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I

Description of the code

This section contains a description of the code that was used for a non-LTE modelling of
stellar atmosphere, irradiated by an external radiation in the context of matter accretion
by young stars. The code is a revised and expanded code of well known program DETAIL
(Butler, Giddings, 1985), which calculates non-LTE populations of atomic levels of a few
user-defined elements at a fixed atmospheric structure. The program, described here, allows
to solve the non-LTE problem self-consistently, i.e. the atmospheric structure and the non-
LTE-populations are calculated simultaneously.

I.1. The basic system of equations

A structure of homogeneous plane-parallel atmosphere can be calculated by a solution of the
basic equations, described below.

Equation of hydrostatic equilibrium:

dPtot

dz
= −gρ, with the boundary condition: Ptot(z0) = P0, (I.1.1)

where z – height in the atmosphere, g – gravity, ρ – density, Ptot – total pressure:

Ptot = (Ne + Na)kT + Prad, (I.1.2)

Ne – electron number density, Na – number density of atoms and ions in all excitation states.
The latter quantity is related to the density as: ρ = µmaNa, where µ – the mean molecular
weight, in case of solar elemental abundances µ ≈ 1.26, ma – the atomic mass unit.

In order to calculate Ne and level populations N t,i
l in case of LTE, the systen of Saha

and Boltzmann equations for each t-th elements should be solved:

NeN
t,i+1

N t,i
=

2Qt,i+1

Qt,i

(

2πmekT

h2

)3/2

e−
χt,i+1

kT , Qt,i =
∑

gt,i
l e−

E
t,i
l

kT ,
N t,i

l

N t,i
=

gt,i
l

Qt,i
e−

E
t,i
l

kT .

(I.1.3)
and in non-LTE-case, the equations of statistical equilibrium should be solved:

N t
k

∑

u

Rt
ku =

∑

u

N t
uR

t
uk, k = 1 : Kt, u = 1 : Kt, (I.1.4)

Here N t
k are the renumbered populations N t,i

l , Kt is a full number of levels in an atom
and its ions, which are considered in non-LTE. R∗

∗∗
– transition rates, which depend on
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Ne, T, Jν and cross-sections of atomic processes for each specific transition. Both equations
( ref BEq.SB, ref BEq.SE) should be supplemented by conditions of the normalization and
the charge conservation:

∑

i

∑

l

N t,i
l = N t

a (I.1.5)

∑

t,i,l

Zt,iN t,i
l = Ne, (I.1.6)

where N t
a = ξtNa is the total numder density of an element with an abundance ξt, Zt,i is a

charge of an ion.
The gas in the stellar atmosphere exchanges an energy with the radiation field and, in

the stationary situation, the heating and cooling must be balanced, that is expressed by the
equation of radiative equilibrium:

∞
∫

0

χa
νJνdν =

∞
∫

0

jνdν. (I.1.7)

In absence of energy sources in the atmosphere, in stationary case, the total energy flux is
constant throughout the plane atmosphere and is determined only by an effective tempera-
ture of the star Teff .

∞
∫

0

Hνdν + Hconv =
σT 4

eff

4π
, (I.1.8)

Hconv is convective flux.
To determine moments of the radiation field:

Jν =
1

2

1
∫

−1

Iν(µ)dµ,

Hν =
1

2

1
∫

−1

Iν(µ)µdµ,

the radiative transfer equation should be solved:

µ
dIν(µ)

dz
= −(χa

ν + χs
ν)Iν(µ) + jν + χs

νJν , (I.1.9)

The coefficients of a true absorption χa
ν , a scattering χs

ν , and an emission jν can be derived
from cross-sections of elementary processes of absorption/scattering and the level populations
N t,i

l .
The programm DETAIL solves the equations (I.1.3) at a fixed value of Ne and Na for all

elements, the equations (I.1.4) are solved only for a few elements, which are defined by user,
who must define for them all the necessary atomic data. DETAIL’s subroutines allow to
calculate values χa

ν , χs
ν , jν and to solve the radiative transfer equation (I.1.9) by Feautrier’s

method. The equations (I.1.4) and (I.1.9) are solved in DETAIL self-consistently by using
an accelerated Λ-iteration method. In the next section we will consider a structure of a
computer program, which allows to solve all equations self-consistently.
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I.2. A general structure of the code

1. Reading an input data (Atomic data, initial model, technical parameters).

2. Integration of the hydrostatic equilibrium equation (I.1.1). If we redefine the coordi-
nates z by m : dm = −ρdz, then the hydrostatic equilibrium equation has a solution:

Ptot = gm + P0, (I.2.1)

At the present time, the equations (I.1.1-I.1.9) are solved on a fixed grid m with nodes
md thus during the modelling the total pressure Ptot(md) = const in each particular
node of the grid due to the solution (I.2.1). In order to obtain a solution on a fixed grid
of Rosseland optical depth τ std

Ross, the model of the atmosphere, including the grid m,
should be interpolated (or extrapolated) from the grid τRoss, which can be calculated
for the present set of md, to the grid τ std

Ross, then the system of the equation (I.1.1-I.1.9)
should be solved again on the new grid m.

3. The main iteration loop:

3.1. Calculating some line profiles by an interpolation from tables. (DETAIL: utable.f90,
with minor changes)

3.2. Solving the Saha and Boltzmann equations at constant gas pressure and tempera-
ture. Re-calculating the gas density (significantly modified DETAIL’s subroutine:
sumup.f90).

