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Influence of Digital Noise on Interpretation of a Transit Light Curve
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Abstract—The algorithms often used for the interpretation of light curves, such as the frequently applied
JKTEBOP algorithm, have limited accuracy, which causes rounding errors, and hence a non-physical
contribution to the residuals (digital noise). The transit light curve of the binary HD 209458 is used as an
example to demonstrate the need to take into account this digital noise. Improving the accuracy of light-
curve computations enables more reliable determination of whether the observed light curve is adequately
described by a particular model, thanks to the elimination of the non-physical contribution to the residuals
resulting from computational errors. A website where the algorithm developed can be obtained is given in
the Conclusions.
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1. INTRODUCTION

Currently, high-precision observations of transit
light curves are being obtained on a large scale,
making reliable interpretation of these curves impor-
tant [1, 2]. There is scope to considerably improve
the possibilities for fitting (light-curve analysis) com-
pared to other algorithms. This is primarily related
to the improved accuracy that can be achieved in
light-curve computations thanks to the application
of Gaussian-quadrature integration [3, 4].

Most currently used algorithms are based on the
JKTEBOP algorithm developed in the beginning of
1980s [5]. The JKTEBOP algorithm computes the
integrals in the expressions for the binary’s brightness
directly, by means of direct summing over subinter-
vals into which the integration region is divided. In
this case, the computation error for the integral is
inversely proportional to the number of elementary
operations (and hence to the computation time), and
the accuracy of the result is essentially limited by the
time that can be allocated for the computations. This
accuracy corresponded to the capacilities of com-
puters available at the time when JKTEBOP was
developed and the observational uncertainties of that
time.

In many cases, when we fit models to light curves,
it is necessary to take into account various non-
physical uncertainties, such as computational uncer-
tainties and rounding errors (digital noise). However,
the abilities of modern computers and the accuracy
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of modern brightness observations providing tens of
thousands of data points require better accuracy of
the computations. Using Gaussian quadrature in
the numerical computation of integrals, it is possible
to obtain an accuracy corresponding to the modern
accuracy of floating-point numbers (about 18 signifi-
cant digits) within an acceptable time. y

Most importantly, improvement of the computa-
tion accuracy enables a more accurate evaluation of
whether the observed light curve is adequately de-
scribed by a model used. The elimination of the non-
physical contribution to the residuals related to com-
putational uncertainties makes it possible to draw
more reliable conclusions concerning the significance
of changes in the residuals in particular cases. For
example, it becomes possible to judge the significance
of changes in the minimum residuals resulting when
additional parameters are used, in particular, how
the minimum residual depends on the limb-darkening
laws that are applied.

Note that better accuracy of light-curve com-
putations can considerably influence the minimum
residuals even without any significant changes in the
values of the derived parameters. This is true because
digital noise can be reflected in the uncertainties of the
parameters derived using Monte Carlo simulations.
In this situation, we conclude that, in some cases, the
JKTEBOP algorithm can actually make it possible to
obtain satisfactory results, namely the parameters of
the system estimated using Monte Carlo simulations
(assuming a priori that the model is adequate to the
observations). At the same time, if we consider fitting
without this assumption (that the model is correct),
when an empty confidence set is possible or we are
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Fig. 1. The observed (points) and theoretical (solid curve) light curves of the exoplanet binary HD 209458 from [6]. Deviations
of the observed brightness from the theoretical light curve calculated for a model with a non-linear (quadratic) limb-darkening
law are shown in the bottom.

determining the statistical significance of a change
in the residuals, more accurate computation of the
residuals is needed.

2. OBSERVATIONAL DATA

We will demonstrate the operation of the algorithm
we have developed using the observed light curve of
the binary with an exoplanet HD 209458 [6]. The
observed light curve presented in [6] was obtained
with the Hubble Space Telescope in April–May 2000.
The spectra were taken with the STIS spectrometer
and the G750M spectral grating. The observations
at 5813–6382 Å had a resolving power R = λ/Δλ =
5440 (see [6] for details). The normalized light curve
of the exoplanet’s transit across the stellar disk is
presented in Fig. 1. This light curve is based on
556 individual brightness measurements of the bi-
nary. The rms uncertainty of an individual measure-
ment, σobs

i , is between 1.13 × 10−4 and 2.47 × 10−4

(in units of the out-of-eclipse intensity) for various
points in the light curve. The relative uncertainties (in
units of the eclipse depth) are between ∼7× 10−3 and
∼1.5× 10−2. We fitted this light curve using linear
and quadratic limb-darkening laws.

