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ABSTRACT
We study the properties of the straight segments forming in N-body simulations of the galactic
discs. The properties of these features are consistent with the observational ones summarized
by Chernin et al. Unlike some previous suggestions to explain the straight segments as gas
dynamical instabilities, they form in our models in the stellar system. We suggest that the
straight segments are forming as a response of the rotating disc to a gravity of the regions
of enhanced density (overdensities) corotating with the disc. The kinematics of stars near the
prominent overdensities is consistent with this hypothesis.
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1 IN T RO D U C T I O N

Straight segments in spiral structure of galactic discs are observed
both in real galaxies and in numerical models. The straight segments
were first noticed by Vorontsov-Vel’yaminov (1964, 1978), who
called them rows. These quite long nearly straight features often
outline the grand design spiral structure, as it is, for example, in
M101 and in M51, forming ragged but nearly regular spiral arms
which are often called polygonal arms. Chernin et al. (2000, 2001)
compiled the catalogue of galaxies with rows that includes about
200 objects. They also study the properties of straight segments,
which can be briefly formulated as follows.

(i) The length of the straight segment L increases with the galac-
tocentric distance R, so that L = (1 ± 0.13)R.

(ii) The straight segments can be divided into two types: those
that fit well the grand design spiral arms and isolated ones.

(iii) The angle between two neighbouring segments is, on aver-
age, α = 120, the standard deviation is ∼10◦.

(iv) The straight segments are observed mostly in late-type galax-
ies Sbc–Scd.

(v) The straight segments are more frequently observed in inter-
acting galaxies.

(vi) The average number of straight segments in the polygonal
spiral arms is n = 3.

(vii) Galaxies with straight segments are quite rare objects, they
account for ∼7 per cent of all spiral galaxies with well-defined spiral
arms. Note however that this estimate is based on studying photo-
graphic plates and printed images. Our inspection of a small sample
of digital galaxy images suggests a considerably larger frequency
of straight segments in spiral galaxies.

� E-mail: anna@sai.msu.ru

Straight segments in numerical models are observed quite fre-
quently in both gaseous and stellar discs, but their appearance is
often mentioned only briefly because the emphasis of the authors
has been on larger scale structure.

The straight segments in gaseous discs are observed in models by
Combes (1994), who studies the gas inflow in barred potentials. She
explains the square-like shape of the spiral arms by the resonances
and gas viscosity: the periodic orbits must change their orientation
with respect to the bar in the inner and outer Lindblad resonances:
ILRs and OLR (Buta & Combes 1996).

Khoperskov et al. (2011) and Filistov (2012) study the formation
of straight segments in the gaseous discs under the given analytical
potential. Their models include the external spiral-like potential
perturbation, which rotates with a small angular velocity. As they
note, the position of the corotation radius (CR) on the very periphery
of the disc is a necessary condition for the appearance of straight
segments in their models. Simulations by Khoperskov et al. (2011)
reproduce well the main properties of the straight segments: the
dependence L ∼ R and the average angle between the neighbouring
segments α = 120◦. They explain the formation of the straight
segments by unstable location of the shock fronts in the spiral
potential well.

Chernin (1999) explains the formation of straight segments as the
universal stability of a flat shock front against any weak perturba-
tions that disturb its front surfaces. Filistov (2012) also supports this
idea. But it is not clear how this mechanism works in the rotating
stellar systems (see Khoperskov et al. 2011, for more comments)

Rautiainen, Salo & Laurikainen (2005, 2008), using the poten-
tials extracted from the near-infrared (IR) images of Ohio State
University Bright Spiral Galaxy Survey (Eskridge et al. 2002, here-
after OSUBSGS), model the behaviour of the gas subsystem of
some disc galaxies. Their models reproduce the straight segments
observed in some galaxies, especially well in the case of NGC 4303.

The successful modelling of NGC 4303 is at least partly based
on the fact that the straight segments are observed also in the
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Figure 1. The B- and H-band images of NGC 4303. The images are taken from the Ohio State University Sample of Bright Galaxies (OSUBSGS), and have
been scaled to enhance the visibility of the straight segments.

near-IR H-band image, which should be dominated by the old stel-
lar population (see Fig. 1), i.e. they were present in the derived
gravitational potential. Furthermore, NGC 4303 is not an excep-
tional case. We found about 40 galaxies with straight segments in
the OSUBSGS images: their overall frequency in the sample was
∼25 per cent, considerably higher than ∼7 per cent found in ear-
lier studies. This difference was most likely due to advantage of
the digital images over the photographic plates and atlases used by
Chernin et al. (2001) – the possibility to adjust contrast and other
image properties revealed many straight segments that were missed
in ‘static images’. Our inspection also revealed that in more than
half of the cases, the straight segments observed in B band had their
counterparts also in H band. In addition to our findings, the straight
segments are quite conspicuous in near-IR J- and K-band images of
galaxies NGC 3938 and NGC 4254 obtained by Castro-Rodrı́guez
& Garzón (2003).

There are two different approaches to explain the formation of
straight segments in the stellar subsystem: one is based on the
global modes (Toomre 1981) and the other rests on the chaotically
distributed rotating features (Toomre & Kalnajs 1991).

The most popular explanation of the polygonal spiral arms is
proposed by Toomre (1981). He explains the square-like shape of the
spiral arms by the presence of the leading and trailing spiral waves
of very similar wavelengths and amplitudes in the Fourier spectrum
of the mode, where the leading wave appears due to reflection of
the in-going trailing wave from the centre (see Athanassoula 1984;
Binney & Tremaine 2008, for more details).