3.3. Calculating χa
ν , χs

ν , jν for elements, treated in LTE (DETAIL: opac.f90, with
minor changes).

3.4. Calculating collisional transition rates. (DETAIL: collis.f90)

3.5. Getting a self-consistent solution of the radiative transfer equation and the statis-
tical equilibrium equations by using the accelerated Λ-iteration technique (revised
DETAIL’s subroutines: code.f90: alinvel.f90: formal.f90 ).

3.6. Calculating the radiation pressure Prad and re-calculating the gas pressure Pgas =
Ptot − Prad.

3.7. Calculating the convective flux Hconv (using mixing length theory, adopted from
the TLUSTY code).

3.8. The temperature correction.

3.9. The correction of Na, Ne, in order to keep a constant pressure when the temper-
ature changes.

The end of the main iteration loop. Iterations are performed until the balance between
heating and cooling (I.1.7) is reached and the condition of constant energy flux (I.1.8)
is reached.

I.3. Solving the Saha and Boltzmann equations

Let’s transform the equations (I.1.3) into a form, which will be used to get a numerical
solution for them, omitting the index t for brevity:

N i
l = SBiN

i+1
1 , SBi = CS

gi
l

gi+1
1

e
Ii
l

kT , CS =
Ne

2

(

h2

2πmekT

)3/2

, (I.3.1)
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where I i
l is an ionization potential of the level l in i-th ion. The ground state of each ion has

l = 1, and the last considered ion has only the ground state, which can be designated as NK
1 .

All N i
l can be expressed through NK

1 and substituted in the normalization condition (I.1.5).
After that NK

1 can be found. The rest N i
l can be calculated directly from the recurrence

relation (I.3.1). Such algorithm leads to overflow problems in case of ions with high ionisation
potentials, because an arising sums of products of SBi can exceed 10308 (max double). Hence
the programm determines the highest ionization stage, for which SBi does not exceed e100,
and the equations (I.3.1) are considered upto this ion, which will be labeled as K. Level
populations of more higher ions are equated to a small number, because in LTE conditions
the ions with I i

l > 100kT have to be in a negligible concentration. However in non-LTE case,
an ionizing external radiation can produce a ”hot” ions in a ”cold” gas, accordingly in case
of non-LTE-atoms the values of SBi are artificially limited by e200 ≈ 1087. It means that the
results will be wrong for departures from LTE about 80 orders of magnitude, therefore, we
impose a constraint that the departures from LTE cannot exceed 80 orders of magnitude. It
turned out that it is sufficient for our calculations. Any significant level populations of the
”hot” ions do not deviate from LTE by more than 50 orders of magnitude, in the case of
simulation of accretion spots in T Tauri stars.

Our solution of the system of the basic equations (I.1.1-I.1.9) assumes that the Saha and
Boltzmann equations have to be solved at fixed values of T, Pgas. It means that the solution
of (I.3.1) has to be found at fixed Ntot = Na + Ne, but not at fixed Na and Ne, as it is
described before. It can be achieved by applying the following iterative procedure. The
equations (I.1.5) are solved at initial values of N0

a and N0
e , which can be taken from the

previous main iteration or the initial model. After that, a new value of Ne is calculated as
Nnew

e =
∑

t,i,l

bt,i
l Zt,iN t,i

l , where the sum is taken over all levels of all ions, N t,i
l are the LTE

populations, and departures from LTE are teken into account by b-In the next step the
value 0.5(N0

e + Nnew
e ) is taken as the new value of N0

e , and N0
a is re-calculated as Ntot −N0

e .
The iteratins are stopped when the relative variation of Ne between two successive iterations
became less than 10−3. This typically requires less than 10 iterations, in most cases the initial
guess is close enough to the solution and the convergence is achieved in 2 – 3 iteration. If
the solution has not been achieved in 1000 iterations, then the program terminates with a
corresponding message.

To reduce the computing time, LTE-ions with the relative abundance of a ground state
N t,i

1 /Na < 10−10 are ignored in a computation of line opacity (i.e. in opacity sampling).

I.4. Solving the radiative transfer equation

A formal solution of the radiative transfer equation (I.1.9) is obtained by Feautrier’s method
for three directions, which are defined by the cosines µi. The values of µi and corresponding
integration weights wi are chosen by an 3-point Gaussian quadrature rule:

µ1 = 0.8872983346, µ2 = 0.5, µ3 = 0.1127016654;

w1 = dµ1 = 0.277777777778, w2 = dµ2 = 0.444444444444, w3 = dµ3 = 0.277777777778.

The description of Feautrier’s method can be found in Mihalas’s book (1978). Here we
consider only the questions, related with changes we have made in subroutine formal.f90 of
the original DETAIL code.
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The radiative transfer equation are solved not for the intensity I(µ) in the nodes in ±µi,
but for a combination:

Vi =
I(µi) + I(−µi)

2
. (I.4.1)

The equation (I.1.9) in new variable takes the form:

µ2
i

d2Vi

dτ 2
= Vi − (1 − ǫ)S − ǫ

∑

Viwi, (I.4.2)

with an upper boundary condition:

µi
dVi

dτ
= Vi − Iei at τ = 0, (I.4.3)

and with a lower boundary condition:

µi
dVi

dτ
+ Vi = S + µi

dS

dτ
, τ = τmax. (I.4.4)