The light curve of the binary Kepler-15b, which
we also used to test the algorithm, was taken from
the NASA Exoplanet Archive. We used the short-
cadence data of the 18th set of observations, obtained
between September 18 and October 18, 2009.

3. DESCRIPTION OF THE MODEL

We used a model with a spherical star and a spher-
ical planet in a circular orbit, assuming no reflection
effect and neglecting their ellipsoidal shapes. The
geometry of the model is shown in Fig. 2, where R∗
is the radius of the star, Ro the radius of the planet,
D the distance between the centers of the component
disks, and ρ and Ψ are the polar coordinates of a point
on the stellar disk. The coordinate origin is at the
center of the star, and the polar angle is measured
counter-clockwise.

For a circular orbit, the distance between the cen-
ters of the disks, Δ, depends on the phase θ and
orbital inclination i as

Δ(θ, i) =
√

cos2 i+ sin2 i sin2 θ. (1)

When calculating the light curve, we used a linear
limb-darkening law for the brightness distribution
on the stellar disk, with the linear limb-darkening
coefficient x,

I(ρ) = I0

(

1− x+ x

√

1− ρ2

R2
∗

)

, (2)

and also a quadratic limb-darkening law that has
an additional term containing the quadratic limb-
darkening coefficient y,

I(ρ) = I0

(

1− x

(

1−

√

1− ρ2

R2
∗

)

(3)

− y

(

1−

√

1− ρ2

R2
∗

)2)

.
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Fig. 2. Model of an eclipsing binary projected onto the plane of the sky.

Here, ρ is the polar distance from the center of the
stellar disk, I0 the brightness at the disk center, and
R∗ the radius of the stellar disk. We will designate
the brightness at the disk center of component 1 (the
star) I0. The brightness at the center of component 2
(the planet) and the brightness at any point of its disk
were assumed to be zero. Component 2 eclipses com-
ponent 1 at orbital phase θ = π. The unit of length in
our models is the distance a between the centers of
the two bodies, a = 1. There is no “third light” in the
model. The unknown parameters in the model are the
radii of the star, R∗, and the planet, Ro, the orbital
inclination i, the limb-darkening coefficient x, and, in
the case of quadratic limb-darkening law, the limb-
darkening coefficient y.

The total brightness of the star, that is, the total
out-of-eclipse brightness of the system, is

Lfull = 2π

R∗∫

0

I(ρ)ρdρ = πR2
∗I0

(
1− x

3

)
(4)

in the model with the linear limb-darkening law and

Lfull = 2π

R∗∫

0

I(ρ)ρdρ = πR2
∗I0

(
1− x

3
− y

6

)
(5)

in the model with the quadratic limb-darkening law.
The brightness at the center of the stellar disk, I0,

was selected so that the total brightness of the system
is unity (as a normalization condition).

The brightness decrease during the eclipse is

Ldec(Δ, R∗, Ro, x, y) =

∫∫

S(Δ)

I(S)dS, (6)

where S(Δ) is the overlapping area of the disks
(which depends on the distance between the disk
centers). The main task when calculating the light
curve is to calculate the brightness decrease in the
eclipse.

A model of two spherical bodies for an optical
transit light curve is physically justified. The star and
the planet have sharp edges in the optical. Effects
due to deformation of the exoplanet’s atmosphere by
the stellar wind (the cometary-tail effect) are not ap-
preciable or are negligible in the optical. Thus, ap-
proximating the star and exoplanet’s disks as circles
is satisfactory in the optical.

4. DESCRIPTION OF THE ALGORITHM

When fitting the data, we used the algorithm for
calculating the brightness decrease in an eclipse in
a binary system presented in detail in [3, 4]. In this
algorithm, the integration in the region of overlapping
disks is performed by analytically computing the in-
tegrals using elliptical functions (efficient algorithms
for computing these integrals with any given accuracy
are available) or by applying Gaussian-quadrature
integration after some analytical transformations of
the integrand.

