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ABSTRACT

We present a highly precise calculation of the theoretical light curve and its derivatives for a binary star-planet system in an elliptical
orbit. We also describe an analytical fitting by limb-darkening coefficients to reduce the number of parameters for nonlinear fitting. We
demonstrate the practical importance of the precision computation of theoretical light curves through the example of the interpretation
of the light curve of HD 209458 and the synthetic light curve. We also compare the results obtained using our algorithm to those
provided by a lower-precision algorithm to demonstrate the benefits of computing with a higher precision. We discuss the capability
of making more accurate conclusions concerning the agreement of the observed light curve with the adopted model.

Key words. methods: analytical – methods: data analysis – methods: numerical – methods: statistical – methods: observational –
binaries: eclipsing

1. Introduction
In certain cases, solving a physical problem by interpreting a light
curve requires taking into account such non-physical uncertain-
ties as calculation errors. In practice, if the result is precise to
within 17–18 decimal places, there is no need to take calculation
errors into account. However, many algorithms that are currently
employed, such as JKTEBOP (Southworth et al. 2004), are based
on the popular EBOP algorithm, developed in the early 1980s
Nelson & Davis (1972) and Popper & Etzel (1981). For more,
see the relatively recent papers of Southworth et al. (2007),
Southworth (2008), and Hellard et al. (2019). The algorithm pro-
vides the value of light curve with a precision of no better than
six decimal places, with the integrals of the formulae for the
stellar-disk brightness computed by direct summation over the
integration-domain bins (concentric rings). In so doing, the com-
putation error for the integrated values is inversely proportional to
the number of elementary operations and, hence, the computation
time and the accuracy of the result are substantially limited by
the time that can be allocated for the calculations. Such precision
was appropriate for computers and observational errors at the time
when EBOP was developed. At the machine level, those comput-
ers operated with a single precision, where a higher precision for
the result could be provided only by modeling numbers of a higher
precision, which would significantly slow down the calculation
process. Today’s computers operate with 64-bit and 80-bit floating
numbers (15 and 19 decimal places) at the machine level. How-
ever, despite the fact that the current implementation of JKTEBOP
operates with double precision numbers, the precision of the result
is still limited by the precision of the method of numerical integra-
tion used in the algorithm. A similar situation arises with the algo-
rithm used in Hellard et al. (2019). In this algorithm, the problem
is generalized to the non-spherical shape of stars, but integration
is carried out using the Monte-Carlo method, which offers very
low precision.

The errors of modern observations are of about one per-
cent of the eclipse depth, which, in turn, is about one
percent of the out-of-eclipse intensity. Thus, the standard devi-
ation of the observed light intensity is about 10−4 of the

out-of-eclipse intensity. On the one hand, such uncertainties are
still significantly greater than the round-off error due to the fact
that the calculations are made up to the fifth or sixth decimal
place so the resulting error in O–C is 1–10% of the standard
deviation of the observed light curve. That is why EBOP is still
sufficient for many light-curve interpretation tasks. In particu-
lar, the five- to six-digit precision leaves the fitted parameters
of the star-planet system within their uncertainties obtained with
Monte-Carlo method with the combined effect of the digital and
observational noise. For this reason, and also because JKTEBOP
takes into account the effects of reflection and gravity darkening,
this algorithm is largely useful for addressing many contempo-
rary problems. However, in general, computational errors can be
significant for statistical analysis of observational data even if
they are one-to-two orders of magnitude smaller than the obser-
vational errors. First, the value of the χ2-statistic is sensitive to
such errors. This sensitivity increases with the number of obser-
vations N, as is clear from the well-known χ2 cumulative distri-
bution function:

Fχ2
N
(t) =

γ
(

N
2 ,

t
2

)
Γ
(

N
2

) ·
For the P-parametric model, if the quantile of the χ2

red =
χ2

N−P
statistic is qred, the corresponding significance level is 1 −
Fχ2

N
(qred(N − P)). For example, in the case of a five-parameter

model, for 1000 observation points, the χ2
red quantiles equal

to 1.00, 1.03 and 1.10 correspond to the significance levels of
∼54%, ∼29%, and ∼2%, respectively. If the number of observa-
tion points is 3000, the quantile values 1.00, 1.03 and 1.10 cor-
respond to the significance levels of ∼52%, ∼14%, and ∼0.01%,
respectively.

