the existence of values of  and  for which the
iterative sequence diverges.

3. COMPUTATIONAL ACCURACY 
NEAR MACHINE ZERO

The construction of an iterative sequence, which
converges to the solution of Kepler’s equation, pre-
sented in the previous section, was obtained in relation
to abstract real numbers. In real computing, we oper-
ate with f loating point numbers, which are considered
as approximate values of real numbers. And in the case
of replacing real numbers in calculations with f loating
point numbers, the corresponding results are also only
approximately true. In this case, the magnitude of
error when directly replacing a real number with a
floating point number corresponds to the size of man-
tissa. If a real number is approximated by an extended
precision number whose mantissa contains 64 bits
(which guarantees 19 decimal significant digits), then
the value of the relative approximation error will be

 or .

However, the relative error of the f loating point
result can be much larger. First of all, this applies to
the case of addition (subtraction) of two numbers,
when the modulus of the result is significantly less
than the terms of sum. If two real numbers are so close
that the corresponding f loating point numbers do not
differ, then the result of a computer calculation of their
difference will be zero. While the final result of solving
the problem for real numbers depends on this differ-
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Fig. 1. An example of using the initial approximation , leading to a diverging sequence of solutions to Eq. (3), with the
values of the mean anomaly  and eccentricity .
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ence as an intermediate result and turning this differ-
ence to zero significantly distorts the final result.

If two floating point numbers differ in the last few
digits, the relative accuracy of their difference will cor-
respond to exactly this number of digits (say, if the
numbers in the last two decimal signs differ, the rela-
tive error in calculating their difference will be 1%).
Therefore, replacing abstract real numbers with com-
puter f loating point numbers can significantly degrade
the accuracy of calculating the final result, despite the
fact that the formal problem is posed correctly and is
resistant to small changes in the input data in the form
of abstract real numbers (changes in  in the origi-
nal data in the form of real numbers entail changes of
the same order in the final result). To obtain a result
with a given precision  by a formal implementation of
an algorithm that guarantees such precision in relation
to abstract real numbers, it is necessary to use f loating
point numbers whose precision is much higher than .

Of course, we can get the result with a predeter-
mined precision  by formally implementing the algo-
rithm with arbitrary precision numbers. However, the
use of this method is undesirable due to a significant
increase in the computation time, since the emulation
of elementary operations with arbitrary precision
numbers requires computer time consumption that is
much larger than the execution of elementary opera-
tions implemented at the machine level with 80-bit
numbers, not to mention 64-bit ones.

In view of the above, in order to obtain the solution
to Kepler’s equation with the highest possible accu-
racy, within the framework of using operations with
floating point numbers, it seems appropriate to pose

−642
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ε

ε

ASTRONOMY REPORTS  Vol. 64  No. 12  2020
the problem not as the problem of finding a numerical
value that differs from the true solution of the equation
by no more than some given one, but as finding a
machine a f loating point number, the substitution of
which into Eq. (1) gives the minimum modulo value of
the left-hand side, that is, the function f(x) =

.
Note that one of the results of calculating (1) using

floating point numbers may be machine zero. That
said, it is also possible that for some machine values of

 and  machine zero will not be reached at any
machine value .

To solve such a problem, the sequence given by
expression (5) or (6) is first calculated. As applied to
abstract numbers, the difference between  and the
true solution of Kepler’s equation, as well as the value

, do not change their sign for any . If  it
does not change sign for any  in relation to the
machine , its absolute value will decrease as 
increases, and at some step  (based on the form (5))
will become equal to zero. In this case, we can con-
sider  as the required solution.

However, due to the inaccuracy associated with the
final representation of real numbers as f loating point
numbers, the machine value of  may change sign
at some step. In this case, the further elements of the
sequence  cannot be said to be the best approxima-
tion of Kepler’s equation. However, they are close
enough to the true Kepler’s equation, so it makes sense
to fix some two of them, for which the function 
has different signs, and, starting from the segment
formed by them, to solve Eq. (1) by the method of half
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1064 ABUBEKEROV, GOSTEV
division. This method converges much more slowly
than the tangent method, and, therefore, it is imprac-
tical to use it at large intervals. At the same time, this
method is based solely on calculating the value of
function  and comparing it with zero; therefore,
it is not sensitive to errors that arise during operations
with the value of . Therefore, it makes sense to
use it to refine the result obtained using the rapidly
converging tangent method.

We emphasize that this approach to finding the
numerical value of the solution to Kepler’s equation
eliminates the error associated with intermediate cal-
culations (with the final representation of the numbers
used in it). However, in any case, the final result may
contain an error caused by an error in the original data,
which, in turn, is associated with the final representa-
tion of these initial data (values  and ) and corre-
sponds to the value of the last machine bit (  for
extended precision numbers with a 64-bit mantissa).
Such an error (exceeding the round-off error) appears
if the derivative . We can say that this error is
due to the sensitivity of the result to the original data.

