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Straight segments in the stellar disks
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We study the properties of the straight segments forming in N-body simulations of the
galactic stellar disks. The straight segments are supposed to appear as a response of
the rotating disk to a gravity of the regions of enhanced density (overdensities). The
kinematics of stars near the prominent overdensities is consistent with this hypothesis.
The possible mechanisms of the formation of overdensities are discussed.
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1 Introduction

Straight segments outline the spiral structure of many galaxies, as it is, for example,
in M101 and in M51, forming polygonal spiral arms (Chernin et al. 2000). Probably,
the straight segments were first noticed by B. Lindblad who paid attention to sudden
bends in the spiral arms of M51 (Lindblad 1936, Fig. 17). Vorontsov-Vel’yaminov
(1978) discovered straight segments in many galaxies. He was first who realized that
straight segments, which he called rows, are a wide-spread phenomenon.

Though straight segments are more prominent in the young stellar population,
they can also form in the old stellar disks. Our inspection of the near-IR images of
Ohio State University Bright Spiral Galaxy Survey (Eskridge et al. 2002) revealed
that in more than half of the cases, the straight segments observed in the B-band
had their counterparts also in the H-band (Fig. 1). The straight segments are also
quite conspicuous in the near-infrared J- and K-band images of galaxies NGC 3938
and NGC 4254 obtained by Castro-Rodriguez & Garzon (2003). The bands J, H, K
are situated near 2 µm where the main contribution comes from the old disk stars
(K2–K3 III).

Chernin et al. (2001) compile the catalog of galaxies with straight segments that
includes about 200 objects. They have found that length of the straight segment L
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Figure 1 The H-band image of the galaxy NGC 4303 from the Ohio State University
Sample of Bright Galaxies (Eskridge at al. 2002).

increases with the galactocentric distance R, so that L = (1±0.13)R. They also show
that the angle α between two neighboring straight segments has the average value of
120◦ with the standard deviation of ∼10◦.

Khoperskov at al. (2011) and Filistov (2012) model straight segments in the
gaseous disks under the given analytical potential. They explain the formation of the
straight segments by pure gas dynamical effects there (see also Chernin 1999).

As for stellar disks, there are two different approaches to explain the formation
of ragged polygonal spiral arms in the stellar component: one is based on the global
modes (Toomre 1981) and the other rests on the chaotically distributed density per-
turbations (Toomre & Kalnajs 1991).

Toomre (1981) explains the square-like shape of the spiral arms by the presence of
the leading and trailing spiral waves of nearly similar wavelengths and amplitudes in
the Fourier spectrum of the mode, where the leading wave appears due to reflection
of the in-going trailing wave from the center (Athanassoula 1984, Binney & Tremaine
2008, for more details). But it is not clear how the superposition of the leading and
trailing waves on the galactic periphery is produced.

In the other approach the observed spiral structure is considered as a set of arm
features forming due to random density fluctuations in galactic disks (Toomre 1990).
Julian & Toomre (1966) consider the response of the stellar disk to a chance overden-
sity (a large clump of gas) corotating with the disk. The density response can exceed
the initial perturbation more than several tens times (Goldreich & Lynden-Bell 1965;
Julian & Toomre 1966; Toomre 1981). This mechanism called swing amplification
is based on the concerted action of noise, epicyclic motion, and self-gravity (Toomre
1981). Sellwood & Carlberg (1984) study the work of the swing amplification mech-
anism and show that the maximal amplification is possible on the galactic periphery
for the multi-armed spiral patterns.

D’Onghia, Vogelsberger, & Hernquist (2013) carried out some numerical experi-
ments with stellar disks and have shown that the system of disturbers (M ≈ 106 M�)
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corotating with the disk gives rise to the formation of the multi-armed polygonal
spiral arms (or linear segments joined at kinks).

Recently, many researchers have noted that the multi-armed spiral structure in
their N-body simulations doesn’t rotate as a whole, but consists of pieces corotating
with the disk at different radii (Wada, Baba, & Saitoh 2011; Grand, Kawata, &
Cropper 2012; Baba, Saitoh, & Wada 2013; D’Onghia, Vogelsberger, & Hernquist
2013, Roca-Fàbrega et al. 2013).

In this paper we study properties of the straight segments forming in N-body
galactic disks. We show that the features of the model straight segments are in good
agreement with the observational ones summarized by Chernin at al. (2001). We
suggest that the straight segments are forming as a response of the rotating disk
to a gravity of the regions of enhanced density (overdensities) corotating with the
disk. The properties of these respondent perturbations can explain the observational
features of the straight segments (for more details, see Mel’nik & Rautiainen 2013).
The possible mechanisms of the formation of overdensities are discussed.

