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ABSTRACT

Aims. We try to determine the Galactic structure by comparing the observed and modeled velocities of OB-associations in the 3 kpc
solar neighborhood.
Methods. We made N-body simulations with a rotating stellar bar. The galactic disk in our model includes gas and stellar subsystems.
The velocities of gas particles averaged over large time intervals (∼8 bar rotation periods) are compared with the observed velocities
of the OB-associations.
Results. Our models reproduce the directions of the radial and azimuthal components of the observed residual velocities in the
Perseus and Sagittarius regions and in the Local system. The mean difference between the model and observed velocities is ΔV =
3.3 km s−1. The optimal value of the solar position angle θb providing the best agreement between the model and observed velocities
is θb = 45 ± 5◦, in good accordance with several recent estimates. The self-gravitating stellar subsystem forms a bar, an outer ring
of subclass R1, and slower spiral modes. Their combined gravitational perturbation leads to time-dependent morphology in the gas
subsystem, which forms outer rings with elements of the R1- and R2-morphology. The success of N-body simulations in the Local
System is likely due to the gravity of the stellar R1-ring, which is omitted in models with analytical bars.
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1. Introduction

The consensus since the 1990s has been that the Milky Way
is a barred galaxy (see, e.g. Blitz & Spergel 1991; Blitz et al.
1993). The estimate for the size of the large-scale bar has grown
from initial Rbar ≈ 2−3 kpc to current estimates Rbar = 3−5 kpc
(Habing et al. 2006; Cabrera-Lavers et al. 2007, 2008). The posi-
tion angle of the bar is thought to be in the range 15◦−45◦ (Blitz
et al. 1993; Kuijken 1996; Weiner & Sellwood 1999; Benjamin
et al. 2005; Englmaier & Gerhard 2006; Cabrera-Lavers et al.
2007; Minchev et al. 2010). The differences in the position angle
estimates may indicate that the innermost structure is actually a
triaxial bulge (Cabrera-Lavers et al. 2008). On the other hand,
this ambiguity may be partly caused by our unfavorable view-
ing angle near the disk plane, which also hinders study of other
aspects of Galactic morphology.

The suggested configurations for the spiral morphology of
the Galaxy include models or sketches containing from two to
six spiral arms (see e.g. Vallée 2005; Vallée 2008, and references
therein). A case has also been suggested where a two-armed
structure dominates in the old stellar population, whereas the
gas and young stellar population exhibits a four-armed structure
(Lépine et al. 2001; Churchwell et al. 2009). In addition to spiral
arms, there may be an inner ring or pseudoring surrounding the
bar, which manifests itself as the so-called 3-kpc arm(s) (Dame
& Thaddeus 2008; Churchwell et al. 2009). Also, speculations
about a nuclear ring with a major axis of about 1.5 kpc have
been made (Rodriguez-Fernandez & Combes 2008). Different
kinds of rings – nuclear rings, inner rings and outer rings – are
often seen in the disks of spiral galaxies, especially if there is

also a large-scale bar (Buta & Combes 1996). Thus, the presence
of an outer ring in the Galaxy may also be considered plausible
(Kalnajs 1991).

Since the outer rings have an elliptic form, the broken outer
rings (pseudorings) resemble two tightly wound spiral arms.
Nevertheless their connection with the density-wave spiral arms
is not very obvious because their formation does not need the
spiral-shaped perturbation in the stellar disk. The main ingredi-
ent for their formation is a rotating bar. Both test particle sim-
ulations (Schwarz 1981; Byrd et al. 1994; Bagley et al. 2009)
with an analytical bar and N-body simulations (Rautiainen &
Salo 1999, 2000), where the bar forms in the disk by instability,
show that the outer rings and pseudorings are typically located
in the region of the outer Lindblad resonance (OLR). Two main
classes of the outer rings and pseudorings have been identified:
the R1-rings and R′1-pseudorings elongated perpendicular to the
bar and the R2-rings and R′2-pseudorings elongated parallel to the
bar. In addition, there is a combined morphological type R1R′2
that shows elements of both classes (Buta 1986; Buta & Crocker
1991; Buta 1995; Buta & Combes 1996; Buta et al. 2007).

Schwarz (1981) connected two main types of the outer rings
with two main families of periodic orbits existing near the OLR
of the bar (Contopoulos & Papayannopoulos 1980; Contopoulos
& Grosbol 1989). The stability of orbits enables gas clouds
to follow them for a long time period. The R1-rings are sup-
ported by x1(2)-orbits (using the nomenclature of Contopoulos
& Grosbol 1989) lying inside the OLR and elongated perpendic-
ular to the bar, while the R2-rings are supported by x1(1)-orbits
situated a bit outside the OLR and elongated along the bar. There
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is also another conception of the ring formation. Romero-Gómez
et al. (2007) show that Lyapunov periodic orbits around L1
and L2 equilibrium points can lead to the formation of the spiral
arms and the outer rings. They associate the spiral arms emanat-
ing from the bar’s tips with the unstable manifolds of Lyapunov
orbits. This approach can be useful for explaining of the motion
of gas particles as well (Athanassoula et al. 2009).

Besides the bar the galactic disks often contain spiral arms,
which modify the shape of the gravitational perturbation. In the
simplest case, the pattern speeds of the bar and spiral arms are
the same. In many studies this assumption has been used for con-
structing the gravitational potential from near-IR observations
(which represent the old stellar population better than the visual
wavelengths). Several galaxies with outer rings have been mod-
eled by this method, and findings are in good accordance with
studies made by using analytical bars: the outer rings tend to be
located near the OLR (Salo et al. 1999), although in some cases
they can be completely confined within the outer 4/1-resonance,
(Treuthardt et al. 2008).