5. COMPUTATIONS

According to Southworth [5], who used a
JKTEBOP-based algorithm for his light-curve fit-
ting, the residual in the linear limb-darkening law
for HD 209458 is χ2 = 1.1457, corresponding to a
maximum significance level of 1%. Note that the
parameters in the fitting in [5] were the radii of the star
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Fig. 3. Observed (points) and theoretical light curves of Kepler-15b, a binary with an exoplanet. The light curves calculated
for the linear and quadratic limb-darkening laws are plotted as solid and dashed curves, respectively,

and planet, the orbital inclination, the eccentricity,
and four limb-darkening coefficients.

When we used our algorithm [3, 4] assuming a
linear limb-darkening law, we obtained the residual
χ2 = 1.103, corresponding to a maximum signifi-
cance level of 6%. Though the derived parameters
agree within the uncertainties, we have a considerable
disagreement in the values of the minimum residuals.

In the case of the quadratic limb-darkening law,
our algorithm gives the residual χ2 = 1.0134, corre-
sponding to a maximum significance level of 46%.
Thus, using a more accurate algorithm that sup-
presses the digital noise, i.e., eliminating the con-
tribution from computational errors, we were able to
draw a firm conclusion about the statistically sig-
nificant decrease in the residuals when using the
quadratic limb-darkening law. In addition, elimi-
nating the non-physical contribution to the residuals
opens the possibility of working with a non-empty
confidence set at a higher significance level (lower
confidence level). Note that it was also concluded in
[7] that the quadratic limb-darkening law was prefer-
able for the HD 209458 system, but this conclusion
was based more on the non-physical correlation of
the orbital inclination and wavelength indicated by
the linear limb-darkening law. The decrease of the
residuals when using the quadratic limb-darkening
law rather than the linear law was considered to be
insignificant. Applying our algorithm that makes it
possible to neglect rounding errors, we find that the
decrease in the residuals changes the maximum sig-
nificance level from 6 to 46%, an obviously substantial
difference. Thus, eliminating the digital noise has

enabled us to detect the advantage of the quadratic
limb darkening law for the HD 209458 system solely
from the resulting decrease in the residuals.

An opposite example is provided by the light
curve of Kepler-15b (see Fig. 3), where we did
not find any considerable decrease in the residuals
when we applied the quadratic limb-darkening law,
despite the presence of visible differences between the
corresponding light curves.

6. DISCUSSION

Our results clearly demonstrate the need to apply
algorithms enabling very accurate computations of
light curves if we wish to ensure sound judgments
about whether a model fully adequately represents the
observations when fitting transit light curves. The al-
gorithm we developed based on Gaussian-quadrature
integration makes it possible to work with an accu-
racy corresponding to the modern number of digits
that can be used for floating-point numbers (19 sig-
nificant digits). This accuracy applied to light-curve
calclations enables more reliable conclusions about
the adequacy of a given model in describing the ob-
served light curve.

Applying our algorithm virtually eliminates the
non-physical contribution to the residuals due to
computational errors, making it possible to draw
more reliable conclusions concerning the significance
level of changes in the residuals for different fits. For
example, it is possible to understand the significance
of a change in the minimum residuals that comes
about when parameters are added to the fit; we have
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considered here the example of how the minimum
residuals depend on the applied limb-darkening law.
In addition, the possibility of working at a higher
significance level (lower confidence level) is of interest
by itself.

The quality of the description to the observations
provided by a theoretical light curve is closely related
to the detection of physical phenomena described by
the model applied. The high sensitivity of the χ2 cri-
terion to deviations of the observations from a model
can enable the detection of fairly fine physical effects,
but this also requires sufficiently accurate calculation
of the χ2 statistics.

We plan to apply our algorithm to large-scale fit-
ting of transit light curves for binaries with exoplanets
in order to determine the empirical limb-darkening
coefficients for stars of different spectral types [2].

7. CONCLUSIONS

Our algorithm for fitting of transit light curves
is freely available. Application of the algorithm will
enable better-quality fitting for the rich observing ma-
terial supplied by both ground- and space-based ob-
servatories. The algorithm can be accessed at http:
//lnfm1.sai.msu.su/~ngostev/algorithm.html.
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