Salo & Laurikainen (2000b) explain the inner polygonal structure
of M51 by the reflection of the trailing wave packets as leading
waves from the centre. Their simulations reproduce the polygonal
spiral arms in the inner 30 arcsec region of M51 observed in near-IR
(Zaritsky, Rix & Rieke 1993).

However, it is not clear how to produce the superposition of the
leading and trailing waves on the galactic periphery. In this context,
it is worth noting ideas by Sellwood (2012), who supposes that the
region of the ILR can acquire ability to reflect the in-going trailing
waves into the out-going leading ones.

In the other approach the observed spiral structure is considered
as a set of arm features forming due to random density fluctu-
ations in galactic discs (Toomre 1990). Julian & Toomre (1966)
consider the response of the stellar disc to a chance overdensity
corotating with the disc. The density response can exceed the initial
perturbation more than several tens of times (Goldreich & Lynden-
Bell 1965; Julian & Toomre 1966; Toomre 1981). This mecha-
nism called swing amplification is based on the concerted action of
noise, epicyclic motion and self-gravity (Toomre 1981). Sellwood &
Carlberg (1984) study the work of the swing amplification mech-
anism and show that the maximal amplification is possible on the
galactic periphery for the multi-armed spiral patterns.

Recently, many researchers note that the multi-armed spiral struc-
ture in their N-body simulations does not rotate as a whole, but
consists of pieces corotating with the disc at different radii (Wada,
Baba & Saitoh 2011; Grand, Kawata & Cropper 2012; Baba, Saitoh
& Wada 2013; D’Onghia, Vogelsberger & Hernquist 2013; Roca-
Fábrega et al. 2013).

D’Onghia, Vogelsberger & Hernquist (2013) study stellar discs
with the TreePM code GADGET-3 using small softening parameter
(ε = 5 pc). They get very impressive pictures of polygonal spiral
arms (or linear segments joined at kinks), which form global multi-
armed spiral stricture. In their experiments the system of disturbers
(M ≈ 106 M�) corotating with the disc causes the formation of the
multi-armed polygonal spiral arms.

Grand, Kawata & Cropper (2012) study the motions of stars
near the spiral arms in N-body simulations. Their stellar discs form
multi-armed structures, which often exhibit straight segments. They
show that particles can join spiral arms from both sides at all radii
and migrate radially along the spiral arms.

In the present paper we study properties of the straight segments
forming in N-body galactic discs. We show that the features of the
model straight segments are in a good agreement with the observa-
tional ones summarized by Chernin et al. (2000, 2001). We suppose
that the straight segments are forming as a response of the rotating
disc to a gravity of the regions of enhanced density (overdensi-
ties) corotating with the disc. The properties of these respondent
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perturbations can explain the observational features of the straight
segments. The kinematics of stars in the model discs also agrees
with this suggestion.

In Section 2 we study kinematical and morphological properties
of the respondent perturbation of the disc to the overdensity coro-
tating with it, that was first studied by Julian & Toomre (1966). We
show that the respondent perturbation must be nearly straight and
its length L is nearly proportional to R. The models and their evolu-
tion are considered in Section 3. Here we also demonstrate that the
model spiral pattern does not rotate with the same angular velocity,
but its different parts nearly corotate with the disc. In Section 4 we
compare the characteristics of the model straight segments with the
theoretical predictions studied in Section 2. Section 5 is devoted
to the kinematics of the straight segments. We compare the stel-
lar motions near the overdensities with the theoretical predictions.
Section 6 includes the main conclusions.

2 THE PROPERTIES OF THE D ISC R ESPONSE
TO T H E OV E R D E N S I T Y

2.1 The shape of the respondent perturbation

Toomre (1964) has shown that the stability of the disc is supported
by shared action of the Coriolis forces and the equivalent of pressure,
resulting from random motions: the random motions effectively
suppress perturbations on the short side of wavelengths, while the
Coriolis forces suppress instabilities on the long end. The value of
λc is the shortest wavelength of axisymmetric perturbations that can
be stabilized by epicyclic motions only:

λc = 4π2G�

κ2
, (1)

where � is the surface density of the disc and κ is the epicyclic
frequency.

Julian & Toomre (1966) consider the response of a thin differen-
tially rotating stellar disc to the presence of a single, particle-like
concentration of the interstellar matter (overdensity) corotating with
the disc. They have found that overdensity creates quite extended
spiral-like response in the disc: the size of the density ridge in the
radial direction amounts ∼λc/2.

Toomre (1981) studies the self-gravitating stellar discs with flat
rotation curves and shows that the value of amplification of the initial
overdensity is very sensitive to the value of the stability parameter Q
(Toomre 1964). The other parameter that determines amplification is
X = λy/λc, where λy is the length between the neighbouring spirals
in the azimuthal direction. Maximum amplification corresponds to
X ≈ 1.5.

Fig. 2(a) shows the trajectory of a star with respect of the initial
overdensity (Julian & Toomre 1966). The star in question is located
at the larger distance than the disturber, and first has purely circular
velocity. In the reference frame corotating with the disturber, the star
moves in the direction opposite that of galactic rotation, i.e. clock-
wise. In the impulse approximation, the star’s angular momentum
is unchanged and its motion can be thought as a superposition of the
purely circular motion and the motion along the epicycle (Binney
& Tremaine 2008). Let us suppose that the star gains some impulse
and starts its epicyclic motion when the distance between the star
and the disturber is minimal, i.e. when the star and the disturber are
lying at the same radius vector. The moment of start of the epicyclic
motion is denoted by number ‘1’ and corresponds to the maximal
additional velocity directed towards the galactic centre. Julian &
Toomre (1966) suggest that the resulting stellar density must be the

greatest wherever the individual stars linger longest. That moment
denoted by number ‘2’ occurs in nearly one-quarter of the epicyclic
period, when the star has the maximal additional velocity directed
in the sense of galactic rotation. Note that in the chosen reference
frame, the star in question moves in the direction opposite that
of galactic rotation, so the moment with the largest velocity in the
sense of galactic rotation determines the place where the star lingers
most. Moment ‘3’ corresponds to the maximal additional velocity
directed away from the galactic centre. The additional velocity in
moment ‘4’ is directed in the sense opposite that of galactic rotation.
In the absence of occasional perturbations stellar trajectories must
repeat their oscillations every epicyclic period.