For comparison, we implemented the algorithm
described in [8, 9] with 64-bit double precision num-
bers, the relative rounding error of which is .
This algorithm is based on the use of an iterative
sequence converging to the solution of Kepler’s equa-
tion

where . It is proposed to calculate
such a sequence, while , where  is the
required accuracy of calculations. Recall once again
that for the indicated initial approximation, this
sequence does not converge for some ranges of values
of  outside . However, even when there
may be difficulties with the construction of the corre-
sponding sequence of computer numbers for the most
accurate calculation. Similar difficulties can arise with
other algorithms for solving the Kepler’s equation; we
will consider them using the example of the algorithm
[8, 9].

For the implementation with 64-bit double preci-
sion numbers, as already mentioned above, for some
values of  and , the values of this iterative sequence
do not approach the solution of Kepler’s equation
closer than by a value significantly greater than the
rounding error to the last bit of the 64-bit machine
number . Recall that such numbers depend on the spe-
cific computer implementation of the algorithm. For
example, when implemented on one of the C compil-
ers, for  and 
the values of the relative difference 
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do not become less than , where  is the rounding
error to the last bit of a 64-bit machine number. For
implementation on another compiler, such values are,
for example,  and e =

. At the end of this paper, we
provide a link to a program that detects such values 
and . If, as a condition for interrupting an iterative
loop, a decrease in the absolute value of the relative
difference ( ) between the elements of
the iterative sequence is set by less than by less than by

, such a cycle becomes infinite (the program
loops). In order to guarantee to avoid this kind of situ-
ation for any values of the initial parameters, in the
given algorithm it is necessary to choose a sufficiently
large . At the same time, a rather nontrivial question
arises as to what exactly this  should be. But already
from the above example, it is clear that this value of 
should at least  times exceed the rounding error to
the last bit of the machine representation of the
number.

The implementation of our algorithm with double
precision numbers allows us to compute the solution
of Kepler’s equation with the above values  and 
with an accuracy of 15 decimal places, that is, at the
level of machine precision corresponding to such a
representation of the number.

Further, we carried out numerical testing of the
accuracy of the values of the solution to Kepler’s equa-
tion obtained using the described algorithm. To do
this, we implemented an algorithm with extended pre-
cision numbers (80-bit numbers with a 64-bit man-
tissa, which gives 19 significant digits in decimal form)
and with numbers of higher (emulated) precision. As
mentioned above, for practical calculations, the use of
such numbers in many cases is ineffective, since it
greatly increases the computation time. However, with
their help it is convenient to check calculations made
with ordinary machine numbers.

We performed calculations using the described
algorithm, both with emulated numbers containing
significantly more characters than a machine 80-bit
number, and with 80-bit numbers (with which ele-
mentary operations are performed at the machine
level). The result with emulated numbers was guaran-
teed to be more accurate than the result with 80-bit
numbers. Next, we calculated the difference between
the result obtained using 80-bit numbers and using
emulated numbers of increased precision with the
same input values  and . In total, we carried out
calculations of such a difference for  values of the
pair of  and , as the value  was taken a pseudo-
random number with a uniform distribution on the
interval , and as the value of  was taken a pseu-
dorandom number with a uniform distribution on the
interval . The same calculations were performed
with the values  and  located in the form of a uni-
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SOLUTION OF KEPLER’S EQUATION 1065
form grid of  values in the corresponding interval.
In case , we multiplied the resulting differ-
ence by  to account for the inevitable error caused
by the sensitivity of the result to the rounding error of
the input values. In each case, the result turned out to
be less than , which allows us to conclude that the
80-bit value of the solution to Kepler’s equation was
obtained with an accuracy that is maximum possible
for an 80-bit representation of the number, and is
practically not distorted as a result of intermediate cal-
culations.

For the same  pairs of input values  and 
(random and located on a uniform grid), we tested the
number of iterations required to achieve maximum
accuracy. The average number of such iterations, tak-
ing into account the iterations by the method of half
division, turned out to be approximately 5.51 (it can
increase at  close to unity). Note that if we consider
only iterations by the tangent method, their average
number turns out to be slightly less, approximately
5.28. Thus, we can conclude that the need to refine the
result by the half-division method arises, although the
total volume of such calculations is relatively small,
about 4% of the total number of iterations. However,
in mass processing of observations, we almost inevita-
bly encounter such situations.