ǫ = χs

χa+χs
, dτ = −(χa + χs)dz, S = j

χa
is the source function. Iei is an external radiation,

which is defined as:
Iei = ri

µIiso, (I.4.5)

where ri
µ are weight coefficients, Iiso is an isotropic intensity . Thus, in case of an isotropic

external radiation (I(µ) = Iiso, at µ < 0, otherwise I(µ) = 0) ri
µ = 1 for any i. If an incident

flux is considered as a global characteristic of the external radiation, then, in general case,
ri
µ are normalized in such a way that the flux is equals to the flux for isotropic distribution

I(µ):
∑

ri
µµiwi = 0.5 (I.4.6)

The calculated values of Vi allow us to obtain two moments of the radiation field:

J =

3
∑

i=1

Viwi (I.4.7)

K =
3

∑

i=1

Viµ
2
i wi, (I.4.8)

To obtain the Eddington flux H, other combination should be considered:

Ui =
I(µi) − I(−µi)

2
(I.4.9)

However, in practice, there is no need to solve again the differencial equation for Ui. Having
J and K, the flux H can be calculated either by integration of the equation:

dH

dτ
= χa(J − S), (I.4.10)

with a boundary condition:

H0 =

∫

(V0 − Ie)µdµ =
∑

(V0i − Iei) µiwi. (I.4.11)
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either by differentiation of the moment K :

H =
dK

dτ
. (I.4.12)

In case of an isotropic radiation field, the last expression reduces to the expression for the
diffusion approximation H = 1

3
dJ/dτ.

The comparison of both methods for a LTE-model of the star with Teff = 11000 K,
log g = 4.0 has shown that the differential method leads to good enough results at every
depth and frequency, while the integral method leads to absurd solutions at points with a
very high opacity.

I.5. The temperature correction

The program uses four temperature corrections, three of them are summands of the Unsold-
Lucy correction scheme, which has been modified by Dreizler (2003) to take into account
departures from LTE. The first correction is designed for upper layers and can be applied
for convective as well as non-convective models. The second and third corrections are the
flux corrections and are designed only for non-convective models.

The fourth correction can be used in convective as well as non-convective models. It
is Avrett-Krook temperature correction, which has been modified to include a convection.
This part of the code was adopted from the ATLAS9 code (Kurucz, 1970; Castelli, Kurucz,
2004) with some changes due to differences in the method of a calculation of the convection.
This correction are designed only for LTE case, but it is applied only for convective layers,
where departures from LTE are negligible.

All the necessary integrals over the frequency are calculated at the last Λ-iteration (in
a subroutine alinvel.f90). Referring for details to the cited works, we will only discuss here
some questions that are still unclear.

I.5.1. The splitting of the source function into a thermal and non-

thermal contribution

The temperature corection scheme in non-LTE case is based on the splitting of the source
function into a thermal and non-thermal contribution, which is treated as a scattering:

χa
νSν = κB

ν Bν + γνJν . (I.5.1)

If the relative difference between the source function of any non-LTE transition and the
Planck function is less than δS, then the transition is classified as ”thermal”, else it is
considered as ”non-thermal”. Test runs (see part III) have shown that the optimal value
of δS = 10−2. The expression (I.5.1) implies that the ”non-thermal” opacity sources are not
dependent on temperature, therefore, the method will not work when the ”non-thermal”
opacity dominates. In such cases linearization methods should be applied.
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I.5.2. The problem of slow convergence caused by the presence of

spectral regions with a high opacity

The problem is as follows. The first temperature correction (Λ-correction), which operates
in upper layers, can be written as follows:

∆T =

∫

χa
ν(Jν − Sν)dν
∫

χa
ν

dSν

dT
dν

. (I.5.2)

Let us decompose the integrals into the sum of integrals over spectral regions with high and
low opacity:

∆T =

∫

highχ

χa
ν(Jν − Sν)dν +

∫

lowχ

χa
ν(Jν − Sν)dν

∫

highχ

χa
ν

dSν

dT
dν +

∫

lowχ

χa
ν

dSν

dT
dν

. (I.5.3)

In the optically-thick frequency points Jν − Sν = 0, therefore, at χhigh → ∞

∆T =

const +
∫

lowχ

χa
ν(Jν − Sν)dν

∞ +
∫

lowχ

χa
ν

dSν

dT
dν

→ 0. (I.5.4)

The temperature correction goes to zero, while the heat balance is not reached:

∫

lowχ

χa
ν(Jν − Sν)dν 6= 0. (I.5.5)

Hence we need to remove from the integrals the optically-thick frequencies, at which the
balance is set automatically. Due to this reason at calculations of mean opacities κP and κJ

(see Dreizler’s paper) we remove from integrals the frequencies, at which

∣

∣

∣

∣

χa
νJν

η
− 1

∣

∣

∣

∣

< stemp. (I.5.6)

Test runs shows that the optimal value of stemp = 10−3.
The Λ-correction operates only in upper layers τRoss . 1, in more deep layers the flux

correction is applied.
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II

Atomic data

This section describes the atomic data set for hydrogen and helium, which has been used in
simulations of accretion spots on the surface of young stars.

II.1. Hydrogen

For test purposes, we will consider a few models of Hydrogen atom, which include all levels
with the principal quantum number n up to Nmax, where Nmax = 10, 15, 20, 25, 30. The ion-
ization enegry of each level is calculated using the Rydberg formula. At high temperatures,
when χt,i+1/kT is not small, the omitted upper levels can make a significant contribution
to the partition function in Saha equation and can lead to wrong results. In ATLAS9 this
problem has been solved by inclusion all excited states up to the last level n, which is defined
by comparison of the energy of electron in atom with the energy in the mean electric field
in a plasma (Kurucz, 1970):

n ≈ 80

(

T4

Nc14

)1/4

Z
1/2
eff ,

where Nc is a number density of charged particles with effective charge Zeff .
In the DETAIL code this levels can be taken into account by inclusion of so-called S-level.