Let us calculate an angle β, which determines the position of the
respondent perturbation with respect to the azimuthal direction and
corresponds to the pitch angle of the spiral arms. Julian & Toomre
(1966) suppose that without taking into account the self-gravity the
angle β must be ∼45◦ for flat rotation curve. Generally, the fact
that the angle β is independent from the coordinates 	R and 	y
suggests that the stellar response has the shape of a straight line. We
will show that the distance 	y to the point, where the star lingers
most, is nearly proportional to 	R. The angle β can be determined
by the ratio

tan β = 	R

	y
. (2)

In the first approximation, we neglect the additional velocities
due to the epicyclic motions. Then the distance 	y, which is passed
by the star with respect to the initial disturber during one-quarter of
the epicyclic period π/(2κ), is determined by the relation

	y = |
(R1) − 
(R0)|πR0

2κ1
, (3)

where 
(R) is the angular velocity of rotation curve. Subscripts ‘1’
and ‘0’ are related to the star considered and to the initial disturber,
respectively. For flat rotation curve (
(R) = V0/R, κ = √

2
) we
can express the distance 	y in the following form:

	y = π

2
√

2
	R. (4)

And the value of the angle β is determined by the expression

β = arctan
2
√

2

π
= 42◦, (5)

which is very close to the value suggested by Julian & Toomre
(1966). Thus, in the impulse approximation the value of β is in-
dependent from 	R, and the respondent perturbation must have
the shape of the straight segment. However, the impulse approxi-
mation is not accurate, especially in the very vicinity of the initial
disturber, because any star changes its angular momentum during
the approach phase of the encounter and passes the disturber with a
slower relative velocity than it would be without interaction (Julian
& Toomre 1966).

Note that near the disturber, stars oscillate conspicuously in the
radial direction, moving first towards the disturber and then away
from it. And the star can continue its radial oscillations as it moves
in the azimuthal direction.

2.2 Influence of self-gravity

In the cold discs (but Q > 1) the self-gravity plays important role, so
after some moment, the stellar trajectories are rather determined by
the gravity of the straight segment itself than by the initial disturber.
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Straight segments in the galactic discs 1365

Figure 2. The trajectory of the star (black curve) perturbed by the initial overdensity (Julian & Toomre 1966). The motion is considered in the reference frame,
corotating with the initial disturber, which lies at the origin and rotates with the circular velocity. The star in question is lying at the distance larger than that
of the disturber and initially moves with purely circular velocity. In the chosen reference frame, it moves in the sense opposite that of galactic rotation. The
numbers 1–4 denote positions of the star at moments separated by 1/4 of the epicyclic period. The upper row shows the position of the star in the epicyclic
orbit at moments 1–4. (a) Position of the straight segment without taking its self-gravity into account. Here the greatest stellar density corresponds to the point
‘2’. (b) Position of the straight segment with self-gravity. In this case the highest density corresponds to the point ‘3’, where stars are moving nearly along the
straight segment.

Let us again consider the motion of the star initially moving on
the circular orbit (Fig. 2b). The self-gravity effects are maximal at
the time interval, when the star is leaving the straight segment and
is moving nearly parallel to it. In Fig. 2(b) it is a path between
points ‘2’ and ‘3’. Because of the gravity of the straight segment,
the position of the density maximum is shifting in the direction of
the point ‘3’, because here the star has maximal value of the radial

velocity, which allows it to move along the straight segment during
the longest period of time.

Using the approach described above, we can calculate the pitch
angle of the self-gravitating straight segment, which must be nearly
two times less than the angle calculated without self-gravity, be-
cause the time interval to reach the point ‘3’ is nearly two times
larger (π/κ) than that needed to reach the point ‘2’ from the start
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of the epicyclic motion at the point ‘1’. In the first approximation,
the angle β of the self-gravitating straight segment equals

β = arctan

√
2

π
= 24◦. (6)

This result agrees with the estimate by Toomre (1981), who thinks
that self-gravity must decrease the value of the pitch angle by two
times at least. Moreover, he supposes that due to the distortion of
epicycle motions the pitch angle can drop to 15◦.

Note that the direction of the radial velocity VR inside the self-
gravitating straight segments coincides with that in the density-wave
spiral arms (Lin, Yuan & Shu 1969): at the larger R from the initial
disturber (outside the CR) stars located inside the straight segment
(inside the spiral arm) have the radial velocity VR directed away
from the galactic centre, while stars located at the smaller R than
the initial disturber (inside the CR) have the velocity VR directed
towards the galactic centre. Generally, on the edges of the straight
segment stars must move in the opposite directions away from each
other (away from the initial disturber).

2.3 The length of the straight segments

The most interesting parameter is the linear size of the respondent
density perturbation. Julian & Toomre (1966) show that the size of
the density ridge in radial direction is 	R ≈ λc/2.