2 The properties of the disk response to the overdensity

2.1 The shape of the respondent perturbation

Toomre (1964) has shown that the stability of the disk is supported by shared action
of the equivalent of pressure resulting from random motions and the Coriolis forces:
the pressure effectively suppresses perturbations on the short side of wavelengths,
while the Coriolis forces suppress instabilities on the long end. The value of λc is the
shortest wavelength of axisymmetric perturbations that can be stabilized by epicyclic
motions only:

λc =
4π2GΣ

κ2
, (1)

where Σ is the surface density of the disk and κ is the epicyclic frequency.
Julian & Toomre (1966) consider the response of a thin differentially rotating

stellar disk to the presence of a single, particle-like concentration of the interstellar
matter (overdensity) corotating with the disk. They have found that overdensity
creates quite extended spiral-like density response in the disk: the size of the density
ridge in the radial direction amounts ∼λc/2.

Figure 2 shows the trajectory of a star with respect to the initial overdensity that
is obtained without taking into account the self-gravity (Julian & Toomre 1966). The
star in question is located at the larger distance than the disturber, and first it has
purely circular velocity. In the reference frame corotating with the disturber the star
moves in the direction opposite that of galactic rotation, i.e. clockwise. In the impulse
approximation star’s angular momentum is unchanged and its motion can be thought
as a superposition of the purely circular motion and the motion along the epicycle
(Binney & Tremaine 2008). Let us suppose that the star gains some impulse and
starts its epicyclic motion when the distance between the star and the disturber is
minimal, i.e. when the star and the disturber are lying at the same radius-vector. The
moment of start of the epicyclic motion is denoted by number “1” and corresponds to
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Figure 2 The trajectory of the star (black curve) perturbed by the initial overdensity
(Julian & Toomre 1966). The motion is considered in the reference frame corotating with
the initial disturber that lies in the origin and rotates with circular velocity. The star in
question is lying at a distance larger than that of the disturber and initially moves with
purely circular velocity. In the chosen reference frame it moves in the sense opposite to that
of galactic rotation, i.e. clockwise. Numbers 1–4 denote positions of the star at moments
separated by 1/4 of the epicyclic period. The upper row shows the position of the star in the
epicyclic orbit at moments 1–4. Gray line indicates position of the straight segment without
taking its self-gravity into account.

the maximal additional velocity directed toward the galactic center. Julian & Toomre
(1966) suggest that the resulting stellar density must be the greatest wherever the
individual stars linger longest. That moment denoted by number “2” occurs in nearly
one-quarter of the epicyclic period, when the star has the maximal additional velocity
directed in the sense of galactic rotation. Note that in the chosen reference frame,
the star in question moves in the direction opposite that of galactic rotation, so the
moment with the largest velocity in the sense of galactic rotation determines the
place there the star lingers most. Moment “3” corresponds to the maximal additional
velocity directed away from the galactic center. The additional velocity in moment
“4” is directed in the sense opposite that of galactic rotation.

Let us calculate an angle β which determines the position of the respondent per-
turbation with respect to the azimuthal direction. In the first approximation we
neglect the additional velocities due to the epicyclic motions. Then the distance ∆y
which is passed by the star with respect to the initial disturber during one-quarter of
the epicyclic period π/(2κ) is determined by the relation:

∆y = |Ω(R)− Ω(R0)|πR0

2κ
, (2)
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And for the flat rotation curve (Ω(R) = V0/R, κ =
√

2Ω) we can express the angle
β in the following form:

β = arctan
2
√

2

π
= 42◦, (3)

which is very close to the value ∼ 45◦ suggested by Julian & Toomre (1966) for flat
rotation curve.

Generally, the fact that the angle β is independent from the coordinates ∆R and
∆y suggests that the stellar response has the shape of a straight line. However, the
impulse approximation isn’t accurate, especially in the very vicinity of the initial
disturber, because any star during the approach phase of the encounter changes its
angular momentum and passes the disturber with a slower relative velocity than it
would be without interaction (Julian & Toomre 1966).

Note that in the vicinity of the disturber, stars oscillate conspicuously in the radial
direction moving first toward the disturber and then away from it. And the star can
continue its radial oscillations as it moves in the azimuthal direction.

In the disks with low parameter Q (but Q > 1) self-gravity plays an important role
(Toomre 1981), so after some moment the stellar trajectories are rather determined
by the gravity of the straight segment itself than by the initial disturber.