Currently, we have developed an algorithm for calculating
the light curve of a transiting star-planet, and its derivatives. It
is based on a previously developed algorithm for calculating the
intensity decrease due to eclipse and published in Abubekerov
& Gostev (2013). The model we use in this algorithm is
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simplified in comparison with JKTEBOP by neglecting the
reflection and gravity darkening effects. Integration is performed
using Gaussian quadrature or by expressing the integrals in
terms of elliptical integrals. Unlike integration over concentric
rings, this approach allows us to obtain a result with a close-to-
extended precision, that is, 19 place values. Although the pre-
cision of the ultimate result of the light curve calculation is
a bit lower (about 18 place values), it is sufficient to exclude
any noticeable influence of the non-physical contribution to the
residual. We note that there are other algorithms for calcula-
tion of the light intensity, for example, Mandel & Agol (2002),
Gimenez (2006), and Koch et al. (2010). The advantage of our
algorithm over that of Abubekerov & Gostev (2013) is that it
works not only for linear and quadratic, but also for square-root,
cubic, and logarithmic limb-darkening laws. Furthermore, our
algorithm allows the derivatives of the light curve to be cal-
culated with a high precision. The derivative values are useful
for implementing fitting methods. Moreover, we then implement
analytical fitting under the assumption of linear dependence on
limb darkening coefficients. This paper outlines the key points
of the algorithm and provides a reference to its current C demo
implementation, including an example of fitting. We also test the
algorithm by applying it to a well-known observational data set –
the transit light curve of the HD 209458 binary from Brown et al.
(2001). We analyze how the introduction of the additional limb-
darkening law decreases the residual and we compare our results
with similar results obtained by Southworth et al. (2007) using
JKTEBOP.

2. Calculations

2.1. Light curve calculation

For a star moving in an elliptical orbit with eccentricity e the
mean anomaly is related to eccentric anomaly by the Kepler-
equation:

M = E − e sin E. (1)

Here

M =
2π(t − t0)

Torb
= Φ − Φ0, (2)

t and Φ is the observation time and phase; t0 and Φ0 are the time
and the phase of the periastron passage, and Torb is the orbital
period.

If 0 ≤ e < 1, Eq. (1) has unique solution for E, which
depends on M and e. We write this solution as a function of two
variables E = E(M, e) determined by the condition

E(M, e) − e sin E(M, e) = M. (3)

We differentiate Eq. (3) with respect to e and M to obtain the
derivatives
∂E(M, e)

∂e
=

sin E(M, e)
1 − e cos E(M, e)

(4)

and
∂E(M, e)
∂M

=
1

1 − e cos E(M, e)
· (5)

The true anomaly ν is related to an eccentric anomaly by the
following well-known equation:

tan
ν(M, e)

2
=

√
1 + e
1 − e

tan
E(M, e)

2
· (6)

The distance between the component centers of the binary
star-planet system in elliptical orbit is given by the following
formula:

D =
a(1 − e2)

1 + e cos ν
, (7)

where a is the sum of the major axes of the component orbits.
The size of the sky-plane projection of the segment between the
component centers in the units of a is

∆ = D/a
√

cos2 i + cos2(ν + ω) sin2 i, (8)

where ω is longitude of the periastron and i is the angle between
orbital and sky planes (inclination).

At the moment of an inferior conjunction, that is, at the time
when radius-vector of the planet coincides with the perpendicu-
lar projection of the line of sight onto the orbital and the star is
farther from the Earth than the planet, ν = 3π/2−ω. We note that
when the star is farther from Earth than the planet (and hence can
be occulted), sin(ν + ω) < 0.