However, tests have shown that at the values of Nmax, which are used here, changes in the
partition function lead to a small changes in b-factors (see Fig. II.6).

Another problem associated with a finite number of levels in the atom is a big number of
lines, which merge into continuum at the ionization threshold. Ignoring these lines leads to
decrease the opacity, that can be compensated by lowering the ionization threshold (see Fig.
II.8). Thus, the missed opacity in lines is compensated by the continuous opacity. The same
procedure allows us to account roughly the Stark wings of the photoionization cross-section
(see Lin, Ho, 2011). Tests shows that lowering the ionization threshold allows to obtain
results for a small Nmax, which are close to the results for models with a big Nmax.

Therefore, by default, ionization energies of the levels are calculated as follows:

EH I = RH

(

1

n2
−

1

(Nmax + 1)2

)

, (II.1.1)

The oscillator strengths are calculated by using the formulae from Berestetskij et al. (1989)
and are well agree with data from NIST. Stark broadening was calculated for line pro-
files corresponding to the transitions from n = 1 − 4 to overlying levels: the tables of
Stehle&Hutcheon (1999) were used for the transitions from n = 1 − 3 to n ≤ 7, the theory
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of Griem (1960) as implemented by Auer&Mihalas (1972) was applied for the rest lines with
a lower level n = 1 − 4. Taking into account a big number of lines in the atomic model and
Shark broadening for lines near series limits are necessary to reproduce real shapes of stellar
spectra near the ionization threshold. Otherwise, the integral flux can be erroneous that
leads to errors in the model of the atmosphere.

The rest lines are included, assuming Doppler profiles. For all lines the approximation of
the complete frequency redistribution was assumed.

Electron-impact excitation rates are calculated as in PB04 (Przybilla&Butler, 2004) and
correspond to model E from this paper. Model F will be used here only for comparison
purposes.

Electron-impact ionization rates are evaluated according to Johnson (1972).
Photoionization cross sections and the f-f opacity are calculated applying hydrogenic

expressions (Mihalas, 1978) with Gaunt factor gII as in PB04.
In this part we will mark the atomic data set as follows: XNmaxShY, where X assumes

values E or F for electron-impact excitation rates. Nmax is the number of levels in the atomic
model. The models with a shift of ionization thresholds are labeled by Sh, Y assumes values
E, if the energies of levels are shifted, and P, if the thresholds of Photoionization are shifted,
but the energy of levels for other processes are unchanged.

II.1.1. Tests

The original DETAIL code was used for the testing of the atomic models. The code allows
to calculate departures from LTE for a few user-defined elements at a fixed atmospheric
structure. The program provides a variety of methods to include the line-blanketing effect.
The main method in our calculations is the Opacity Sampling (OS). However, in order to
compare with results of old papers, we will use ODF method, which has a various imple-
mentations in the code: ODF BIG or ODF LIT Kurucz ODFs with large (BIG) or small
(LIT) frequency steps; the original Kurucz treatment (KUR) or a less accurate, faster mean
opacity version (AVE). ODF can be applied for non-LTE calculations only for hydrogen and
helium, because all other elements are included in ODF in LTE approximation.

In order to test atomic data set for hydrogen, the calculations for the star β Ori, which
is considered in detail by PB04, are reproduced. The atmospheric parameters of the star:
Teff = 12000 K, lg g = 1.75, helium abundance Y = 0.13. Stark broadening of all lines with
lower level n ≤ 4 is calculated by applying the theory of Griem (1960). The velocity of micro-
turbulence used in PB04 Vmic = 7 kms−1. I have not the ODF file for this microturbulence,
moreover Przybilla and Butler have used the old ODF files, which are no longer available.
However, we can easily evaluate the effect of turbulence on b-factors by using the opacity
sampling technique. The departure coefficients as a function of Rosseland optical depth τRoss

are shown on Fig. II.1 for the model E30ShE and two values of the microturbulence Vmic = 1
and 7 kms−1 .

A comparison of OS and ODF methods for the same model with Vmic = 1 kms−1 is shown
on Fig. II.2. It can be seen that only the first and second levels are strongly dependent on
the method, which was used.

It has been found in PB04 that the result depends on the number of levels in the atomic
model. Our results for the atomic models E(10,20,30)ShE have not shown similar dependence
(see. Fig. II.3) A 20-level model leads to the same results as a 30-level model. A 10-level
model shows a little differences.

In the models E(10,20,30) without the lowering of ionization energy the dependence on
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Figure II.1: b-factors of hydrogen levels. OS with Vmic = 7 kms−1 (the thick curves) and
Vmic = 1 kms−1 (the thin curves). A notable difference can only be seen for n = 2. Atomic
model: E30ShE
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Figure II.2: The departure coefficients for hydrogen levels calculated with OS (the thick
curves) and ODF AVE BIG (the thin curves). Vmic = 1 kms−1. E30ShE
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Figure II.3: b-factors of hydrogen levels for the atomic data sets E(10,20,30)ShE. Thicker
lines correspond to a bigger atom. The lines for 20-level and 30-level models are practically
coincide. OS. Vmic = 7 kms−1.

the number of levels is considerably increased (Fig. II.4). This effect is primarily associated
with the location of the photoionization threshold, thus, if we reduce only the frequency of
the photoionization threshold, then the dependence is absent again (Fig. II.5).