Let us compare the value of λc with the radius R, at which it is
calculated (see also fig. 5a in Toomre 1977). We can approximate
the distribution of the disc density using the relation

� ≈ fdV
2

0

2πGR
, (7)

where V0 is the velocity of rotation curve and fd is the contribution
of the disc to the total rotation curve. This formula is absolutely true
for Mestel’s discs, but for exponential discs it is true within several
per cent (Binney & Tremaine 2008). Substituting � in equation (1)
and using the relations 
(R) = V0/R and κ = √

2
 for flat rotation
curves we obtain

λc ≈ πfdR. (8)

And the maximal size of the straight segment in the radial direction
	R is defined by the expression

	R ≈ πfdR/2. (9)

Then the full size of the straight segment L, under the angle
β ≈ 42◦, must be following:

L ≈ 2.4fdR. (10)

Generally, the self-gravity effects cannot increase the length of the
straight segments.

In the distance range considered in our models, the value of fd

varies in the limits fd = 0.2−0.5. So the maximal possible length
of the straight segment must lie in the range L = (0.5–1.2)R. On the
whole, this result is consistent with the observations (Chernin et al.
2001).

2.4 Amplitude of the velocity perturbation

Binney & Tremaine (2008), using the impulse approximation, esti-
mate the value of the radial velocity VR acquired by a star after the
encounter with a molecular cloud:

VR = − Gm

A0b2
, (11)

where m is the mass of molecular cloud, which corotates with the
disc at the radius Rc and A0 is Oort constant at this radius. The star
considered is initially moving on the circular orbit of radius R, so
b = R − Rc is the impact parameter.

We can see that the value of acquired velocity VR depends on the
current value of Oort constant A, which varies with radius. For flat
rotation curve, A is inversely proportional to R, A = 
/2 ∼ 1/R.
So the overdensity of the same mass can create the larger velocity
perturbation on the galactic periphery than in the intermediate re-
gions. And the physics of this dependence is clear: the smaller A,
the weaker differential rotation, the smaller relative velocity of pas-
sage, the more time of gravitational interaction. So on the galactic
periphery stars can acquire larger radial velocities after encounters
with the same overdensities.

3 M O D E L S

The N-body simulations used in this paper were done by P.
Rautiainen during year 2012 by applying the code written by H.
Salo. In these 2D models we use a logarithmic polar grid with 216
azimuthal and 288 radial cells to calculate the gravitational forces
and motions with leap-frog integration. The stellar disc consists of
4 × 106 self-gravitating particles, but the bulge and halo are ana-
lytical. The gas component is omitted in this paper, in models we
do not show here, the gas component was modelled as inelastically
colliding massless test particles. For more details on the code, see
Salo (1991) and Salo & Laurikainen (2000a).

We have made a large set of models to study the formation and
evolution of straight segments in the galactic discs. In these models
we varied several parameters such as the mass fractions of different
components, the value of the initial Toomre parameter of the disc,
the extent of the disc and the value of the gravitational softening
parameter (Plummer softening). For the purposes of this paper, we
have selected two models, hereafter Model 1 and Model 2, which
show the characteristics of the straight segments most clearly, and
discuss the other models only briefly.

The rotation curves of Models 1 and 2 are shown in Fig. 3, with
the adopted physical scaling of the simulation units. In both models,
the disc particles were originally distributed as an exponential disc
with scale length Re = 3.0 kpc. The bulge component was mod-
elled as an analytical Plummer sphere, and the analytical halo was
of the same form as in Rautiainen & Mel’nik (2010). In both cases
the asymptotic rotation velocity of the halo is 189 km s−1, but the
core radius is different. As the rotation curves show, both models
are mostly dominated by the spherical (analytical) component
(bulge and halo); the reason for this choice of parameters was to
delay the bar formation, but the initial value of the Toomre parame-
ter is low enough (QT = 1.2 in Model 1 and QT = 1.1 in Model 2)
that still allows the discs to develop well-defined spiral arms. The
essential model parameters are given in Table 1.

Model 1 first develops a multi-armed structure. In the outer parts
of the disc there are m = 10–20 short arms. The structure becomes
more regular in the inner parts. Even there the number of arms
is varying (m = 2–5). A large scale bar forms at T ≈ 800 Myr. After
its formation, the inner spiral structure becomes effectively two-
armed and the number of spiral arms diminishes also in the outer
parts, although the outer spiral structure still remains multi-armed.

Fig. 4 demonstrates the evolution of two straight segments (in
one spiral arm), whose locations at R ≈ 7–9.5 and ≈9.5–13 kpc
are indicated with arrows. To make following the evolution easier,
we have used a rotating coordinate system with angular velocity
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Straight segments in the galactic discs 1367

Figure 3. The rotation curves of Models 1 and 2. The continuous lines
show the total rotation curves, the bulge contribution is drawn with a dotted
line, the disc contribution with a dashed line and the halo contribution with
a dash–dotted line.

Table 1. Essential parameters in Models 1 and 2. Mdisc

is the disc mass, Mbulge is the bulge mass, Mhalo is the
mass of the halo inside R = 15 kpc, bbulge is the bulge
scale radius and Rc is the halo core radius. The initial
value of the Toomre parameter QT and the gravita-
tional softening ε are also indicated.

Model 1 Model 2

Mdisc (M�) 2.9 × 1010 3.0 × 1010

Mbulge (M�) 9.2 × 109 1.5 × 1010

Mhalo (M�), R < 15 kpc 9.9 × 1010 1.1 × 1011

bbulge (kpc) 0.6 1.1
Rc (kpc) 7.5 5.3
QT 1.2 1.1
ε (pc) 75.0 225.0

that keeps the two straight segments in nearly the same place in our
frames. This corresponds to pattern speed of about 18 km s−1 kpc−1.
In the beginning of the shown time sequence, T = 509 Myr, the
region R = 7–13 kpc has m ≈ 10 spiral arms. However, 10–30 Myr
later, the particles form m ≈ 4 longer spiral arms. One of them
clearly has two straight segments, forming around T = 550 Myr
and being strongest at about T = 591 Myr. After that, the straight
segments, and also the associated spiral arm itself, become weaker.
In the last couple of frames, there is no sign of the two straight
segments, but there is a new one in the opposite side of the galaxy.