We now express ν from formula Eq. (6) and substitute it into
Eq. (7) to obtain
∆(M, e, ω, i) = (1 − e cos E(M, e))Υ(M, e, ω, i),
where

Υ(M, e, ω, i) =

√
cos2 i + cos2(ν(M, e) + ω) sin2 i. (9)

To calculate the derivatives of the light curve with respect to
M,ω, e, and i, it would be useful to have formulae for derivatives
of ∆ with respect to these parameters. For this, we first give the
formulae
∂ν(M, e)
∂M

=
∂ν(M, e)
∂E

∂E(M, e)
∂M

=

√
1 − e2

(1 − e cos E(M, e))2 , (10)

∂ν(M, e)
∂e

=

√
1 − e2 sin E(M, e)

1 − e cos E(M, e)

[
1

√
1 − e2

+
1

1 − e cos E(M, e)

]
.

(11)
Below we give the formulae for these derivatives assuming

that Υ(M, e, ω, i) , 0, that is, by eliminating the set of quan-
tities M, e, ω, i determined by the condition that i = π/2 and
cos(ν(M, e) + ω) = 0. For this set ∆ is not analytical. If at least
one of the latter two equalities does not hold, using Eqs. (10) and
(11) we obtain1:

∂∆(M, e, ω, i)
∂M

=
1

1 − e cos E(M, e)

(
e sin E(M, e)Υ(M, e, ω, i)

−

√
1 − e2 sin2 i sin(2ν(M, e) + 2ω)

2Υ(M, e, ω, i)

)
, (12)

∂∆(M, e, ω, i)
∂ω

= −(1 − e cos E(M, e))
sin2 i sin(2ν(M, e) + 2ω)

2Υ(M, e, ω, i)
,

∂∆(M, e, ω, i)
∂e

=
(e − cos E(M, e))Υ(M, e, ω, i)

1 − e cos E(M, e)

−
sin2 i sin(2ν(M, e) + 2ω) sin E(M, e)

Υ(M, e, ω, i)

×

 1
√

1 − e2
+

√
1 − e2

1 − e cos E(M, e)

 ,
∂∆(M, e, ω, i)

∂i
= −

sin2(ν(M, e) + ω) sin(2i)(1 − e cos E(M, e))
2Υ(M, e, ω, i)

·

1 The following relationships may be useful here: sin 2x =
2 sin x cos x, cos x2 = (1 + cos 2x)/2, sin x2 = (1 − cos 2x)/2.
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We note that with the smaller e, the weaker the dependence of
∆ on ω and Φ0 (see Eq. (2)) at constant Φ0 − ω. At e = 0, ∆
does not depend on ω and Φ0 at constant Φ0 − ω. This creates
uncertainty in Φ0. At e = 0 the phase (or time) of periastron
passage is completely uncertain, as well as ω. Φ0 set the shift of
light curve along time and large (or full) uncertainty in Φ0 is not
convenient. If we go to variable λ = Φ0 − ω, the dependence of
∆(Φ − λ − ω, e, ω, i) on ω weakens with decreasing e, at e = 0,
∆(λ − ω, 0, ω, i) does not depend on ω. This corresponds to a
large uncertainty for the periastron position at small e and a full
uncertainty for the periastron position at e = 0. At the same time,
dependence on other variable λ persists at e = 0. In such vari-
ables, the position of the light curve along the time axis (phase)
is not tied to the moment of the passage of the periastron. If we
use variables λ and ω instead of Φ0 and ω, it may be necessary
to calculate the derivative of ∆(M, e, ω, i), where M = Φ−λ−ω),
with respect to ω. This derivative is given by the following for-
mulae

∂∆(M, e, ω, i)
∂ω

−
∂∆(M, e, ω, i)

∂M
·

In particular,
∂∆(M, 0, ω, i)

∂ω
−
∂∆(M, 0, ω, i)

∂M
= 0. At small,

finite eccentricities of e , the above difference between the
derivatives can be much smaller than each of these derivatives
itself. Because of this, computing the above difference by direct
subtraction introduces significant error due to the machine pro-
cedure of rounding off. The following formulae may be useful to
obtain the result without such error:

∂∆(M, e, ω, i)
∂ω

−
∂∆(M, e, ω, i)

∂M

=
−e

1 − e cos E(M, e)

(
sin E(M, e)Υ(M, e, ω, i)

+
sin2 i sin(2ν(M, e) + 2ω)

2Υ(M, e, ω, i)(
√

1 − e2 + (1 − e cos E(M, e))2)

× (e + cos E(M, e)T (e cos E(M, e)))
)
, (13)

where

T (x) = (x − 2)(x2 − 2x + 2).