The inclusion of additional levels in the form of S-level does not impact on the results,
any changes in the departure coefficients are less than 1% (see Fig. II.6).

The differences in the level populations in the E and F models are shown on Fig. II.7.
In general, the behaviours of the departures from LTE in our tests and in PB04 are similar,

but the scale of the departures in our tests turns smaller than in PB04. It probably caused
by differences in ODF files (old and new ODF) as well as in the model of the atmosphere.

The differences of radiation fields obtained in the atomic models with and without the
lowering of the photoionization threshold are shown on Fig. II.8. The area bounded by the
red and black curve is the radiation, which is missed in the photoionization process in the
models without the lowering. However, the lowering is first and a very rough approximation
for a simulation of the Stark wings of the photoionization cross-section. The jump at the
series limit is artificial and caused by the sharp edge of the photoionization cross-section.
The shift of the threshold allows us to take into account the main effect.

To construct an accurate model of the stellar atmosphere, the total flux should be cal-
culated accurately, therefore the Stark wings of all distinguishable hydrogen lines as well as
the Stark wings of the photoionization cross-section should be taken into account.

There are an alternative method for a calculation of the spectrum near series limits. To
make a smooth transition from the lines to the continuum, a dummy line, labeled in the line
list as CONTINUUM, is put at the frequency of the ionization threshold in the SYNTHE
code. In a similar way the problem is solved in the TLUSTY code, where the atomic model
contains 8 levels + ”merged”-level. Thus, the last Balmer line, which is explicitly calculated
in the TLUSTY code, is 3890Å(vac), and all higher members are treated as a pseudo-
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Figure II.4: b-factors of hydrogen levels. Atomic model is E(10,20,30), i.e. without the
lowering of ionization energy. OS. Vmic = 7 kms−1.
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Figure II.5: b-factors of hydrogen levels. Atomic model is E(10,20,30)ShP, i.e. the frequency
of the photoionization threshold is reduced, but the ionization energies (for example, in case
of a collisional ionisation) correspond to the Rydberg formula without any changes. OS.
Vmic = 7 kms−1.
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Figure II.6: The relative difference of b-factors for hydrogen levels in the models with various
number of levels E(10,20,30) with and without the S-level. The thin line corresponds to
Nmax = 10. OS. Vmic = 7 kms−1.
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Figure II.7: The relative difference of b-factors for hydrogen levels in the E and F models
from PB04. Atomic models: E30ShE and F30ShE. OS. Vmic = 7 kms−1.

15



3650 3700 3750 3800 3850
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

J
ν
,

er
g

s·
cm

2
·
H
z·
sr

λ, Å

Figure II.8: The radiation field Jν near the Balmer jump. Nmax = 30. The black curve
corresponds to the model with the lowering of the ionisation energies (E30ShE). The red
curve – without the lowering (E30). Vmic = 7 kms−1.
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Figure II.9: The radiation field Jν near the Balmer jump. Nmax = 30. The black curve
corresponds to our calculations: OS, 30 000 frequency points between 100-10000Å. The red
curve is calculated in SYNTHE without the line labeled as CONTINUUM, the blue curve –
with this line. The spectral resolution is 600 000. Vmic = 7 kms−1.
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continuum (Hubeny et al., 1994). In future, the line like CONTINUUM can be introduced
in the code as a part of the photoionization cross-section.

II.2. Helium

II.2.1. He I

Two models of the helium atom are considered. Both models include all states up to principal
quantum number Nmax = 10. Energies of levels are adopted from the NIST database, and
reduced on an energy of the levels with n = 11 as it was done before, in the case of hydrogen
atom. In one model all states up to n = 5 are treated individually, as it was done in P05
(Przybilla, 2005), while in other model all states up to n = 7 are treated individually (see
Fig. II.10 II.11). The remainder states are grouped into combined levels for each n in the
singlet and triplet spin systems.

Wavelengths and oscillator strengths of spectral lines are adopted from the NIST database
and supplemented by data from the NORAD database (Nahar, 2010). Stark broadening is
accounted for using the tables of Dimitrijevic, Sahal-Brechot (1984). Lines, which have not
been included in the tables, are calculated, assuming Doppler profiles. Many helium lines
have a multicomponent structure, which leads to a significant broadening and distortion of
the profiles. Hence the profile is calculated as a weighted mean over all components of the
thin structure:

ϕ(λ) =

∑

gifiφ(λ − λi)
∑

gifi

,

where φ is the profile of i-th component with a wavelength λi and gf -value gifi.
Electron-impact excitation rates for all transitions from n = 1, 2 (except 2p 1P ) to n =

2 − 5 are adopted from Bray et al. (2000). Additional transitions are treated according to
Mihalas & Stone (1968) and for the remainder of the optically forbidden transitions, the
semiempirical Allen formula (Allen, 1973) is applied.