4. CONCLUSIONS

The solution to Kepler’s equation is often an inter-
mediate result used for further, often very complex,
calculations, in which a significant loss of accuracy
inevitably occurs. An example of such calculations
would be the interpretation of the light curve. At the
same time, for statistical analysis of observational
data, sometimes an accuracy may be required that sig-
nificantly exceeds the accuracy of observations [7].
Equally, a high accuracy in the calculation of expres-
sions containing the solution of Kepler’s equation,
regardless of the accuracy of the observational data, is
desirable when solving the problem of minimizing the
residual  (see, for example, [1–4]). In complex cal-
culations, it seems useful to use every opportunity to
increase the accuracy of calculations, including
because it is sometimes very difficult to estimate the
required accuracy, especially when it comes to compu-
tational problems that may arise in the future. There-
fore, when solving Kepler’s equation, it is important to
strive for the most accurate result.

The authors in this paper propose an algorithm for
quickly calculating the solution of Kepler’s equation
with the best accuracy for a given machine representa-
tion of real numbers. The proposed algorithm consists
of two stages.

The first step is to use the fast converging tangent
method to obtain a result with an accuracy that this

410
<'( ) 1f x

'( )f x

−1910

810 M e

e

χ2
ASTRONOMY REPORTS  Vol. 64  No. 12  2020
method can provide, taking into account the finiteness
of the machine representation of numbers. In this
case, an effective choice of the initial approximation is
essential, such that the successive approximations are
a converging monotonic sequence, each term of which
is closer to the required value than the previous ones.

The second step is to use the half division method
to finalize the obtained value, which in some cases
may contain inaccuracy in the last digits. In this case,
Newton’s method provides a simple criterion by which
it is possible to effectively determine the need for a
special refinement of the solution (sign change of

. In this case, the problem of solving Kepler’s
equation is formulated in relation to the machine rep-
resentation of numbers as the problem of finding the
machine number representing the best possible
approximation of the solution of Kepler’s equation for
given values of the mean anomaly and eccentricity.

A comparison is made of the efficiency of the algo-
rithm proposed by the authors for solving Kepler’s
equation and another algorithm, in many respects
similar to Newton’s method. It is noted that for some
values  and  the iteration sequence constructed in
the machine representation of real numbers may stop
converging, differing from the minimum possible
error for a given representation by at least a factor of

. Moreover, such a situation arises in a relatively
small percentage of possible values  and ; it is not
associated with any peculiarities of the solution of
Kepler’s equation as applied to abstract real numbers.
Therefore, the possibility of such a situation may well
not be detected by simple testing of the formal imple-
mentation of the algorithm (which does not take into
account the specifics of the machine representation of
numbers), but it may manifest itself in the future,
when using such an implementation when processing
a large dataset. At the same time, taking into account
the possibility of such a situation, without going
beyond the scope of the algorithm described in [8, 9],
one can only significantly overestimate the error for
the final result .

The algorithm proposed by the authors makes it
possible to obtain the solution to Kepler’s equation
with an accuracy at the level of round-off error for the
used computer representation of a real number
(machine accuracy) for absolutely any input values of

 and . The efficiency of using such an algorithm is
manifested primarily in the complex processing of
large datasets, for example, in the problem of inter-
preting modern observed transit light curves, which
can contain up to several tens of thousands of observa-
tion points. Thus, the algorithm proposed by the
authors has a certain advantage over the algorithm
described in [8, 9], even if for most input values of 
and  for these algorithms there is no significant
difference in the convergence rate and the achieved
accuracy.
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By means of a numerical experiment on a large set
of synthetic initial data, the accuracy provided by the
algorithm has been verified; it has been shown that it is
the maximum achievable for the used representation
of a real number. The average number of iterations was
also estimated, on which the computation time
directly depends on 80-bit f loating point numbers
(which in many modern computers provide maximum
machine precision).

The algorithm developed by the authors is publicly
available. Its software implementation in the C lan-
guage is located on the website of Sternberg Astro-
nomical Institute.1 Here is the file with the implemen-
tation of the algorithm for 64-bit and 80-bit represen-
tation. There is a separate implementation for the
128-bit representation used in some C/C++ compil-
ers. Although for most modern tasks such accuracy is
likely to be excessive and does not justify the increased
time spent on operations with such long numbers, this
implementation is useful for testing accuracy. Also, at
the given link, there is a program with the implemen-
tation of the Danby method [8, 9] for 64-bit numbers,
with control over the achievement of a given relative
accuracy by counting the number of iterations. It
demonstrates the absence of convergence of the
sequence  mentioned in the paper for some values

 and , which are found by random search. In this
case, as the criterion that the sequence does not con-
verge, the condition is taken that at , that is,
after 500 steps, , where  is a
given number (it was initially set as 1000).

Examples of using the algorithm developed by the
authors for solving the Kepler’s equation from [7] are
also located on the website of the Sternberg Astro-
nomical Institute,2 in the OccultationPack3 and
DemoPack1 software complexes.
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