The formula Eq. (13) obtained by transformation2

√
1 − e2 − (1 − e cos E(M, e))2) =

1 − e2 − (1 − e cos E(M, e))4

√
1 − e2 + (1 − e cos E(M, e))2

·

After the brackets remove and terms that are 1 cancel in the
numerator, all terms are small at small e.

We then calculate the minimum value of ∆ in eccentric orbit
when the star is farther from Earth than the planet and can be
occulted. In the case of i = π/2 and sin(ν +ω) < 0 the minimum
value of ∆(M, e, ω, i) is zero and it is achieved at the time of infe-
rior conjunction, i.e., at ω + ν = 3π/2. In general, this minimum
is determined from the equation

∂∆(M, e, ω, i)2

∂M
= 0.

2 Here we use formulae a − b =
a2 − b2

a + b
.

We note that the left-hand part of the latter equation can be cal-
culated even if Υ(M, e, ω, i) = 0 (then the result is 0). In view of
Eq. (12), the latter equation can be written as

cos(ν(M, e) + ω) =
e sin E(M, e) cot2 i

Z
, (14)

where

Z ≡
√

1 − e2sin(ν(M, e) + ω) − cos(ν(M, e) + ω)e sin E(M, e).

In the case of i = π/2 the solution of Eq. (14) with respect to
M corresponds to the time of inferior conjunction, ν(Mmin, e) =
3π/2 − ω, and can be expressed analytically:

Mmin

(
e, ω,

π

2

)
= 2 arctan

√1 − e
1 + e

tan
(

3π − 2ω
4

)
− e sin

2 arctan

√1 − e
1 + e

tan
(

3π − 2ω
4

) .
(15)

At arbitrary 0 < i < π, Mmin(e, ω, i) differs slightly from
Mmin

(
e, ω, π2

)
and can be calculated by iteratively solving

Eq. (14) starting from Mmin

(
e, ω, π2

)
as an initial approximation.

It is useful to calculate Mmin(e, ω, i) to set the initial phase to the
minimum, that is, to align the calculated and observable minima.

2.2. Minimization by limb-darkening coefficients

The intensity of the light of the binary system is

L(∆,R∗,Ro,Λ) = J0R2
∗

[
π − ∆L0

(
∆

R∗
,

Ro

R∗

)
+

+

K∑
k=1

Λk

(
Lk − ∆Lk

(
∆

R∗
,

Ro

R∗

)) ]
, (16)

when sin(ν +ω) < 0, that is, if the star is farther from Earth than
the planet and can be eclipsed. Otherwise L(∆,R∗,Ro) = πJ0R2

∗
.

Here J0 is the brightness at the stellar center; K is the num-
ber of the adopted limb-darkening law; R∗ is the stellar radius
divided by a and expressed in units of a; Ro is the radius of
the planet divided by a; Λk are the limb darkening coefficients;
∆Lk are the contributions to the flux decrease; and Lk are the
contributions to the out-of-eclipse flux according to the limb-
darkening laws used. The algorithm for the calculation of ∆Lk,
their derivatives, and the formula for Lk for the linear, quadratic,
square-root, cubic, and logarithmic limb darkening laws can be
found in Abubekerov & Gostev (2013).

In view of the above paper, L0 = L f
0 = π, ∆L0 = ∆L0.