A real galactic disk provides further complications, which
can be studied by N-body models, where the bars and spiral arms
are made of self-gravitating particles. In particular, there can of-
ten be one or more modes rotating more slowly than the bar
(Sellwood & Sparke 1988; Masset & Tagger 1997; Rautiainen
& Salo 1999). Even if there is an apparent connection between
the ends of the bar and the spiral arms, it is no guarantee that
the pattern speeds are equal – the break between the compo-
nents may be seen only for a short time before the connection
reappears (see Fig. 2 in Sellwood & Sparke 1988). Sometimes
the bar mode can contain a considerable spiral part that forms
the observed spiral, together with the slower modes (Rautiainen
& Salo 1999). The multiple modes can also introduce cyclic
or semi-cyclic variations in the outer spiral morphology: outer
rings of different types can appear and disappear temporarily
(Rautiainen & Salo 2000).

In Mel’nik & Rautiainen (2009, hereafter Paper I), we con-
sidered models with analytical bars. In this case the motion of
gas particles is determined only by the bar. We found that the
resonance between the epicyclic motion and the orbital motion
creates systematical noncircular motions that depend on the po-
sition angle of a point with respect to the bar elongation and on
the class of the outer ring. The resonance kinematics typical of
the outer ring of subclass R1R′2 reproduces the observed veloci-
ties in the Perseus and Sagittarius regions well.

In Paper I we also suggested that the two-component
outer ring could be misinterpreted as a four-armed spiral.
In some galaxies with the combined R1R′2-morphology, the
R1-component can also be seen in the near infrared, but the
R2-component is usually prominent only in blue (Byrd et al.
1994). This could explain the ambiguity of the number of spi-
ral arms in the Galaxy. N-body simulations confirm that the
R′1-rings can be forming in the self-gravitating stellar subsys-
tem, while the R′2-rings usually exist only in the gas component
(Rautiainen & Salo 2000).

In the present paper we study the effect of multiple modes
and their influence on the kinematics and distribution of gas par-
ticles. We construct N-body models to study the influence of
self-gravity in the stellar component on the kinematics of gas
particles. We compare the model velocities of gas particles with
the observed velocities of OB-associations in the neighborhood
3 kpc from the Sun.

This paper has the following structure. Observational data
are considered in Sect. 2. Section 3 is devoted to models and
describes the essential model parameters, the evolution of the

stellar and gas components: formation of the bar and the inter-
play between the bar and slower spiral modes. In Sect. 3 we also
analyze the general features of the gas morphology. Section 4 is
devoted to the comparison between the observed and modeled
kinematics. Both momentary and average velocities of gas par-
ticles are considered. The influence of the bar position angle θb
on the model velocities is also investigated in Sect. 4, as are the
evolutionary aspects of kinematics. Section 5 consists of conclu-
sions and discussion.

2. Observational data

We have compared the mean residual velocities of
OB-associations in the regions of intense star formation
with those of gas particles in our models. These regions
practically coincide with the stellar-gas complexes identified
by Efremov & Sitnik (1988). The residual velocities charac-
terize the non-circular motions in the galactic disks. They are
calculated as differences between the observed heliocentric
velocities (corrected for the motion to the apex) and the ve-
locities due to the circular rotation law. We used the list of
OB-associations by Blaha & Humphreys (1989), the line-of-
sight velocities (Barbier-Brossat & Figon 2000), and proper
motions (Hipparcos 1997; van Leeuwen 2007) to calculate
their median velocities along the galactic radius-vector, VR,
and in the azimuthal direction, Vθ. Figure 1 shows the residual
velocities of OB-associations in the regions of intense star
formation. It also indicates the grouping of OB-associations
into stellar-gas complexes. For each complex we calculated the
mean residual velocities of OB-associations, which are listed
in Table 1. Positive radial residual velocities VR are directed
away from the Galactic center, and the positive azimuthal
residual velocities Vθ are in the sense of Galactic rotation.
Table 1 also contains the rms errors of the mean velocities,
the mean Galactocentric distances R of OB-associations in the
complexes, the corresponding intervals of galactic longitudes l
and heliocentric distances r, and names of OB-associations the
region includes (see also Mel’nik & Dambis 2009).

The Galactic rotation curve derived from an analysis of the
kinematics of OB-associations is nearly flat in the 3-kpc solar
neighborhood and corresponds to the linear velocity at the so-
lar distance of Θ0 = 220 km s−1 (Mel’nik et al. 2001; Mel’nik
& Dambis 2009). The nearly flat form of the Galactic rotation
curve was found in many other studies (Burton & Gordon 1978;
Clemems 1985; Brand & Blitz 1993; Pont 1994; Dambis et al.
1995; Russeil 2003; Bobylev et al. 2007).

We adopted the Galactocentric distance of the Sun to be
R0 = 7.5 kpc (Rastorguev et al. 1994; Dambis et al. 1995;
Glushkova et al. 1998, and other papers), which is consistent
with the so-called short distance scale for classical Cepheids
(Berdnikov et al. 2000).

3. Models

3.1. The model parameters

We made several N-body models, which satisfy “broad observa-
tional constraints”: the rotation curve is essentially flat and the
size of the bar is acceptable. From these models we have chosen
our best-fitting case, which we describe here in more detail.