Let us again consider the motion of the star initially moving on the circular orbit
(Fig. 2). The self-gravity effects are maximal at the time interval when the star is
leaving the straight segment and is moving nearly parallel to it. In Fig. 1 it is a path
between points “2” and “3”. Due to the gravity of the straight segment the position
of the density maximum is shifting in the direction of the point “3”, because here
the star has maximal value of the radial velocity which allows it to move along the
straight segment during the longest period of time.

Using the approach described above we can calculate the pitch angle of the self-
gravitating straight segment which must be nearly two times smaller than the angle
calculated without self-gravity:

β = arctan

√
2

π
= 24◦. (4)

Julian & Toomre (1966) calculated the disk response to the initial disturber with
and without self-gravity (Figs. 7 and 12 in Julian & Toomre 1966, correspondingly).
Comparison of the disk response in the two cases suggests that the self-gravity effects
conduce to the density response being more linear-shaped.

2.2 The length of the straight segments

The most interesting parameter is the linear size of the respondent density pertur-
bation. Julian & Toomre (1966) show that the size of the density ridge in radial
direction is ∆R ≈ λc/2. This result is expected because λc/2 is the maximal ra-
dial size of the region with the density above the average in the marginally stable
axisymmetric oscillations (Toomre 1964).

Let us compare the value of λc with the radius R at which it is calculated (see also
Fig. 5a in Toomre 1977). We can approximate the distribution of the disk density
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using the relation:

Σ ≈ fdV
2
0

2πGR
, (5)

where V0 is the velocity of the rotation curve and fd is the contribution of the disk
to the total rotation curve. Using Eq. 1 and the relations κ =

√
2Ω, ∆R ≈ λc/2 we

obtain:

∆R ≈ πfdR/2. (6)

Then the full size of the straight segment L under the angle β ≈ 42◦ must be following:

L ≈ 2.4fdR. (7)

Here we suppose that the self-gravity effects can not significantly increase the
linear size of the straight segments.

The value of fd in the distance range considered in our models lies in the range
fd = 0.3–0.5. So the maximal possible length of the straight segment must lie in the
range L = (0.7–1.2)R. On the whole, this result is consistent with the observations
(Chernin et al. 2001).

3 Models

The N-body simulations used in this article were done by applying the code written
by H. Salo (Salo 1991; Salo & Laurikainen 2000). The stellar disk is self-gravitating,
but the bulge and halo are analytical. The gas component is omitted in this paper.

We have made a large set of N-body models to study the formation and evolution
of straight segments in the galactic disks. In these models we varied several para-
meters such as the mass fractions of different components, the value of the initial
Toomre-parameter of the disk, the extent of the disk and the value of the gravitational
softening parameter (Plummer-softening). Here we discuss the results of one selected
model.

Figure 3 The rotation curve of the selected model. The continuous line shows the total
rotation curve, the bulge contribution is drawn with a dotted line, the disk contribution with
a dashed line and the halo contribution with a dash-dotted line.
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Figure 4 The stellar density enhancement above the average value in the model galactic
disk at T = 591.25 Myr. The width of the frame is 18 kpc. The two arrows show the locations
of two straight segments considered with a point of their contact designated by “F”.

The rotation curve of our model is shown in Fig. 3, with the adopted physical
scaling of the simulation units. The disk particles were originally distributed as an
exponential disk with scale length Re = 3.0 kpc. The mass of the disk is Md =
2.9× 1010 M�. The bulge component was modelled as an analytical Plummer sphere
with the mass of Mb = 9.2× 109 M� and scale length of b = 0.6 kpc. The analytical
halo was of the same form as in Rautiainen & Melnik (2010). The asymptotic rotation
velocity of the halo equals 189 km s−1 that with core radius of RC = 7.5 kpc gives the
mass of halo within 15 kpc of Mh = 9.9× 1010 M�. The model is mostly dominated
by the spherical (analytical) component (bulge and halo); the reason for this choice of
parameters was to delay bar formation but the initial value of the Toomre-parameter
is low enough (QT = 1.2) that it still allows the disks to develop well-defined spiral
arms. The gravitational softening is ε = 75 pc.

The model first develops a multiple-armed structure. In the outer parts of the
disk there are m = 10–20 short arms. The structure becomes more regular in the
inner parts, but even there the number of arms amounts to m = 2–5. A large scale
bar forms at T ≈ 800 Myr. After its formation, the inner spiral structure becomes
effectively two-armed and the number of spiral arms also diminish in the outer parts,
although it still remains multiple-armed.