Depending on the set of limb-darkening coefficients used, Lk

may take following values: L f
l = −π/3 for linear limb-darkening

law; L f
q = −π/6 for quadratic limb darkening law; L f

Q = −π/5

for square-root limb-darkening law; L f
C = −3π/7 for cubic limb-

darkening law; and L f
L = −4π/9 for logarithmic limb-darkening

law. Respectively, ∆Lk may take ∆Ll, ∆Lq, ∆LQ, ∆LC , ∆LL. The
current implementation of this algorithm is referred to as Occul-
tation. Pack3; it contains a code for computing the contributions
to the flux decrease according to linear, quadratic, and square-
root limb-darkening laws.

We then show how the dependence of the flux on the limb-
darkening coefficients can be reduced to some linear depen-
dence. Let L f be the known full out-of-eclipse intensity of the
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light of the binary (with appropriate normalization it can be set
equal to unity).

Then

L f = J0R2
∗

π +

K∑
k=1

ΛkLk

 (17)

or

J0R2
∗

=
1
π

L f − J0R2
∗

K∑
k=1

ΛkLk


=

1
π

L f −

K∑
k=1

JkLk

 , (18)

where

Jk = J0R2
∗
Λk (19)

We now express J0R2
∗

with Eq. (17), and substitute into Eq. (19)
to obtain J-on-Λ dependence:

Jk =
L f Λk

π +

K∑
k=1

ΛkLk

·

To obtain inverse dependence, we substitute the right part of
Eq. (18) into Eq. (19):

Λk =
πJk

L f −

K∑
k=1

JkLk

· (20)

In such notation,

L(M, e, ω, i,R∗,Ro,J) = L(∆(M, e, ω, i),R∗,Ro,Λ(J))
= L0(M, e, ω, i,R∗,Ro)

+

K∑
k=1

JkLk(M, e, ω, i,R∗,Ro), (21)

where J denotes the column (J1 . . .JK)T ,

L0(M, e, ω, i,R∗,Ro) =
L f

π

(
π − ∆L0

(
∆(M, e, ω, i)

R∗
,

Ro

R∗

))
,

Lk(M, e, ω, i,R∗,Ro) =

(
Lk

π
∆L0

(
∆(M, e, ω, i)

R∗
,

Ro

R∗

)
− ∆Lk

(
∆(M, e, ω, i)

R∗
,

Ro

R∗

))
·

Thus, according to Eq. (21), the flux is linearly dependent on
some variable J, and J depends uniquely on limb-darkening
coefficients. We can fit the light curve analytically using coef-
ficients J, and hence the limb-darkening coefficients.

Let the observational data be a set of N triples {Φ j, l j, σ j}, j =
1 . . .N, where the first quantity is the phase of j-th observation:

Φ j =
2πt j

Torb

where t j is the time of j-th observation; l j, is the intensity at t j,
and σ j, the uncertainty (standard deviation) of the intensity at t j.

Let t0 be the time of the periastron passage and Φ0 =
2πt0
Torb

be the periastron phase at which the mean anomaly equals zero.
The interpretation problem then reduces the data and finds

such Φ0, e, ω, i,R∗,Ro , and J that the residual

R =

N∑
j=1

(
L(Φ j − Φ0, e, ω, i,R∗,Ro,J) − l j

σ j

)2

(22)

reaches its minimum. If l j have a normal distribution, R is dis-
tributed as χ2 with N degrees of freedom. The minimum of R
is distributed as χ2 with N − P degrees of freedom if minimiza-
tion performed by P linear parameters. For nonlinear minimiza-
tion, this statement can be true only by an approximation; see
Andrae (2010) for more. For the purposes of this paper, however,
we neglect the nonlinearity at the minimum point and consider
R/(N − P) as χ2

red
3.

Given that L has a linear dependence on J, the values of J
yielding the minimum of the residual at fixed Φ0, e, ω, i,R∗,Ro

can be found analytically. Let L̂k j = Lk(Φ j − Φ0, e, ω, i,R∗,Ro),
k = 0 . . .K, j = 1 . . .N. Then

R =

N∑
j=1



K∑
k=1

Lk jJk − l j

σ j



2

. (23)

Minimizing Eq. (23) with respect to J is the standard linear
regression problem. The corresponding solution values are Jfit =
Â−1B, where Â−1 is the inverse of matrix Â,

Am j =

N∑
j=1

Lm jLk j

σ2
j

,

B is a column vector.