The rotation curve of our best-fitting model is illustrated in
Fig. 2. In the beginning, the rotation curve is slightly falling
in the solar neighborhood, but the mass rearrangement in the
disk during the bar formation makes it rise slightly. We scaled
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Fig. 1. a) The residual velocities of OB-associations projected on to the galactic plane. It also shows the grouping of OB-associations into regions
of intense star formation. b) The mean VR- and Vθ-velocities of OB-associations in the stellar-gas complexes. The X-axis is directed away from
the galactic center, and the Y-axis is in the direction of the galactic rotation. The Sun is at the origin.

the simulation units to correspond to our preferred values of
the solar distance from the Galactic center and the local cir-
cular velocity. This also gives the scales for masses and time
units. However, in the following discussion we will use simula-
tion time units, one corresponding to approximately 100 million
years, and the full length of the simulation is 6 Gyr.

The bulge and halo components are analytical, whereas the
stellar disk is self-gravitating. The bulge is represented by a
Plummer sphere, mass Mbulge = 1.17 × 1010 M�, and scale
length Rbulge = 0.61 kpc. The dark halo was included as a com-
ponent giving a halo rotation curve of form

V(R) =
VmaxR√
R2 + R2

c

, (1)

where Vmax = 210 km s−1 is the asymptotic maximum on the
halo contribution to the rotation curve and Rc = 7.6 kpc the core
radius.

The N-body models are two-dimensional, and the gravita-
tional potential due to self-gravitating particles is calculated by
using a logarithmic polar grid (108 radial and 144 azimuthal
cells). The N-body code we used has been written by Salo (for
more details on the code, see Salo 1991; Salo & Laurikainen
2000). The value of the gravitation softening is about 0.2 kpc
on the adopted length scale. The mass of the disk Mdisk =
3.51 × 1010 M�.

The disk is composed of 8 million gravitating stellar parti-
cles, whose initial distribution is an exponential disk reaching
about 10 scale lengths. The disk and halo have nearly equal con-
tribution to the rotation curve at the solar distance. The initial
scale length of the disk was about 2 kpc, but after the bar for-
mation, it forms a twin profile disk: the inner profile becomes
steeper and the outer profile shallower, and the exponential scale
length corresponds to about 3 kpc outside the bar region. The
initial value of the Toomre-parameter QT was 1.75.

The gas disk was modeled by inelastically colliding test par-
ticles as was done in Paper I. The initial velocity dispersion of
the gas disk was low, about 2 km s−1, but it reached typical val-
ues in the range 5−15 km s−1 during the simulation. If collisions

are omitted, the velocity dispersion of the test particles rises
much higher into the range 25−50 km s−1. The model used in
the kinematical analysis contains 40 000 gas particles initially
distributed as a uniform disk with an outer radius of 9.2 kpc.

3.2. Evolution of the stellar component

The inner regions quickly develop a small spiral (at T ∼ 2.5),
which then evolves to a clear bar (T ∼ 5). Its original pattern
speed Ωb is about 80 km s−1 kpc−1, meaning that when it forms
it does not have an Inner Lindblad Resonance (ILR). In its early
phase the bar slows down quite quickly (Ωb ≈ 60 km s−1 kpc−1

at T = 10), but the deceleration rate soon settles down: Ωb ≈
54 km s−1 kpc−1 at T = 20 and Ωb ≈ 47 km s−1 kpc−1 at T = 55.
In this model the bar’s slowing down is accompanied by its
growth, and the bar can always be considered dynamically fast
(see e.g. Debattista & Sellwood 2000). Using the same method
to determine the bar length as Rautiainen et al. (2008) (a modifi-
cation of one used by Erwin 2005), we get Rbar = 4.0 ± 0.6 kpc
at T = 55 and RCR/Rbar = 1.2 ± 0.2. There is no secondary bar
in this model.

The amplitude spectra of the relative density perturbations
(see e.g. Masset & Tagger 1997; Rautiainen & Salo 1999)
(Fig. 3) show that the bar mode is not the only one in the disk,
but there are also slower modes. The strongest of these modes,
hereafter the S1 mode, has an overlap of resonance radii with the
bar: the corotation radius of the bar is approximately the same
as the inner 4/1-resonance radius of the slower mode (at T = 55
the RCR of the bar and the inner 4/1 resonance radius of the S1
mode are both about 4.6 kpc). This resonance overlap does not
seem to be a coincidence: when the amplitude spectra from dif-
ferent time intervals are compared, one can see that both the
bar and the S1 modes slow down so that the resonance overlap
remains (see Fig. 3). Furthermore, this resonance overlap was
the most common case in the simulations of Rautiainen & Salo
(1999). Also, the S1 mode has a strong m = 1 signal and a maxi-
mum near its corotation at 7.1 kpc. The bar mode is also seen as
a strong signal in the m = 4 spectrum, but only inside CR – the
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Fig. 2. The rotation curve (solid line) of the N-body model at T = 0 (left) and at T = 55 (right). The contributions from the bulge (dash-dotted
line), disk (dashed line) and halo (dotted line) are also indicated.
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Stars, m=2, T=50-60
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Gas, m=2, T=50-60
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Fig. 3. The amplitude spectra of the relative density perturbations in the model disk. The frames show the amplitude spectra of the stellar or gas
component at various times (indicated on the frame titles). The contour levels are 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8, calculated with respect to the
azimuthal average surface density at each radius. The continuous lines show the frequencies Ω and Ω ± κ/m, and the dashed curves indicate the
frequencies Ω ± κ/4 in the m = 2 amplitude spectrum.
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Fig. 4. The reconstructed modes in the stellar component (see text) for T = 50−60 time interval. The enhanced density compared to the azimuthally
averaged profile at each radius is shown. The shades of gray (darker corresponds to higher surface density) have been chosen to emphasize the
features. The circles in the bar mode indicate ILR (1.4 kpc), CR (4.6 kpc), and OLR (8.1 kpc), whereas the inner 4/1 (4.6 kpc) and CR (7.1 kpc)
are shown for the mode S1.

spiral part seems to be almost pure m = 2 mode. Altogether, the
signals with m > 2 tend to be much weaker than features seen in
m = 1 and m = 2 amplitude spectra.