Figure 4 shows the density enhancement above the average value in the model
galactic disk at T = 591.25 Myr. We chose two straight segments and followed their
evolution. They were selected because they are exceptionally long-lived, lasting about
80 Myr, which corresponds to about 1/4 of the circular rotation period at the radial
distance of the segments. Most straight segments seen in our models have shorter
lifespans corresponding to 10–30 Myr.

c©2014 Astronomical and Astrophysical Transactions (AApTr), Vol. 28, Issue 4



324 MEL’NIK, RAUTIAINEN

4 General characteristics of straight segments in model disks

We have identified 238 straight segments in model stellar disk at different time mo-
ments. The changes of the length of the model straight segments L along radius R
are shown in Fig. 5. The galactocentic distance R for the straight segment is deter-
mined as the distance to its median point. The thick gray curve shows the value of L
calculated from the formula L = 2.4fdR, where fd(R) is the relative contribution of
the disk to the total rotation curve at each radius. The value of fd(R) achieves the
maximum at R ∼ 2Re and then gradually decreases with increasing R (Fig. 6).

The linear dependence L = (0.86±0.02)R derived for the model straight segments
is consistent with observational one L = (1.0 ± 0.13)R. However, the connection
between L and R in the model disk is conspicuously non-linear: there are a lot of
relatively short straight segments at large radii. So the connection between L and
R is better described by formula L = 2.4fdR which gives the standard deviation of
σ = 1.54 kpc instead of σ = 2.1 kpc obtained for the linear law.

Since the straight segments rotate in the disk with the angular velocity of their
parent overdensities, they can never form stationary polygonal structure. Moreover,
straight segments must destroy each other during their merging. The only possible
way for their contact without destruction is by touching of their edges. In this case
they can even increase each other because the appearance of the extra density at their
endpoints gives both of them an extra ability to hold stars inside them.
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Figure 5 Left panel: the dependence between the length L of a model straight segment
and its galactocentric distance R. The thick gray curve shows the value of L calculated from
the formula L = 2.4fdR. The bisectrix is also drawn. Right panel: the histogram of the
distribution of the angle α between two neighboring straight segments in the model disk.

We measured 101 angles between neighboring straight segments in model disk. Its
average value appears to be α = 127◦ with the standard deviation of σ = 13◦. The
maxima of distribution of α lies ∼130◦ (Fig. 6). All these values are consistent with
observations.
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Figure 6 The variation of fd – the relative contribution of the disk to the total rotation
curve (v2c ) – along the radius in model disk.

Chernin (1999) gives an explanation of the the value of α = 120◦ which is based
on the relation L = R. Using the relation L = 0.86R we can explain why the value
of α in our model equals α = 127◦ (for more details see Melnik & Rautiainen 2013).

5 Kinematical features of the straight segments

The role of the initial overdensities in production of the straight segments is to adjust
the epicyclic motions of stars passing by. So the overdensities must create the specific
velocity field in their neighborhood.

In a case when both the gravity of the initial disturber and self-gravity of the
straight segment are important we can expect that the conspicuous gradient of the
radial and azimuthal velocities in the straight segments near overdensities and its
direction must be following: the larger (smaller) R, the more positive (negative)
value of VR or VT (Fig. 2).

To study the kinematics of stars in our models we calculate the residual velocities
of stellar particles in the radial and azimuthal directions, VR and VT . In our previous
paper (Rautiainen & Melnik 2010) we determined VR and VT as differences between
the model velocities and the velocity due to rotation curve, but here we compute the
velocity VT with respect to the average azimuthal velocity of stellar particles at the
same radius but not with respect to the rotation curve.

To study the kinematics in the model disks we divide them into small squares
with the size of 150× 150 pc and calculate the average radial and azimuthal residual
velocities, VR and VT , for stars located inside them. Figure 7 exhibits the distribution
of the negative and positive residual velocities, VR and VT , averaged in squares at
T = 632.50 Myr. We also denote the positions of the most prominent overdensities
having the density twice the average one, n/n0 > 2, where n is the number of particles
in a square and n0 is the average number of particles in squares at the same radius.
Let us consider the distribution of the velocities near two overdensities designated by
letters “A” and “B”. We can see the conspicuous gradients of the velocities, VR or
VT , near the overdensity “B” and the sense of changes coincides with the expected
one: the larger (smaller) R, the more positive (negative) value of VR or VT . As for
the overdensity “A”, the azimuthal velocities VT near it demonstrate the expected
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Figure 7 The distribution of the radial VR and azimuthal VT residual velocities averaged
in small squares. Squares with positive velocities, VR or VT , are shown in red, while squares
with negative velocities are given in blue. It also exhibits the distribution of overdensities
with n/n0 > 2 (black squares). Two overdensities are designated by letters “A” and “B”.
The gradient of the velocities, VR or VT , near them is expected to be the following: the
larger (smaller) R, the more positive (negative) velocity.

velocity gradient (the lower image), while the radial velocities VR do not, but at
the next moment considered, T = 646.25, they already exhibit the expected velocity
gradient. Note that the arrangement of the azimuthal velocities occurs earlier than
that of the radial ones (for more details, see Mel’nik & Rautiainen 2013).