Bm =

N∑
j=1

Lm j(l j − L0 j)

σ2
j

·

Substituting Jfit instead of J in Eq. (23) yields the expression for
the residual, which is minimized with respect to limb-darkening
coefficients and depends on geometric parameters exclusively.
The fitted values of Λ can be found using Eq. (20).

We also note that given that ∂(Â−1)
∂x = −Â−1 ∂Â

∂x Â−1, we can
easily calculate the derivative Jfit with respect to each geometric
parameter:

∂Jfit

∂x
= Â−1

(
−
∂Â
∂x
Jfit +

∂B̂
∂x

)
,

where x is a geometric parameter.
We emphasize that Jfit depends on l j. If we calculate Eq. (22)

with J = Jfit, R is distributed as χ2 with N − K degrees of free-
dom.

Next, minimization with respect to geometric parameters
can be performed with the any first-level optimization method
(for instance, Levenberg–Marquard). We note that during inter-
pretation, in Eq. (22), we can go to variables L(Φ j − Φl −

ω, e, ω, i,R∗,Ro,J), where Φl = Φ0 − ω to eliminate correlations
between Φ0 and ω at small e. In this case, we use Eq. (13) to
calculate the derivatives with respect ω.
3 To avoid confusion between the concepts of value and distribution
of the residual, also taking into account Andrae (2010), we denote the
residual as R, not χ2.
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Table 1. Results of the fitting of the light curve of the binary HD 209458 using OccutationPack3.

Limb darkening R∗ Ro i Λl Λq ΛQ

Lin 0.11469 0.014057 86.4844 0.4945 – –
Quad 0.11383 0.013765 86.6756 0.2945 0.3441 –
Sqrt 0.114142 0.013755 86.6904 −0.3129 – 1.358
Sqrt and Quad 0.114130 0.013756 86.6898 −0.2898 0.01274 1.306

3. Interpretation of the light curve HD 209458

Table 1 contain the results of the calculation of parameters with
OccultationPack3.

Here we analyze the high-precision transit light curve of the
exoplanet binary HD 209458 from Brown et al. (2001), which
has been used repeatedly to infer reliable values of the geo-
metric parameters of the binary system and the limb-darkening
coefficients. This observational material is, therefore, well-suited
for debugging and testing the operation of a software package.
The observed light curve presented in Brown et al. (2001) was
obtained with the Hubble Space Telescope (HST) in April–May
2000. The light curve consists of 556 individual brightness mea-
surements with the rms uncertainties betweenσobs

i = 1.13×10−4,
and σobs

i = 2.47 × 10−4 (in units of the out-of-eclipse inten-
sity) in different parts of the light curve. The relative uncertain-
ties (expressed as fractions of the eclipse depth) are between
∼7 × 10−3 and ∼1.5 × 10−2.

In our analysis of the observational data, the fitted parameters
were: the radius of the exoplanet rp, the radius of the star rs, the
inclination i, the linear (Λl) and quadratic (Λq), and square-root
(ΛQ) limb-darkening coefficients. We assumed the orbital period
to be Porb = 3.d52474859 and the sum of the major semi-axes
of the orbit to be equal to one. The time of the first minimum is
0.93675 d.

The fit was made according to Newton’s method. We can
empirically estimate the accuracy of the result as 12 significant
digits for the fitted values. This estimate is based on the differ-
ences of the last elements in the iterative sequence of the Newton
method.