We have also tried to reconstruct the shapes of the modes
seen in the amplitude spectra. This was done by averaging the
surface density in coordinate frames rotating with the same an-
gular velocities as the modes. No assumptions were made about
the shapes of the modes. On the other hand, one should take
these reconstructions with some caution, because the evolution
of the two modes, the effect of slower (but weaker) modes, and
short-lived waves may affect them. The results for the bar and
the S1 mode at the time interval T = 50−60 are shown in Fig. 4.
The modeΩp = 47 km s−1 kpc−1 clearly shows the bar and sym-
metrical spiral structure that forms an R1 outer ring or pseudor-
ing. By the T = 50−60 interval, the density amplitude of the bar
mode is about 15−20 per cent in the outer ring region, where
the maxima and minima have roughly the same strength. On the
other hand, by T = 50−60, the mode Ωp = 31 km s−1 kpc−1

is clearly lopsided, which is not surprising considering the sig-
nal seen in the m = 1 amplitude spectrum. There is a minimum
with an amplitude of about 30% and a maximum of about 15%
at R ≈ 7 kpc, which corresponds to the CR of the S1 mode.
Earlier, at T ≈ 20, the S1 mode does not have the m = 1 char-
acteristic but exhibits a multiple-armed structure beyond its CR,
accompanied by a clear signal in the m = 3 amplitude spectrum.

3.3. The morphological changes in the gas component

The amplitude spectra for the gas component at the interval
T = 50−60 are also shown in Fig. 3. Due to fewer particles,
they include more noise, but otherwise they are quite similar.
In addition to the bar mode, the S1 mode is also seen, but now it
is more conspicuous in the m = 1 spectrum.

The result of having several modes is the quite complicated
evolution of the model (see Fig. 5): at different times, the mor-
phology of the outer gaseous disk can be described as R1R′2, R′2,
R′1 or just as open spiral arms, which can sometimes be followed
over 400 degrees. There is no evolutionary trend between the
morphological stages, since they all appear several times during
the model time span. The shape of the inner ring also changes by
being sometimes more elongated or even consisting of tightly

wound pair of spiral arms. On the broader sense, the overall
Hubble stage of the model stays the same for several Gyr.

Although the slow modes in the stellar component can be
clearly seen outside the bar radius (about 4 kpc), they become
pronounced in the gas from R ≈ 6 kpc. To study their effect on
the gas morphology, we selected gas particles located at the an-
nulus 7 < R < 10 kpc and calculated their number within every
5◦-sector along θ. Such density profiles were built for 301 mo-
ments from the interval T = 30−60 (T ≈ 3−6 Gyr) with a step
ΔT = 0.1 (∼10 Myr). Earlier stages were not considered, be-
cause then the pattern speed of the bar was changing so fast that
it complicated the analysis. At every moment the distribution of
gas density along θ was approximated by one-fold (m = 1), two-
fold (m = 2), and four-fold (m = 4) sinusoidal wave:

σ = σ0 + Am cos(mθ + φm), (2)

whereσ is the gas density in a segment,σ0 is the average density
in the annulus, φm and Am are the phase and amplitude of the
corresponding sinusoidal approximation, respectively.

Figure 6 demonstrates the motion of maxima in the distri-
bution of gas particles along θ. We made the density profiles in
the reference frame co-rotating with the bar, whose major axis
is always oriented in the direction θ = 0◦. Azimuthal angle θ is
increasing in the sense of the galactic rotation, so the supposed
position of the Sun is about θ = 315◦. To illustrate the motion
of density crests, we selected two intervals T = 35.5−37.5 and
T = 52.5−54.5 with a high amplitude of density perturbation.
These density profiles indicate the motion of density maxima in
the opposite direction to that of galactic rotation (i.e. they actu-
ally rotate more slowly than the bar), which means an increase
in the phase φm of the sinusoidal wave (Eq. (2)).