These two segments in Model 1 were selected because they show
exceptionally well the formation and destruction of these features.
Also, they are exceptionally long-lived, lasting about 80 Myr, which
corresponds to about fourth of the circular rotation period at the
radial distance of the segments. Most straight segments seen in our
models have shorter lifespans, corresponding to 10–30 Myr.

More insight to the evolution of Model 1 can be obtained by
Fourier analysis of its surface density. Fig. 5 shows the amplitude
spectra (Masset & Tagger 1997; Salo & Laurikainen 2000b) for the
m = 2–5 components during the epochs when the two straight
segments appear. Also shown are the frequency curves 
 and

 ± κ/m. In the vicinity of the two segments, i.e. R = 7–13 kpc, the
strongest feature can be seen in the m = 4 and 5 amplitude spectra.
This is not surprising, although the number of spiral arms in this
region is a bit varying, a four- or five-armed structure is the most
prevalent case.

The feature seen in the R = 7–13 kpc region both in m = 4 and
5 spectra has a pattern speed 
p ≈ 18 km s−1 kpc−1, which corre-
sponds to the corotation resonance radius of ∼11 kpc, coinciding
with outer of the two segments. In the m = 5 spectrum, there is also
a clear feature with 
p ≈ 24 km s−1 kpc−1, which probably has an
effect on the inner segment. There are also features in the spectra
of higher values of m (6–12), but these are limited to immediate
vicinity of the 
 curve.

In Model 2 the disc does not form a large-scale bar during the
simulation time, which corresponds to about 5 Gyr. The disc shows
mostly multi-armed (m = 5–10) morphology, which occasionally
develops straight segments. In many time-steps these arms appear
to be long, extending throughout most of the disc, but a closer look
at their evolution and the amplitude spectra demonstrates that they
actually consist of a large number of short features, whose pattern
speeds are close to the local circular velocity. This kind of behaviour
resembles the recent models by Grand et al. (2012) and D’Onghia
et al. (2013). In the later phase of the simulation, the number of
arms in the inner parts of the disc diminishes to m = 2–4, and the
innermost part resembles a small bar or oval.

In other models, which are not shown or analysed in this paper,
we made further experiments with model parameters, such as the
value of the gravitational softening and the initial extent of the
stellar disc. There is already a quite large difference in softening
parameters between Models 1 and 2, and tests with other values
show that it is not critical for the formation of straight segments,
as long as its value is not so high to suppress the formation of all
the sharp features on the disc. The situation is quite similar with
the disc extent; there are more straight segments in larger discs, but
even models, where the initial stellar particle distribution reaches
only 6 kpc or two disc scale lengths, can have them.

4 G E N E R A L C H A R AC T E R I S T I C S O F
S T R A I G H T S E G M E N T S I N M O D E L D I S C S

We identified straight segments in stellar discs of Models 1 and
2. For their identification we have used the images of model discs
processed by the masking program, which leaves only regions of
enhanced density, i.e. regions where the density exceeds its average
level at the same radius. This procedure increases the contrast be-
tween the arms and the interarm space and facilitates the study of
the galactic morphology. In identification of straight segments we
adhered to the following principles.

(i) The line, connecting the ends of a straight segment, must lie
entirely in the region of the enhanced density.

(ii) The ends of straight segments must have some specific fea-
tures: either the density dropping below the average level or the
significant increase in the pitch angle of a spiral arm.

(iii) In all cases we try to identify straight segments so that their
length L would be maximal.
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1368 A. M. Mel’nik and P. Rautiainen

Figure 4. The formation and evolution of straight segments in one spiral arm (Model 1). The frames have a width of 18 kpc and they show the density
enhancement above the average density at the same radius. The time moment (in Myr) is exhibited at each frame. The two arrows shown in the frames indicate
the locations of two straight segments. The densities are shown in a rotating coordinate system (see details in text).

(iv) The straight segment must be quite elongated: the ratio of its
length to the width must exceed 4.

Table 2 exhibits the average characteristics of the straight seg-
ments identified in Models 1 and 2. It shows the total number N of
moments considered, the number of the selected straight segments
ns, the coefficient k in the dependence L = kR and its error. It also
includes the standard deviations σ 0 and σ 1 calculated for linear
relation L = kR and for non-linear law L = 2.4fd(R)R, respec-
tively. We also present the average value of the angle β between the
straight segment and the azimuthal direction, its standard deviation
(in brackets), the average value of the angle α between two neigh-
bouring straight segments, its standard deviation (in brackets) and
the number nα of measurements of α.

4.1 L–R dependence

The variations in the length of the straight segments L along radius
R in Models 1 and 2 are shown in Fig. 6. The galactocentic distance
R for the straight segment is determined as the distance to its median
point. The thick grey curve shows the value of L calculated from
the formula L = 2.4fdR, where fd(R) is the relative contribution of
the disc to the total rotation curve at each radius. The value of fd(R)
achieves the maximum at R ≈ 5 kpc and then gradually decreases
with increasing R (Fig. 7).