Collisioanl ionization is accounted for according to Mihalas, Stone (1968).
Photoionization cross-sections for all levels with n ≤ 7 are adopted from the NORAD

database (Nahar, 2010). These cross-sections for the levels 1s2 1S and 2s 3S well agree with
the cross-sections from Fernley et al. (1987), which were used in P05 (see Fig. II.12-II.14).
The cross-sections for the levels with n = 6 − 7 in the atomic data set N10l5 are averaged
with a statistical weight g over the combined sublevels

Photoionization cross sections for the levels with n = 8 − 10 are evaluated applying
hydrogenic expressions. The averaged cross-sections from the NORAD database agree with
the hydrogenic cross-sections better than 25% for n = 6 and better than 20% for n = 7.
Thus, it can be expected that for n > 7 the agreement will be better than 20% at the
threshold.

II.2.2. He II

The model of He II atom includes all states up to principal quantum number Nmax = 20, 40.
The energy for each state is defined in a similar way as for hydrogen (see Eq. II.1.1):

EHe II = 4RHe

(

1

n2
−

1

(Nmax + 1)2

)

. (II.2.1)
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Figure II.10: The model of helium atom N10l5. Atomic levels and radiative transitions
considered in the model are shown.
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Figure II.11: The model of helium atom N10l7. Atomic levels and radiative transitions
considered in the model are shown.
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Figure II.12: Photoionization cross-section of He I 1s2 1S. The black curve corresponds
to the cross-section, which was used in P05 (Fernley et al. 1987, without autoionization
resonances). The red line corresponds to the cross-section from NORAD. In the NORAD
data the ground state has smaller ionization energy by 1.8%. A difference at the threshold
∼ 4%. The blue dashed line corresponds to the cross-section taken from the ATLAS9 code.
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Figure II.13: The same as in Fig. II.12, but for the cross-section from NORAD with corrected
frequencies by 1.8%.

20



0 500 1000 1500 2000 2500
0

1

2

3

4

5

6
11S2S3σ, 10−18cm2

λ, Å

Figure II.14: The black curve corresponds to the photoionization cross-section, which was
used in P05 for the 2s3S state. The black dashed curve corresponds to the ”old” cross-section.
The red curve is for the NORAD cross-section. A difference at the threshold ∼ 0.75%. The
blue line is for the cross-section taken from the ATLAS9 code but multiplied by a factor

of 16!

Oscillator strengths are hydrogenic. Stark broadening was calculated for line profiles cor-
responding to the transitions from n = 1 − 4 to overlying levels using the theory of Griem
(1960) as implemented by Auer and Mihalas (1972). The rest lines are included, assuming
Doppler profiles. For all lines the approximation of the complete frequency redistribution
was assumed.

Electron-impact excitation rates for all transitions from n = 1, 2 to n = 2−5 are adopted
from the CHIANTI database (Dere et al., 1997, Landi et al., 2006). The theory of Percival
and Richards (1978) is applied for the transitions between levels with n ≥ 5. A scaled fit to
Sampson & Golden (NCAR-76, Mihalas 1972) is used for the rest transitions.

Electron-impact ionization of the levels with n ≤ 7 is accounted for according to Clark
et al. (1991) and for the remainder levels, the Seaton (1962) approximation is applied.

Photoionization cross-sections for He II are calculated applying hydrogenic expressions
(Mihalas, 1978) with Gaunt factor gII as in PB04.

II.2.3. Tests

To test the data sets for helium, the results of P05 were reproduced. The stellar parameters
are Teff = 30000 K, lg g = 4.0, solar elemental abundances. The microturbulence velocity is
Vmic = 1 kms−1, however the presented results are not changed, if Vmic = 0 kms−1 are used.

Hydrogen are calculated in the test in LTE approximation with the atomic data set
labeled as E20ShE.

The behaviours of the departures from LTE in our model and in P05 are similar, however
there are some differences, especially in the population of the ground state. We managed to
roughly halve the magnitude of these differences (see Fig. II.15), replacing the OS method
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Figure II.15: Comparison of departure coefficients as a function of Rosseland optical depth
τRoss for n = 1, 2 levels of He I from our computations (color lines) and from P05 (black
lines and dots). Atomic model is N10l5. Line-blanketing is accounted for using ODF AVE
BIG. The thick and thin lines correspond to the models with and without the lowering of
ionization enirgies. Vmic = 0 kms−1.

by the ODF method, which has been used in P05. Final residuals in the b-factors of the
ground state are less than 10%. Perhaps the differences can be explained by different ver-
sions of the DETAIL code and by different versions of ODF files, because Przybilla (private
communications) has used old ODF (Kurucz, 1990), which are unavailable now, and we were
forced to use the new ODF (Castelli&Kurucz, 2004).

In addition to the differences in the methods, accounting for the line-blanketing effect
(to compare results obtained with OS and ODF, see Fig. II.16), a treatment of photoion-
ization opacities of LTE-elements is not described in P05. However, there are a number of
photoionization thresholds of the various elements, which alter the spectrum significantly in
the region 200-400Å(see Fig. II.17 and II.18).

For test purposes we use the photoionization cross-sections, that are similar to the cross-
sections used in the ATLAS9 code, however the recent data leads to very similar spectrum
(see Fig. II.18). The omission of this opacity results in slight enhancement of the departures
from LTE for the ground state (see Fig. II.19).

The figures II.20 – II.22 provide some additional tests (different atomic models, an impact
of the microturbulence).