Figure 7 exhibits the variations in the phase φm and ampli-
tude Am of the sinusoidal wave at the time intervals T = 30−40,
40−50, and 50−60. The subscripts 1 and 2 are related to the one-
and two-fold sinusoids. Rotation of the density maxima causes
the sharp changes in the phase when it achieves the value of
φ = 360◦, and at the new turn its value must fall to zero. These
changes enable us to accurately calculate the mean values of the
periods for the propagation of the sinusoidal waves, which ap-
pear to be P1 = 3.3 ± 0.4 and P2 = 1.5 ± 0.4. Remember that we
study the density oscillations in the reference frame co-rotating

Page 5 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201014646&pdf_id=4


A&A 519, A70 (2010)

Fig. 5. The gas morphology at selected times. The bar is vertical in all frames, whose width is 20 kpc.

with the bar, so the period P of beating oscillations between the
bar and slow modes is determined by the relation:

Pm =
2π

m(Ωb −Ωsl)
· (3)

The periods, P1 and P2, appear to correspond to slow modes
rotating with the pattern speeds Ω = 28 ± 2 km s−1 kpc−1 and
Ω = 26 ± 6 km s−1 kpc−1, respectively. It is more convenient
to use simulation units here. The transformation coefficient be-
tween them and (km s−1 kpc−1) is k = 9.77, and the value of Ωb
is Ωb = 4.8 s.u. The m = 4 wave manifested itself in two density
maxima separated by the angle Δθ ≈ 90◦ (Fig. 6, right panel).
The analysis of phase motion of four-fold sinusoid reveals the
period P4 = 0.81 ± 0.15, which corresponds to slow mode rotat-
ing with the speedΩsl = 28 ± 4 km s−1 kpc−1 (Eq. (3)). Probably,
it is mode Ω = 28 ± 4 km s−1 kpc−1 that causes the strong vari-
ations in gas density with the periods P1 = 3.3, P2 = 1.5, and
P4 = 0.8 when it works as m = 1, m = 2, and m = 4 density

perturbations, respectively. This mode is well-defined in the gas
and star power spectra made for the interval T = 50−60 (Fig. 3).

Let us have a look at the amplitude variations (Fig. 7). The
highest value of A2 equal A2 = 200 (particles per 5◦-sector) is
observed at the time T = 36.0 (left panel). On the other hand,
A1 achieves its highest value of A1 = 220 at the time T = 56.5
(right panel). Amplitude A4 reaches its maximum value of A4 =
180 at the time interval T = 53−55. Thus, the highest values of
the amplitudes A1, A2, and A4 are nearly the same.

Figure 6 (left panel) indicates the growth of the amplitude
of m = 2 perturbation under a specific orientation of the density
clumps. The amplitude of the sinusoidal wave is at its maximum
at the moments T = 36.0 and 37.5 when the density clumps
are located near the bar’s minor axis, θ = 90◦ and 270◦. This
growth is also seen in Fig. 7 (left panel) for the interval T =
30−40: the amplitude A2 is at its maximum at the moments when
φ2 ≈ 180◦. This phase corresponds to the location of maxima of
m = 2 sinusoid at θ = 90◦ and θ = 270◦ (Eq. (2)).
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different moments. It also shows its approximation by two-fold (left panel) and one-fold (right panel) sinusoids.
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Fig. 8. Variations in the mean velocities of gas particles located within the boundaries of the stellar-gas complexes. The left panel is related to the
radial component VR and the right one to the azimuthal one Vθ.

Our analysis revealed slight variations in the speed of the
strongest slow mode, and they depend on its orientation with re-
spect to the bar: Fig. 7 (left panel) shows that the tilt of the phase
curve, φ2(t), is variable. We can see that the slow mode rotates a
bit faster when φ2 ≈ 180◦ (density clumps are near the bar’s mi-
nor axis) and more slowly when φ2 = 0 or 360◦ (the clumps are
near the bar’s major axis). Probably, the variations in the speed
of the slow mode are connected with the change in the form of
the density crests due to tidal interaction between the bar mode
(bar+R1-ring) and the slow mode.

4. Kinematics of gas particles. Comparison
with observations

4.1. Momentary and average velocities

We start our kinematical study with the interval T = 50−60
(5−6 Gyr in physical time). At this period the bar rotates with
a nearly constant pattern speed of Ωb = 47 km s−1 kpc−1 which
simplifies the analysis. The interval T = 50−60 also provides the
best agreement between the model and observed velocities.

We determined the positions and velocities of gas particles
at 101 moments separated by the step ΔT = 0.1. For each mo-
ment we selected gas particles located within the boundaries of
the stellar gas complexes and calculated their mean velocities

and velocity dispersions. To determine the positions of the com-
plexes, we need to choose the position angle of the Sun with
respect to the bar elongation, θb. In this section we adopted the
value of θb = 45◦, which gives the best fit between the model
and observed velocities.

Figure 8 shows the variations in the mean residual velocities,
VR and Vθ, calculated for five complexes at different moments.
The residual velocities were computed as differences between
the model velocities and the velocities due to the rotation curve.
It is clearly seen that the momentary velocities oscillate near the
average values within the limits of ∼±20 km s−1. Two processes
are probably responsible for these oscillations. The first is the
slow modes that cause a quasi-periodic low in the velocity varia-
tions. The second process is likely connected with the short-lived
perturbations, e.g. from transient spiral waves in the stellar com-
ponent. The averaging of velocities over long time interval re-
duces the influence of slow modes and occasional perturbations.

Table 2 represents the average values of the momentary
residual velocities, VR and Vθ, calculated over 101 moments.
It also gives the average values of velocity dispersions, σR
and σθ, and the average number of particles n in the complexes.
Since the bar has two tips, we calculated velocities for two op-
posite positional angles, θb = 45◦ and θb = 225◦, and used their
mean values. The averaged residual velocities are determined
with the errors of 0.4−1.4 km s−1. The relatively low level of
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Fig. 9. Distribution of the negative and positive average residual velocities calculated in squares. The squares with positive velocities are shown
in black, while those with negative ones are given in gray. Only squares that satisfy the condition n > m/2 are depicted. The left panel represents
the radial velocities, while the right one shows the azimuthal ones. It also demonstrates the boundaries of the stellar-gas complexes. The position
angle of the Sun is supposed to be θb = 45◦. The bar is oriented along the Y-axis, the galaxy rotates clockwise, and a division on the X- and Y-axis
corresponds to 1 kpc.

the errors is due to the large number of moments considered
(N = 101).