We can see that both dependencies L = (0.86 ± 0.02)R (Model 1)
and L = (0.88 ± 0.01)R (Model 2) derived for the model straight seg-
ments are consistent with observations, L = (1.0 ± 0.13)R. However,
the connection between L and R is conspicuously non-linear in both
models: there are a lot of relatively short straight segments at large
radii. So L–R relation is better described by formula L = 2.4fdR.
The standard deviation σ 1 is less than σ 0 derived for the linear law
by 27 per cent in Model 1 and by 16 per cent in Model 2. This
difference can be related to the fact that the amplitude of variations
of fd is larger in Model 1 than in Model 2 (Fig. 7).

4.2 The angle between the neighbouring segments

Since the straight segments rotate in the disc with the angular ve-
locity of their parent overdensities, they can never form stationary
polygonal structure. Moreover, straight segments must destroy each
other during their merging. The only possible way for their contact
without destruction is a touch with their edges. In this case they can
even increase each other, because the appearance of an extra density
at their endpoints gives both of them an extra ability to hold stars
inside them.

Table 2 indicates that the average value of the angle α between
two neighbouring straight segments is α = 127◦ and 125◦ in Models
1 and 2, respectively. The maximum in distribution of α lies near
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Straight segments in the galactic discs 1369

Figure 5. The amplitude spectra of Model 1 based on the Fourier decomposition components m = 2–5. The continuous lines show 
 and 
 ± κ/m in each
frame. The contour levels are 0.025, 0.04, 0.1 and 0.2 above the azimuthal average density at each radius. The sampling period (in Myr) is indicated in each
frame.

Table 2. Characteristics of the model straight
segments.

Model 1 Model 2

N moments 36 53
ns 238 273
k in L = kR 0.86 ± 0.02 0.88 ± 0.01
σ 0 in L = kR 2.10 kpc 1.80 kpc
σ 1 in L = 2.4fdR 1.54 kpc 1.51 kpc
β 28◦ (9◦) 25◦ (9◦)
α 127◦ (13◦) 125◦ (11◦)
nα 101 129

α = 130◦ in both cases (Fig. 6). All these values are consistent with
observations.

Chernin (1999) gives an explanation of the value of α = 120◦,
which is based on the relation L = R. We present here a bit dif-
ferent explanation, which also invokes the correlation between L
and R.

Let us consider two straight segments at the moment, when they
touch each other with their edges (Fig. 8). They, together with the
radius vectors, form the quadrangle OCMD. We are looking for the
angle α between two straight segments. As the sum of the angles
in a quadrangle is 360◦, we can find the angle α by subtracting the

other angles from this value. The galactocentric angle is denoted
by θ , two other angles have values 90◦ + β and 90◦ − β. So it
is the angle θ that determines the value of α: α = 180◦ − θ . We
can find θ from the triangle COD. Because of the relation L = R
the side CD in the triangle COD has the value ∼(R1 + R2)/2, what
correspond to θ ≈ 60◦ [use the law of cosines and neglect terms of
(R1 − R2)2/R1R2]. Thus, the angle α has the value of α = 120◦ and
is practically independent of β.

We have found that in Models 1 and 2 the coefficient k in the
relation L = kR is less than unity, k = 0.86–0.88, so the angle θ

must be less than θ < 60◦ here. Under k = 0.87 it must have the
value of θ = 52◦ and, consequently, α must be α = 180◦ − θ = 128◦.
The last value is in good agreement with corresponding estimates
in our models.

4.3 The angle β between the straight segments and the
azimuthal direction

We measured the angle ϕ between the straight segment and the
radius vector drawn from the galactic centre to the median point of
the straight segment and calculated the angle β, supplementing it
up to 90◦, β = 90 − ϕ. Generally, angle β is an analogue of the
pitch angle for the spiral arms. Its average value equals 28◦ and 25◦

in Models 1 and 2, respectively (Table 2).
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1370 A. M. Mel’nik and P. Rautiainen

Figure 6. Left-hand panel: the dependence between the length L of a straight segment and its galactocentric distance R in Models 1 and 2. The thick grey
curve shows the value of L calculated from the formula L = 2.4fd(R)R. The bisectrix is also drawn. Right-hand panel: the histograms of the distribution of
the angle α between two neighbouring straight segments.

Figure 7. Variations in fd, the relative contribution of the disc to the total
rotation curve (v2

c ), in Models 1 (solid line) and 2 (dashed line).

Fig. 9 shows the variations of β along radius and the histograms
of the distribution of β. We can see that the angle β, on average,
decreases with radius. The approximation of these variations by the
linear law gives the following parameters: β = (−1.63 ± 0.17)R +
41.7 ± 1.5 for Model 1 and β = (−1.68 ± 0.17)R + 37.6 ± 1.3 for
Model 2, where β is in degrees and R in kpc.

The variations in β along R can be partly (within 10◦) explained
by the deviations of the model rotation curves from flat one. For non-
flat rotation curve the angle β can be estimated from the relation

β ≈ arctan
κ

πR|
′(R)| , (12)

where 
′(R) is the first derivative of 
(R) with respect to R. This
expression is combination of equations (2) and (3), but obtained
for the case ‘with self-gravity’, in which the maximal density
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Straight segments in the galactic discs 1371

Figure 8. Two straight segments (grey lines) at the moment of contact. The angle α between them can be found from the quadrangle OCMD: α = 360◦ − θ −
(90◦ + β) − (90◦ − β) = 180◦ − θ . As the triangle COD has sides R1, R2 and ∼(R1 + R2)/2, the angle θ equals θ ≈ 60◦. Consequently, angle α is practically
independent of β and equals α ≈ 120◦.

corresponds to the point ‘3’ situated one-half of the epicyclic pe-
riod (π/κ) downstream the initial disturber (Fig. 2). In the case of
flat rotation curve, equation (12) transforms to equation (6). Gener-
ally, the rising rotation curve increases β, while the descending one
decreases it.