II.3. LTE-elements

To calculate the line-opacities by the opacity sampling technique, the models of atoms and
ions were defined for the following elements: C I-V, N I-VI, O I-VII, F I-VIII, Ne I-IX, Na I-X,
Mg I-IX, Al I-VIII, Si I-IX, P I-VII, S I-VIII, Cl I-VIII, Ar I-IX, K I-X, Ca I-XI, Sc I-XII, Ti I-
XIII, V I-XI, Cr I-XI, Mn I-XI, Fe I-X, Co I-X, Ni I-XI, Cu I-XII, Zn I-XI. It turns out that
this is enough for modeling stars with temperatures Teff up to ∼ 30 000 K
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Figure II.16: Departure coefficients as a function of Rosseland optical depth τRoss for n = 1, 2
levels of He I. The line-blanketing effect is accounted for using the OS technique (the thick
curves) and ODF AVE BIG (the thin curves). Atomic model is N10l5. Vmic = 0 kms−1.
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Figure II.17: Comparison of radiation fields calculated with DETAIL (the black curve) and
SYNTHE (the red curve) at 200-400Å, where a number of photoionization thresholds are
placed. The photoionization cross-sections used in the DETAIL run are adopted from the
compilation by Golovatyj et al. (1997). Vmic = 0 kms−1.
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Figure II.18: Comparison of radiation fields calculated with DETAIL (the black curve) and
SYNTHE (the red curve) at 200-400Å, where a number of photoionization thresholds are
placed. Here we have used the recent photoionization cross-sections from the Opacity Project
(TOPBase). Vmic = 0 kms−1.
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Figure II.19: Departure coefficients as a function of Rosseland optical depth τRoss for n = 1, 2
levels of He I in the model of N10l5. ODF AVE BIG. The thick and thin curves correspond
to the calculations with and without the inclusion of additional opacity sources between
200-400Å. Vmic = 0 kms−1.
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Figure II.20: Departure coefficients as a function of Rosseland optical depth τRoss for n = 1, 2
levels of He I in the model of N10l7 (the thick curves) and N10l5 (the thin curves). OS.
Vmic = 0 kms−1.
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Figure II.21: Comparison of departure coefficients calculated for two values of the microtur-
bulence velocity: Vmic = 0 kms−1. (the thick curves) and Vmic = 8 kms−1. (the thin curves).
N10l7. OS.

25



−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

lg τross

lg
b i

 

 

11S21S
11S2S3
11S2S1
11S2P3
11S2P1

Figure II.22: Comparison of departure coefficients calculated for the model without the
lowering of ionization energies (the thick curves) and for the model with S-levels, which
combine the levels with n =11-180 for He I, with n =41-260 for He II and with n =21-180 in
case of H I. OS, N10l5.

To reduce the CPU time, the ions with relative concentration1 less than 10−10 are ignored.
The atomic models should include a sufficient number of states, to calculate the partition

function in Saha equations with desired accuracy. Energies and statistical weights of the
states are adopted from the NIST database. States with close energies are grouped in one
level.

Since we certainly cannot include all possible levels, the partition function is calculated
correctly only if Eion≫kT. If this condition is not satisfied, the considered ion must be highly
ionized, and therefore it cannot give a large contribution to the total opacity.

Photoionization cross-sections from ground and excited states are adopted from the Opac-
ity Project (TOPBase) for the following elements and ions: C I-IV, N I-V, O I-VI, Ne I-VI,
Mg I-VI, Al I-VII, Si I-VI, S I-VII, Ar I-VIII.

1
The ratio of the concentration of the ion to the concentration of atomic nuclei in all atoms and ions.
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III

Tests

III.1. Stellar atmospheres without an external irradi-

ation

To test our code for modelling of stellar atmosphere, we consider a stellar model with pa-
rameters Teff = 11 000 K, lg g = 4.0.

The models are calculated for zero-metallicity in LTE and non-LTE in our program and
in the TLUSTY program. It allows to find out how the different approaches, atomic models
and atomic data for hydrogen and helium impact on the structure of the stellar atmosphere.
It turned out that the LTE models are well agree, but non-LTE models shows a difference
at the uppermost layers log τRoss < −5.5 (see Fig. III.1). It turned out that in these layers
the temperature correction scheme does not work properly (see corresponding section) and
the balance between heating and cooling cannot be reached. This is the only case when
some linearization methods should be applied, because the heat balance of uppermost layers
of hydrogen-helium star is defined by non-LTE-elements. Such extreme cases can be easily
discarded by checking the heat balance. The non-LTE models calculated with TLUSTY
and our code are well agree at the depths, where the iteration process of the temperature
corrections converges well.

The stellar atmosphere with the same parameters is calculated for solar elemental abun-
dances in ATLAS9 and in our program (see Fig. III.1). This test allows to check the
correctness of our treatment of LTE-elements. It can be seen from the figure that the results
obtained in both programs are well agree. Departures from LTE for hydrogen and helium
do not result in strong changes in the atmospheric structure that is typical for stars of this
kind (Hauschildt et al., 1999).

Comparison of the model calculated with ATLAS9 with our model, calculated with 30 000
frequency points in OS, shows that our model are cooler by 100-250 K at τRoss < 10−6

than the ATLAS9 model, which was calculated with ODF. The discrepancy disappears by
increasing the number of points to 60 000.

The test shows that the models do not depend on the parameter stemp in the range from
10−2 to 10−8. According to our definition of stemp, frequencies, at which the heat balance
is satisfied with an accuracy < stemp, are removed, therefore, a high value of stemp results
to violate the heat balance. Thus, high values of stemp are inappropriate, while too small
values of stemp result to a slow convergence. Tests shows an agreement better than 50 K
with other programs in case of LTE models (LTE and non-LTE approaches are equivalent
to test the parameter stemp).