When comparing Tables 2 and 1, one can see that our model
reproduces the directions of the radial and azimuthal compo-
nents of the residual velocities in the Perseus and Sagittarius
regions and in the Local System. We succeed in the Sagittarius
region where our model reproduces the observed velocities with
the accuracy 1.4 km s−1. Unfortunately, in the Perseus region
the model residual velocity |VR| is too high, and the difference
between the model and observed velocities achieves 5.8 km s−1

there. Our model can also reproduce the positive VR velocity in
the Local System, which deviates only 1.5 km s−1 from the ob-
served one.

We now consider the mean difference between the model and
observed velocities ΔV calculated for the radial and azimuthal
components:

ΔV2 =

∑k
1

{
(VR − VR obs)2 + (Vθ − Vθ obs)2

}

2k
, (4)

where k is a number of complexes. The value of ΔV com-
puted for three complexes (the Sagittarius and Perseus regions
and the Local System) equals ΔV = 3.3 km s−1. Another situ-
ation is observed in the Carina and Cygnus regions where we
cannot even reproduce the direction of the observed residual
velocities. The mean value of the velocity deviations achieves
ΔV = 13.3 km s−1 there.

To demonstrate the distribution of the average velocities on
the galactic plane, we divided the area (−10 < x < +10,
−10 < y < +10 kpc) into small squares of a size 0.250 ×
0.250 kpc. For each square we calculated the average values of
the residual velocities of gas particles. Then we averaged resid-
ual velocities over 101 moments for the interval T = 50−60. The
average residual velocities in squares are shown in Fig. 9. We
depicted only squares that contain high enough number of parti-
cles, n > m/2, where n is the number of particles accumulated in
a square over 101 moments but m is their number averaged over
all squares, m = 463.

In Paper I we have built similar figures for models with an-
alytical bars. Two different moments were considered: when the

broken rings (pseudorings) were observed and when they trans-
formed into pure rings. The pseudorings and pure rings created
different kinematical pictures. We connected the main kinemati-
cal features of the pseudorings with the gas outflow and those of
the pure rings with the resonance. The distribution of the neg-
ative and positive velocities obtained for N-body simulations
(Fig. 9) strongly resembles that of the pseudorings in models
with analytical bars, giving support to the “averaging process”
adopted here. This similarity suggests there is gas outflow in the
present model (see also Sect. 4.4).

4.2. Velocities in the complexes under different values
of the solar position angle θb

We studied the dependence of the average residual velocities VR

and Vθ on the solar position angle θb. Figures 10a,b shows
5 curves that demonstrate the velocity changes in 5 complexes.
The sharpest changes in the radial velocity VR are observed in
the Local System and in the Cygnus region, and the radial veloc-
ities in the other complexes depend only weakly on the choice
of θb. As for the azimuthal component, the strongest changes
can be seen in the Sagittarius, Carina, and Perseus regions, but
the velocity changes are modest in other complexes. Practically
speaking, the optimal value of θb provided the best agreement
between the model and observed velocities is determined by the
radial velocity in the Local System and by the azimuthal velocity
in the Sagittarius region. These velocities achieve their observed
values of VR = 5.3 and Vθ = −1 km s−1 under θb = 43◦ and
θb = 48◦, respectively.

We now consider the sum of square differences between
the model and observed velocities, χ2, obtained for the ra-
dial and azimuthal components under different values of θb.
Figure 10c shows the χ2-function computed for three complexes:
the Perseus and Sagittarius regions and the Local System. It is
clearly seen that χ2 achieves its minimum values at the interval
θb > 40◦. We chose θb = 45◦ as the optimal value because it re-
produces the observational velocity Vθ = −1 km s−1 well in the
Sagittarius region. Models with analytical bars in Paper I gave
the same result.
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Fig. 10. Dependence of the average residual velocities, VR a) and
Vθ b), and the χ2-function c) on the solar position angle θb. The
curves calculated for different complexes are shown by different lines.
The χ2-function was computed for three complexes: the Perseus and
Sagittarius regions and the Local System.

4.3. Analysis of periodicity in oscillations of the momentary
velocities

Now we approximate the oscillations in the radial and azimuthal
components of the momentary velocities, VR and Vθ (Fig. 8), by
the sinusoidal law:

VR(or Vθ) = A1 sin(2πT/P) + A2 cos(2πT/P), (5)

where P is a period of oscillations, A0 =

√
A2

1 + A2
2 is an ampli-

tude of oscillations, and T is time counted from T0 = 50.
We use the standard least square method to solve the system

of 101 equations, which are linear in the parameters A1 and A2
for each value of nonlinear parameter P. We then determine the
value of P that minimizes the sum of squared normalized resid-
ual velocities χ2. Figure 11 presents the χ2-curves built for the
oscillations of the radial velocity in 5 complexes, but the curves
made for the azimuthal velocities have no conspicuous minima.

χ2-function for variations in velocity VR
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Fig. 11. χ2-functions built for studying periodicity in the oscillations
of the radial velocities, VR, in 5 complexes. The minima on the curves
must correspond to the best periods in approximation of the velocity
oscillations.