5 K I N E M AT I C A L F E AT U R E S O F
T H E ST R A I G H T S E G M E N T S

The role of the initial overdensities in production of the straight
segments is to adjust the epicyclic motions of stars passing by.
So the overdensities must create the specific velocity field in their
neighbourhood. To study the kinematics of stars in our models we
calculated the residual velocities of stellar particles in the radial and
azimuthal directions, VR and VT.

In our previous paper (Rautiainen & Mel’nik 2010) we deter-
mined VR and VT as differences between the model velocities and
the velocity due to rotation curve, but there we considered the gas
subsystem, which rotated practically with the velocity of rotation
curve. However, it is not true for the stellar discs. Because of the
conspicuous velocity dispersion, the stellar discs rotate, on average,
with the smaller velocity than that of rotation curve. It is so-called
asymmetric drift (Binney & Tremaine 2008). In the present paper
we calculate the azimuthal residual velocity VT with respect to the
average azimuthal velocity of stellar particles at the same radius,
but not with respect to the rotation curve. Nothing have changed
for the radial residual velocity VR, which coincides with the radial
velocity with respect to the origin.

Fig. 10 demonstrates the distribution of the average azimuthal
velocity of stars vθ and that of the rotation curve vc along radius
in Models 1 and 2. It also shows the velocity dispersion in radial
direction σ R at different radii. For example, at R = 7 kpc, the
asymmetric drift amounts vc − vθ = 9 and 4 km s−1 in Models 1 and
2, respectively. And the velocity dispersion σ R at the same distance
has the value of 26 and 20 km s−1 in Models 1 and 2, respectively.
Generally, the asymmetric drift and the velocity dispersion are larger
in Model 1.

Let us consider the velocity field created by the overdensities,
corotating with the disc, in two cases: without self-gravity and
with it.

Without self-gravity, the maximal density of the straight segment
must correspond to the maximal absolute value of the azimuthal
residual velocity VT. At the radii larger than that of the initial dis-
turber, VT must be directed in the sense of the galactic rotation
(Fig. 2a), so it must have positive value (VT > 0 under R > R0),
while at the smaller radii it must be directed in the opposite sense
(VT < 0 under R < R0). As for the radial velocity, stars achieve their
maximal absolute value of VR, when they are leaving the straight
segment. Thus, without self-gravity, stars in regions of enhanced
density must have conspicuous velocity VT and nearly zero VR.

When self-gravity is important, the maximal density of the
straight segment must correspond to the maximal radial velocity
VR: at radii larger than that of the initial disturber, VR must be di-
rected away from the galactic centre and be positive (VR > 0 under
R > R0) (Fig. 2b), while at the smaller radii it must be directed
towards the galactic centre (VR < 0 under R < R0). The azimuthal
velocities, on the contrary, achieve their extremal values, when stars
leave the straight segment. So with self-gravity, regions of enhanced
density must exhibit conspicuous velocity VR and nearly zero VT.

It is possible a mixed case, when both the gravity of an initial
disturber and self-gravity of a straight segment are important. In
this case, we can observe the conspicuous gradient of the radial and
azimuthal velocities in the straight segments near overdensities. But
both gradients must have definite direction: the larger (smaller) R,
the more positive (negative) values of VR or of VT.

To study the kinematics in the model discs, we divided them
into small squares with the size of 150 × 150 pc2 and calculated the
average radial and azimuthal residual velocities, VR and VT, for stars
located inside them at different moments. We divided the velocities
into tree groups: negative, positive and close to zero, the latter were
those, which did not exceed 3 km s−1 in absolute value, |VR| < 3 or
|VT| < 3 km s−1.

Fig. 11 exhibits the distribution of the radial VR and azimuthal
VT velocities averaged in squares in Model 1 at three moments
T = 618.75, 632.50 and 646.25 Myr (three rows). Positive velocities
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1372 A. M. Mel’nik and P. Rautiainen

Figure 9. Left-hand panel: variations in the angle β (one between the straight segment and the azimuthal direction) along the radius R in Models 1 and 2.
Right-hand panel: the histograms of distribution of β.

Figure 10. The average azimuthal velocity of stars vθ (solid line) and the velocity of rotation curve vc (dashed line) in Models 1 and 2. The bars represent the
velocity dispersion σR. Calculations are made for moments T = 632.5 and 1402.5 Myr in Models 1 and 2, respectively.
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Straight segments in the galactic discs 1373

Figure 11. Distribution of the radial VR and azimuthal VT residual velocities averaged in squares 150 × 150 pc2 throughout the galactic disc in Model 1 at
three moments T = 618.75, 632.50 and 646.25 Myr (three rows). The average velocities are divided into three groups: negative (light grey squares), close to
zero (dark grey squares) and positive ones (black squares). The first column shows the distribution of the relative density n/n0 in the galactic disc, where n is
the number of particles in a square and n0 is the average number of particles in squares at the same radius. The greater the density, the darker the colour of the
square. Two overdensities are designated by letters ‘A’ and ‘B’. Near them the velocities VR and VT demonstrate the following gradients: the larger (smaller)
R, the more positive (negative) velocity.
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1374 A. M. Mel’nik and P. Rautiainen

Figure 12. Distribution of the residual velocities VR and VT averaged in squares throughout the galactic disc in Model 2 at T = 1402.50 Myr. The left-hand
image shows the distribution of the relative density. For more details see caption to Fig. 11. Two overdensities are designated by letters ‘C’ and ‘D’. Near them
the velocities increase (decrease) with increasing (decreasing) R. Model 2 exhibits density and velocity perturbations of less amplitude in comparison with
Model 1.