The uncertainties of the fitted parameters completely coin-
cide with the errors obtained using JKTEBOP in Southworth
et al. (2007). Moreover, the discrepancy between the values we
obtained obtained and the values obtained in Southworth et al.
(2007) are much less than their uncertainties. We note that the
values obtained in Gimenez (2006) are not so close to those
given above. While the fitted values agree with Southworth et al.
(2007) within their uncertainties we have a noticeable difference
in residuals χ2

red.
The analysis of the light curve of HD 209458 in terms of the

linear limb-darkening law performed in Southworth et al. (2007)
using JKTEBOP package yielded a minimum residual of χ2

red =
1.146 corresponding to the maximum significance level of α =
1%. An analysis performed using our algorithm in terms of the
linear limb-darkening law yields a minimum residual of χ2

red =
1.129 corresponding to the maximum significance level of α =
2.5%

Our analysis of the light curve of HD 209458 in terms of
the quadratic limb-darkening law using OccultationPack yields
a minimum residual of χ2

red = 1.0402, which corresponds to the
maximum significance level of α = 30%. An analysis performed
under the same conditions in Southworth et al. (2007) yields a
substantially greater residual, χ2

red = 1.056, corresponding to the
maximum significance level of α = 23%.

Our analysis of the light curve of HD 209458 in terms of the
square-root limb-darkening law using OccultationPack yields a
minimum residual of χ2

red = 1.038, which corresponds to the
maximum significance level of α = 31%. A similar analysis per-
formed with JKTEBOP package Southworth et al. (2007) yields
a substantially greater residual, χ2

red = 1.054, corresponding to
the maximum significance level of α = 23%.

Thus, more precise computations which exclude the need to
account for calculation errors allow us to make better conclu-
sions about the statistically significant decrease in the residual
resulting from adding a quadratic term to the limb-darkening
law. Moreover, the elimination of non-physical contribution to
the residual offers an opportunity of dealing with nonempty con-
fidential set at a higher significance level (lower confidential
level).

Additionally, we can conclude that the fit by both the square-
root and quadratic limb-darkening coefficients does not result
in any noticeable decrease in the residual compared to the case
when only one of these limb-darkening laws is used (χ2 =
1.0402, α = 31%).

Also, we realized fit (including the time of the first min-
imum) in the number of fitted parameters. The fitted time is
0.9367383, 0.9367340, and 0.9367338 for linear, quadratic, and
square-root laws, respectively. Significant changes in the value
of the residual and other fitted parameters did not occur.

It is worth mentioning that minima of the light curves
obtained with modern space telescopes may contain several
thousand data points, resulting in even more significant effect
of the non-physical contribution to the residual. We note that
the analysis presented here does not imply an a priori truth of
the limb-darkening model. The possibility of using such a model
is considered a hypothesis, the reliability of which is evaluated
statistically. In particular, the ability to work with a non-empty
confidence set is evaluated here (maximum significance level). It
is important to note that we cannot be absolutely sure of the cor-
rectness of the model used. In particular, spots and granulation
can modify the shape of the transit via changing the limb dark-
ening because they change the stellar intensity profile Csizmadia
et al. (2013) and Chiavassa et al. (2017).

4. Numerical testing

For greater certainty in our conclusions we carried out three
numerical tests. First of these was modeling the χ2 decrease
through the introduction of a limb-darkening law that is more
consistent with observations. We generated a synthetic light
curve using the values of fitted parameters for HD 209458 and
quadratic limb-darkening law. The synthetic observational val-
ues was L(tk, x) + ξk, where tk is a time of kth observation, x
is a set of values of parameters, L(tk, x) is the corresponding
light curve value, ξk is a normally distributed random number
with standard deviation σobs

k that is k level of uncertainty for
light curve HD 209458 from Brown et al. (2001). A quadratic
limb-darkening model played a role of an “ideal model” for such
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synthetic observational data. We can say that χ2
red for linear limb-

darkening was about 0.1 greater than that of χ2
red for quadratic

limb darkening. It matches a χ2
red decrease for the real light

curve. The same effect also occurs if we proportionally reduce
the standard deviation of ξk.

Second, we made artificial distortion in calculation of the
light curve by adding 0.0015(1 − L(tk, x))εk to the values of the
light curve, where εk = 1 if k is even and -1 if odd. We recall that
the maximal light decrease 1 − L(tk, x) is about 0.015, so term
(1 − L(tk, x))εk is distroted by the 5th to 6th decimal place in
L(tk, x). Then the χ2

red = 1.057 (JKTEBOP result 1.056), R∗ =
0.113827, Ro = 0.013764, i = 86.67684, Λl = 0.294, and Λq =
0.345. Thus, calculating the light curve with artificial calculation
error, we get result similar to the result of using the JKTEBOP,
which leads to a significant increase for χ2

red and no significant
shift in fitted values.