It is clearly seen that χ2-curves demonstrate deep minima in the
Cygnus and Perseus regions and in the Local System. These
minima correspond to the best periods in approximating the ve-
locity oscillations that have the following values: P = 2.7 ± 0.4
in the Cygnus region, P = 2.9 ± 1.0 in the the Local System,
and P = 1.6 ± 0.2 in the Perseus region. We have already ob-
tained period P = 1.5 when studying density oscillations on the
galactic periphery (Sect. 3.3). Probably, the strongest slow mode
Ω = 28 km s−1 kpc−1 is also responsible for the velocity oscilla-
tions: the beating oscillations between the bar mode and a two-
armed pattern rotating with the speed Ω = 28 km s−1 kpc−1 must
have the period of P = 1.6 and those calculated for one-armed
perturbation have a period of P = 3.2 (Eq. (3)). Some of the
small differences between the pattern speeds derived from the
amplitude spectra and those obtained from kinematical analysis
may be due to tidal interaction in the stellar component between
the bar and slow modes.
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Table 1. Observed residual velocities of OB-associations in the stellar-gas complexes.

Region R VR obs Vθ obs l r Associations
kpc km s−1 km s−1 deg. kpc

Sagittarius 5.6 +9.9 ± 2.4 −1.0 ± 1.9 8–23 1.3–1.9 Sgr OB1, OB7, OB4, Ser OB1, OB2,
Sct OB2, OB3;

Carina 6.5 −5.8 ± 3.3 +4.7 ± 2.2 286–315 1.5–2.1 Car OB1, OB2, Cru OB1, Cen OB1,
Coll 228, Tr 16, Hogg 16, NGC 3766, 5606;

Cygnus 6.9 −5.0 ± 2.6 −10.4 ± 1.4 73–78 1.0–1.8 Cyg OB1, OB3, OB8, OB9;
Local System 7.4 +5.3 ± 2.8 +0.6 ± 2.5 0–360 0.1–0.6 Per OB2, Mon OB1, Ori OB1, Vela OB2,

Coll 121, 140, Sco OB2;
Perseus 8.4 −6.7 ± 3.0 −5.9 ± 1.5 104–135 1.8–2.8 Per OB1, NGC 457, Cas OB8, OB7, OB6,

OB5, OB4, OB2, OB1, Cep OB1;

Table 2. Model residual velocities averaged on interval T = 50−60.

Region VR σR Vθ σθ n
km s−1 km s−1 km s−1 km s−1

Sagittarius 8.5 7.2 0.1 5.9 70
Carina 7.5 7.6 –2.0 6.6 158
Cygnus 6.8 10.1 8.2 6.5 108
Local System 6.8 11.7 4.8 6.7 112
Perseus –12.5 11.9 –2.9 6.5 70

4.4. Evolutional aspects of kinematics at the time
interval T = 30–60

Let us compare the average residual velocities calculated
for different time intervals T = 30−40, 40−50, and 50−60
(Tables 2−4). Generally, most changes in the residual veloci-
ties do not exceed 4.0 km s−1 and are likely caused by occa-
sional perturbations. On the other hand, radial velocities VR in
the Local System and in the Cygnus region demonstrate the on-
going growth, which can be connected with the evolution of the
outer rings.

Figure 12 shows the surface density of gas particles aver-
aged in squares at different time intervals. The average density
was calculated in the reference frame that rotates with the speed
of the bar. The light-gray, dark-gray, and black colors represent
squares containing the increasing number of particles, n > m/2,
n > m, and n > 2m, respectively, where n is the number of par-
ticles accumulated in a square over 101 moments and m is their
number averaged over all squares, m = 463. It is clearly seen
that the major axis of the outer ring R2 changes its orientation: it
goes α ∼ 20◦ ahead of the bar at the interval T = 30−40, but this
angle increases to α ∼ 45◦ at the intervals T = 40−50 and T =
50−60. Moreover, the outer ring changes its morphology: we can
identify two outer rings of classes R1 and R2 at the interval T =
30−40, while there is only one outer ring with an intermediate
orientation of α ≈ 45◦ at the intervals T = 40−50 and 50−60.
Its shape becomes rounder at the interval T = 50−60.

Let us consider more thoroughly the distribution of gas par-
ticles at the interval T = 50−60 (Fig. 12). It is clearly seen
that the surface density of gas particles at the distance range of
R = 6−9 kpc is nearly twice the average density all over the
disk m. The density perturbation inside the outer ring can be ap-
proximated by two spiral arms with a pitch angle of i = 6 ±
1◦. The density perturbation inside them reaches to 100 per cent
with respect to the average gas density in the disk. This is con-
siderably larger than the density perturbation seen in the stellar
component (15−20 per cent).

Table 3. Model residual velocities averaged on interval T = 30−40.

Region VR σR Vθ σθ n
km s−1 km s−1 km s−1 km s−1

Sagittarius 10.2 8.4 1.8 6.9 84
Carina 10.4 8.7 1.2 7.8 184
Cygnus –0.7 9.9 10.8 5.4 87
Local System –1.0 11.6 7.7 5.9 90
Perseus –11.3 9.7 –2.5 5.6 83

Table 4. Model residual velocities averaged on interval T = 40−50.