6 Conclusions and discussion

We consider the formation of the straight segments in the stellar galactic disks. For
this purpose we constructed several N-body simulations and identified straight seg-
ments there. The straight segments are temporal features which rotate with the
average velocity of the disk. The relation between the length L of the model straight
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segment and its galactocentric distance R can be approximated by the linear law
L = (0.86 ± 0.02)R. The average angle between two neighboring straight segments
in our model appears to be α = 127◦. All these values are consistent with the ob-
servational estimates, L = (1.0 ± 0.13)R and α = 120◦, derived by Chernin et al.
(2001).

We suggest that the formation of the straight segments in stellar disks is connected
with the appearance of the overdensities corotating with the disk. In the first approx-
imation the response of the stellar disk to such overdensity must have the shape of a
straight segment with the length determined by the formula L = 2.4fdR. Comparison
of the average characteristics of the model straight segments with the parameters of
the respondent perturbations shows that the non-linear relation L = 2.4fdR describes
better the connection between L and R than the linear one L = kR.

The study of the kinematics of stars near the most prominent overdensities reveals
the specific velocity gradient near them: at the radii larger than that of the overdensity
the velocities VR and VT are positive, while at the smaller radii they are negative.
Such velocity field agrees with the hypothesis that the straight segments are forming
due to the tuning of the epicyclic motions near the initial disturbers corotating with
the disk. The amplitude of the velocity changes inside straight segments can achieve
10 km s−1 (for more detail, see Mel’nik & Rautiainen 2013).

The most interesting question is the nature of the overdensities bringing the for-
mation of the straight segments. Julian & Toomre (1966) and D’Onghia et al. (2013)
consider the giant molecular clouds with a mass of∼ 106 M� as possible candidates for
the role of overdensities disturbing the disk. But the observed giant molecular com-
plexes have large internal velocity dispersion, which indicates their being unbound
(Dame at al. 1986). For the formation of the straight segment the initial overdensity
must survive at least during ∼ 1/4 of the epicyclic period, which is needed for tuning
epicyclic motions near it, then the effects of self-gravity start working and the role of
the initial overdensity is decreasing. At the solar neighborhood 1/4 of the epicyclic
period amounts to ∼ 30 Myr. It is questionable whether the giant molecular cloud
can survive for such a long time period; first, a start of the star formation can destroy
them much earlier; second, the growing straight segment forms forces which try to
tear the initial overdensity.

We suppose that the appearance of such overdensities in our models is connected
with the interaction of different density modes or waves. Edge modes being usually
one- or two-armed (Tomre 1977, 1981) can also play some role in the formation of the
overdensities. But even current density waves can accelerate the growth of one or two
overdensities among many others located at the same radius. The competition among
overdensities determines the leaders among them which can create organized radial
oscillations of stars at some sector of the disk. These oscillations can strengthen other
primordial overdensities located in “the right places”, i.e. in the sites where stars pass
by with the minimal azimuthal velocity (Fig. 2). Probably, the adjustment of the
stellar motions in accordance with one or two of the most prominent overdensities
situated at the same radius causes the formation of the quasi-regular spiral structure,
otherwise, it must be chaotic.

Here we have considered the kinematics near a single overdensity corotating with
the disk, however two straight segments touching each other by their ends usually
exhibits a different velocity distribution. The distinction in the kinematics of a single
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and the interacting straight segments can be caused by the formation of the new
overdensity in the point of contact of two straight segments (for example, the point
“F” in Fig. 4), what is often observed in our models. Possibly, the ends of the
straight segments can create some favorable conditions for the formation of the new
overdensities.

Chernin at al. (2001) noted that the fraction of interacting galaxies among the
galaxies with straight segments is appreciably higher than among galaxies without
them. Possibly, the external perturbations can accelerate the process of the formation
of the prominent overdensities in the middle part of the disk (∼ 2Re).

Our modelling shows that the extended stellar disks favor the formation of the
polygonal spiral arms. D’Onghia et al. (2013) also note that the response of the
disk to the overdensity depends on the extent to which the disk is self-gravitating.
The most simple explanation of this relation is the capability of the disk periphery to
amplify significantly even small density noise (Sellwood & Carlberg 1984).
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