Third, we checked whether the increased value of the resid-
ual is not attributable to the lack of a minimization procedure
for JKTEBOP. We calculated χ2 using the fitted values from
Southworth et al. (2007) for quadratic limb-darkening law. We
did not find any significant increase in χ2

red (its value was
1.04036). Thus, we can conclude that the overestimated value of
χ2

red from Southworth et al. (2007) is not caused by the lack of a
minimization procedure for JKTEBOP. Hence, errors in the light
curve calculation may do not lead to a significant shift of fitted
values but at the same time, they lead to a significant increase
in χ2

red.
We note that if we calculate χ2

red with fitted values from
Gimenez (2006), we get χ2

red = 1.058, that is, in this case, there
is a significant shift in the fitted parameters.

5. Discussions and conclusions

The above results clearly demonstrate that high-precision algo-
rithms have to be used when computing the light curves to test
the hypothesis of whether observational data agrees with theory.
The algorithm that we developed is based on Gaussian quadra-
tures and allows computations to be performed with current
machine precision. Such precision for the light curve calculation
allows for more reliable conclusions about the compatibility of
the observed light curve with the adopted model.

In the Occultation.Pack3 algorithm, integration over over-
lapping disks is performed analytically using either elliptic inte-
grals (there is an efficient algorithm for calculating them with
required precision) or Gaussian quadratures after some analyti-
cal transformation of the integrand.

The prime advantage of the improved precision of the light
curve calculation is that it allows us to make a better assessment
of the compatibility of the observed light curve with the adopted
model. Because of the elimination of the non-physical contribu-
tion to the residual we can draw more reliable conclusions about
how significant the variation is for the χ2 in certain cases. For
example, we can see how significant the variation of the minimal
value is for the residual due to the addition of extra parameters
to the fit, including the dependence of the minimal residual on
the adopted limb-darkening laws.

We also note that the improvement in the precision of the
light curve calculation may have a considerable effect on the

minimum residual value even if it translates into no significant
changes in the inferred parameter values. Under such circum-
stances, we can conclude that in practice, JKTEBOP allows for
satisfactory results to be obtained in certain cases, such as the
determination of the system parameter values within their uncer-
tainties estimated via the Monte-Carlo method (assuming that
the model is compatible with observational data). The residuals
have to be calculated with higher precision if the interpretation
involves no such assumption (in the case that the confidence set
turns out to be empty or that statistically significant changes in
the residual are in question).

In practice, the algorithm that we developed excludes any
non-physical contribution to the residual due to computational
errors and it allows us to make more reliable conclusions about
the significance of the variation of the residuals in certain cases.
For instance, we can get an understanding of how significant
the variation of the minimum residual value is by adding extra
parameters to the fit. In addition, the opportunity of working at a
higher significance level is of value in itself.

Thus, the improvement in the precision of the light-curve
computation, in particular, the resulting elimination the non-
physical contribution to the discrepancy, allows for a more reli-
able investigation of the compatibility of the observed light curve
with the adopted model.

Our algorithm will make it possible to better analyze the rich
observational material supplied by space telescopes. The imple-
mentation of the algorithm is publicly available. Currently, we
present the code for calculating ∆(M, e, ω, i) and its derivatives,
Mmin(e, ω, i), and the dependence of normalized light on geo-
metric parameters computed in terms of linear, quadratic, and
square-root limb-darkening laws. The combined code and data
files are distributed under the name of Occultation.Pack3.

We also present Demo.Pack which contains a code for cal-
culating the light curve over the given time interval (speci-
fied in the parameter file) and the residual χ2

red minimized with
respect to the limb-darkening coefficients at fixed geometric
parameters, as well as the HD 209458 example described above.
Occultation.Pack3 and Demo.Pack are available online4.
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