(VR or VT) are shown in black and the negative ones in light grey, the
velocities close to zero are denoted in dark grey. The first column
shows the distribution of the relative density n/n0 in the galactic
disc, where n is the number of particles in a square and n0 the average
number of particles in squares at the same radius. The greater the
density, the darker the colour of the square.

We can follow the formation of the straight segments near two
overdensities designated by letters ‘A’ and ‘B’. There are conspicu-
ous gradients of velocities VR and VT near them at all three moments.
And the directions of these gradients coincide with the expected
ones.

We also study the velocity field in Model 2. Fig. 12 shows the
distribution of the relative density and residual velocities, VR and
VT, averaged in squares throughout the galactic disc in Model 2 at
T = 1402.50 Myr. Two overdensities are designated by letters ‘C’
and ‘D’. We can see the expected velocity gradients near them as
well.

However, Figs 11 and 12 demonstrate the direction of the velocity
gradients but not the amount of velocity changes. To illustrate them
we selected stars inside detail ‘B’. Here we study stars located
inside the ellipse shown in Fig. 11. The stars were divided into
sectors of width 	θ = 2.◦5 along the galactocentric angle θ . In
each sector we calculated the average radial VR and azimuthal VT

residual velocities, which are shown in Fig. 13. We can see that the
range of changes of the velocity VR is ±10 km s−1 and that of VT

is ±5 km s−1. Note that the geometry of pieces of trailing spiral
arms is such that the increase in θ corresponds to the decrease in
R. The range of changes in R is shown at the upper boundary of
Fig. 13. For comparison, the range of changes the velocities VR in
detail A (T = 646.25 Myr) is ±7 km s−1, but that in details C and
D is from −1 to +5 km s−1.

On the whole, the distribution of the negative and positive residual
velocities agrees with hypothesis that the straight segments are
forming as the response of the disc to the overdensity corotating with

Figure 13. The radial VR (black circles) and azimuthal VT (crosses) residual
velocities of stars located inside detail ‘B’. The velocities were calculated
in sectors of width 	θ = 2.◦5 along galactocentric angle θ . The range of
changes in R is shown at the upper boundary.

it. The amplitude of velocity changes varies from a few to 10 km s−1.
Generally, Model 2 exhibits density and velocity perturbations of
less amplitude in comparison with Model 1.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We consider the formation of the straight segments in the stel-
lar galactic discs. For this purpose we constructed two N-body
simulations, which differs in concentration of mass to the galactic
centre. In Model 1 the stellar disc forms the bar in the central re-
gion, while in Model 2 the central part of the disc is occupied by
the multi-armed spiral pattern.

We identified more than 500 straight segments in the two mod-
els. The straight segments are temporal features, which rotate with
the average velocity of the disc. The relation between the length
L of the model straight segment and its galactocentric distance R
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Straight segments in the galactic discs 1375

can be approximated by the linear law L = kR with the coeffi-
cients lying in the range k = 0.86–0.88. The average angle between
two neighbouring straight segments in our models appears to be
α = 125◦−127◦. All these values are consistent with the obser-
vational estimates, L = (1.0 ± 0.13)R and α = 120◦, derived by
Chernin et al. (2001).

We suggest that the formation of the straight segments in stellar
discs is connected with the appearance of overdensities corotating
with the disc. The great role of such overdensities is revealed in
the numerical experiments by D’Onghia et al. (2013). In the first
approximation, the response of the stellar disc to such overdensity
must have the shape of a straight segment with the length determined
by the formula L = 2.4fdR.

Comparison of the average characteristics of the model straight
segments with the parameters of the respondent perturbations shows
that the non-linear law L = 2.4fdR describes better the connection
between L and R than the linear one L = kR (Fig. 6, Table 2).

We suppose that the straight segments can form the polygo-
nal structures only when they touch each other by their edges. In
other cases they must destroy each other. Using this hypothesis,
we can explain, why the average value of the angle α between
two neighbouring segments appears to be α = 125◦−127◦ in our
models.

The angle β between the straight segment and the azimuthal
direction has the average value of β = 25◦–28◦ in our models. We
found the conspicuous decrease in β with radius that can be only
partly (within 10◦) related to the deviations of the model rotation
curves from flat one. Fig. 9 exhibits relatively large values of β in the
central and intermediate regions (R < 6 kpc) in both models. One
possible explanation of these departures is that the bar or oval modes
can interfere directly in the formation of the straight segments here.

We study the kinematics of stars near the overdensities forming
in the stellar discs. For this aim we divided model discs into small
squares, 150 × 150 pc2, and calculated average residual velocities
in the radial and azimuthal directions, VR and VT. We found specific
velocity gradients in the straight segments near the overdensities:
at the radii larger than that of the overdensity, the velocities VR and
VT are positive, while at the smaller radii they are negative. Such
velocity field agrees with the hypothesis that the straight segments
are forming due to the tuning of the epicyclic motions near the
initial disturbers. The amplitude of velocity changes inside straight
segments can achieve 10 km s−1.

The most interesting question is the nature of the overdensities
bringing the formation of the straight segments. We suppose that
the appearance of such overdensities in our models is connected
with the interaction of different modes or waves, forming on the
galactic periphery and in more central region of the disc. This
suggestion has some kinematical foundation. The stars located in
the spiral arms inside and outside the CR have opposite phase
of the epicyclic motions, and consequently, the opposite residual
velocities. Probably, the superposition of such waves destroys the
adjusted epicyclic motions of both waves and create overdensities,
which have no systematic residual velocities and nearly corotate
with the disc.
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