To estimate the optimal value of the parameter δS, which is used only in non-LTE-
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Teff = 11 000K, lg g = 4.0 (B9V)
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Figure III.1: Temperature as a function of Rosseland optical depth τRoss in the stellar at-
mosphere with the parameters Teff = 11 000 K, lg g = 4.0. The red dashed curve is for the
LTE-model with zero-matallicity with Y = 0.0793. The blue dash-dotted curve is for the
non-LTE-model with zero-matallicity. The black solid curve is for LTE-model with solar
elemental abundances. The black dashed curve is for non-LTE-model with solar elemen-
tal abundances. The thin lines correspond to our calculations, the thick lines correspond to
models calculated with TLUSTY (the models with zero-matallicity) or ATLAS9 (LTE-model
with solar elemental abundances, ODF)

calculations, we consider again the model with zero-metallicity, where non-LTE effects are
most important. The parameter was varied in the range from 10−1 to 10−4. Oscillations
of Λ-correction are significantly reduced with increase in δS, however it leads to reduce
the accuracy, which can be obtained for the heat balance (i.e. iterations do not converge or
converge to wrong models). The models, obtained for various δS, differ near the temperature
minimum, which is placed higher for δS = 0.1, in such models T (τRoss) is later detached from
the LTE-curve. The heat balance at depth of maximum differences between the models is by
an order of magnitude better for δS = 0.01, then for δS = 0.1 (see Fig. III.4). If δS < 0.01,
then there are no differences neither between the models nor in the heat balance, which has
been reached at the final iteration. Therefore, the optimal value of the parameter δS = 0.01.

The temperature as a function of m in the atmosphere of the star with zero-metallicity is
shown on Fig. III.2 and III.3 for various atomic models of hydrogen. The largest difference is
seen between the models calculated with the hydrogen atom with Nmax = 10 and Nmax = 30.
In case of LTE, the significant difference (& 100 K) occurs only in deep layers; in non-LTE
case, the such differences can be seen in upper and deep layers .
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Figure III.2: The LTE-models of the star with Teff = 11 000 K, lg g = 4.0. The temperature
distribution with depth in the stellar atmosphere for various atomic models is shown relative
to the atomic model with Nmax = 30. The dash-dotted curve is for Nmax = 10. The
dashed curve is for Nmax = 15. The dolid curve is for Nmax = 20. The atomic data sets are
E(10,15,20,30)ShE for hydrogen and N10l5 for helium. The abscissa is the mass coordinate
m ≡ RHOX, because τRoss is slightly different for various models.
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Figure III.3: The same as in Fig. III.2, but for the non-LTE-models. In the uppermost layers
the difference is caused by poor convergence of the models due to inappropriate temperature
corrections. In these layers the heat balance cannot be reached by means of the temperature
correction schema used here.
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Figure III.4: The stellar atmosphere with Teff = 11 000 K, lg g = 4.0, zero-metallicity,
non-LTE. The temperature distribution with depth in the stellar atmosphere for various
parameters δS is shown relative to the model with δS = 10−3. The solid curve is for δS = 10−1.
The dashed curve is for δS = 10−2. The dash-dotted curve is for δS = 10−4. The thick
curves correspond to the differences in the temperature. The thin red curves correspond

to the imbalance between cooling and heating calculated as follows 2
R

((1−ǫν)χνJν−ην)dν
R

((1−ǫν)χνJν+ην)dν
and

multiplied by ”−107” for convenience. The uppermost layers, where the difference is caused
by poor convergence of the models, are not shown.
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III.2. Irradiated stellar atmospheres

Let’s compare results obtained with our code and with other rezults for the case of an irra-
diated stellar stmosphere. The comparison is done for the model, which has been considered
by Günter&Wawrzyn (2011). The parameters of the star are Teff = 4100 K, lg g = 4.5, that
is close to the parameters of CTTS, which are the main purpose of the modelling. The star is
irradiated by the blackbody radiation with TBB = 20000 K. The ratio of the incident flux to
the stellar flux is 5.3. The external radiation is directed perpendicular to the surface. How-
ever, strictly speaking, it is impossible in our program due to choosing of µi in Feautrier’s
method, therefore the external radiation enters the atmosphere at angles between 0o and
27o.

LTE and non-LTE models have been calculated for the two atomic data sets (see Fig.
III.5):

The simplified model: the atomic data set for hydrogen is E20ShE, for He I is N10L5
and the 40-levels atom for He II . 30 000 frequency points between 100− 10000Å and 15 000
outside this range are used in OS.

The full version: the atomic data set for hydrogen is E30ShE, for He I is N10L7 and the
40-levels atom for He II . 60 000 frequency points between 100 − 10000Å and 15 000 outside
this range are used in OS.

The comparision shows that external layers of the heated atmosphere in non-LTE case
are cooler than in LTE-models, and more deeper subsequent layers become hotter.
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Figure III.5: Comparison with the calculations of Günter&Wawrzyn (2011) (the thick black
curve). External radiation is directed perpendicular to the surface. The thin black curve
is for the old LTE-model (Dodin, Lamzin, 2012). The thin blue curve is for the new LTE-
model with the simplified atomic data sets and 30 000 frequency points in OS. The thick
blue curve is for new LTE-model with more complicated atomic models and 60 000 frequency
points in OS. The red curves are for the models with the same parameters, but calculated
in non-LTE. The convection is treated in MLT, α = 2.0. The microturbulence is Vt = 1.0 /.
Solar elemental abundances.
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