Region VR σR Vθ σθ n
km s−1 km s−1 km s−1 km s−1

Sagittarius 8.9 7.4 0.8 5.7 69
Carina 9.1 7.4 –1.0 6.8 164
Cygnus 3.9 10.4 11.4 5.7 126
Local System 5.6 12.5 8.3 6.7 121
Perseus –15.2 11.1 –1.9 5.5 50

Figure 13 shows the profiles of the surface density of gas
particles averaged at the different time intervals. We can see the
growth of the density hump at the distance of R ≈ 7 kpc, which
indicates the growth of the outer ring. In contrast, the hump at
R ≈ 3 kpc is decreasing, which reflects the weakening of the
inner ring. At the interval T = 50−60, the maximum in the gas
density distribution is located at the distance R = 7.3 kpc, which
is just in the middle between the outer 4/1 resonance (6.4 kpc)
and the OLR (8.1 kpc) of the bar.

Tables 2−4 also represent the velocity dispersions of gas par-
ticles in the stellar gas complexes. We can see that their aver-
age values stay at nearly the same level of σR = 9.7 ± 0.1 and
σθ = 6.3 ± 0.2 km s−1 during the period T = 30−60. The max-
imum growth, which does not exceed ∼20 per cent, is observed
in the Perseus region. The model velocity dispersions somewhat
exceed the observed values derived for OB-associations in the
stellar-gas complexes, σR obs = 7.7 and σθ obs = 5.2 km s−1, but
this difference is below 30 per cent.

5. Conclusions

We have presented N-body simulations that reproduce the kine-
matics of OB-associations in the Perseus and Sagittarius regions
and in the Local System. The velocities of gas particles aver-
aged over large time intervals (1 Gyr or 8 bar rotation periods)
reproduce the directions of the observed velocities in these re-
gions. The mean difference between the model and observed
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Fig. 12. The surface density of gas particles averaged in squares at the time intervals T = 30−40, 40−50, and 50−60. The light-gray, dark-gray, and
black colors represent squares containing the increasing number of particles: n > m/2, n > m, and n > 2m, respectively. The position of the Sun is
shown by the specific symbol. The bar is oriented along the Y-axis, the galaxy rotates clockwise, and a division on the X- and Y-axis corresponds
to 1 kpc.
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Fig. 13. Profiles of the surface density of gas particles averaged at the
intervals T = 30−40, 40−50, and 50−60.

velocities calculated for the radial and azimuthal components is
ΔV = 3.3 km s−1 there.

The galactic disk in our model includes two subsystems.
The behavior of the stellar subsystem is modeled by 8 million
gravitating collisionless particles. The stellar disk quickly forms
a bar. Its original pattern speed is quite high, but it first
quickly decreases and then moves to a slow decrease with Ω ≈
50 km s−1 kpc−1 for several Gyr. With our favored value of the
solar distance, R0 = 7.5 kpc, this sets us close to the OLR
(ROLR = 8.1 kpc). This agrees with studies of local stellar veloc-
ity distribution (Dehnen 2000; Fux 2001; Minchev et al. 2010),
although they tend to set the OLR slightly inside R0. The optimal
value of the solar position angle θb providing the best agreement
between the model and observed velocities is θb = 45 ± 5◦. The
bar is quite long (Rbar ≈ 4.0 kpc), but both its size and orien-
tation are consistent with the parameters derived from infrared
observations (Benjamin et al. 2005; Cabrera-Lavers et al. 2007).

The stellar disk also creates an outer ring of class R1 rotating
with the pattern speed of the bar, and the corresponding density
perturbation amounts to 15−20 per cent of the average density at

the same distance. Besides the bar, the stellar disk includes sev-
eral slow modes. The strongest of these rotates with the pattern
speed of Ω ≈ 30 km s−1 kpc−1 and is often clearly lopsided.

The gas subsystem is modeled by 40 000 massless particles
that move in the potential created by the stellar particles (and
analytical bulge and halo) and can collide with each other in-
elastically. The gas disk forms an outer ring that exhibits quasi-
periodic changes in its morphology because it has several modes.
One can identify elements of R1- and R2-morphology, and the
outer ring can often be classified as R1R′2. The gas density per-
turbation inside the ring can be approximated by two spiral arms
with the pitch angle of i = 6 ± 1◦.

The models with analytical bars (Paper I) reproduced the
residual velocities well in the Perseus and Sagittarius regions.
We explained this success by the resonance between the rela-
tive orbital rotation of the bar and the epicyclic motion. The
Sagittarius region must be located slightly inside the OLR where
resonance orbits are elongated perpendicular to the bar, whereas
the Perseus region must lie outside the OLR where periodic or-
bits are oriented along the bar. However, models with the ana-
lytical bar failed dramatically with the Local System where they
yielded only negative radial velocities −24 < VR < −16 km s−1,
whereas the observed value is +5.3 km s−1. The success of
N-body simulations with the Local System is likely due to the
gravity of the stellar R1-ring, which is omitted in models with
analytical bars.

To study the effects of the gravity of the R1-ring we con-
struct more simple models with a “time averaged bar potential”.
This was done by calculating the average density distribution in
the frame rotating with the bar. This process should average out
most of the effect of slower modes and leave bar and the R1-ring
that corotates with the bar. The preliminary study shows that mo-
mentary velocities in these models are in a good agreement with
the average velocities in the present N-body simulation. The de-
tailed description of these models will be done in our next paper.

To simplify the analysis at this point we are forced to ignore
a lot of processes which are important at such long time inter-
val as 6 Gyr. We do not consider the accumulation of gas at the
galactic center, the transitions between the gas and stellar sub-
systems, resonant interaction between the bar and halo, or the
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minor mergers and satellite accretion. Considering the effects of
these processes may be done in a later phase.
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