Новые свидетельства роли жидкой фазы низкой плотности в генезисе коровых землетрясений

Левин Б.В., <u>Родкин М.В</u>.*, Сасорова Е.В.

* - ГЦ РАН, Москва, rodkin@wdcb.ru

Проблематика выступления:

Принято полагать, что сейсмический режим тесно связан (обусловливается?) глубинным флюидным режимом.

Но флюидный режим определяется характером взаимодействия флюид – порода. С глубиной закрываются трещины в горной породе, меняются структура и объемы порового пространства, происходит общая гомогенизация вещества.

Проявляются ли эти процессы в сейсмическом режиме?

Модель В.Н.Николаевского (1982 и последующие работы)

Характер взаимодействия флюид-порода определяется величиной давления (глубиной), следует ожидать развития зон трещиноватости в средней коре (область развития волноводов) и полного схлопывания пористости на границе кора-мантия

Модель С.Н.Иванова

Схлопывание трещин и пористости маркирует переход от субгидростатического давления флюида к сублитостатическому.

Этот переход происходит на глубине около 10 км в области так называемого слоя-отделителя. Слой характеризуется аномальными прочностными свойствами, концентрацией очагов землетрясений и зон глубинного срыва.

В области нижней коры происходит ряд реакций дегидратации. При этом реализуется перераспределение (отжимание) выделяющегося флюида в направлении к поверхности.

Методика

Рассматривается изменчивость от глубины средних значений: известных параметров (β-value, кажущиеся напряжения σа, плотность числа событий n)

а также средних величин отношения mw/mb и различий в глубине и времени события по данным анализа первых вступлений и по

данным определения параметров сейсмического момента.

Параметр mw/mb характеризует относительное развитие в очаге низко- и высокочастотных колебаний, используемых, соответственно, при определении сейсмического момента М (магнитуды mw) и магнитуды mb.

Параметры гипоцентра характеризуют начало процесса вспарывания в очаге землетрясения; время и глубина по решению сейсмического момента характеризуют «центр тяжести» очага процесса излучения сейсмических волн.

Время запаздывания Δτ характеризует полу-продолжительность процесса излучения сейсмических волн, а разница двух значений глубины события ΔΗ - полу-протяженность очага по глубине и направление процесса вспарывания (вверх или вниз)..

Правомочно ли использование кажущихся напряжений? Сравним значения сброшенных и кажущихся напряжений

Видна аналогичность величин и характера поведения кажущихся ($\sigma_a = \mu \text{ Es} / M$, Abe, 1982) – слева и сброшенных напряжений (справа). Данные: Гарвардский каталог (слева) и по [Abercrombie, Leary,1993] - справа.

Изменения параметров для разных регионов

Наклоны графика повторяемости в его линейной части β, медианы величин кажущихся напряжений σ_a и число событий N для разных регионов

Регион,	ß	σ _a ,	Число событий с						
название	٢	МПа	M>4×10 ²⁴ дин-см.						
Зоны субдукции и коллизии									
Аляска	0.59	0.13	151						
Альпийский пояс Евразии	0.61	0.12	222						
Тонга	0.71	0.12	245						
Зондские о-ва	0.55	0.17	131						
Южная Америка	0.56	0.11	176						
Япония	0.67	0.21	96						
Курилы	0.72	0.12	191						
Марианские о-ва	0.92	0.14	88						
Мексика	0.47	0.06	141						
Новая Зеландия	0.44	0.1	38						
Срединно-океанические хребты и трансформные разломы									
Атлантический океан	0.79	0.07	147						
Тихий океан	1.08	0.03	155						
Индийский океан	0.74	0.054	192						
Чилийский хр.	0.95	0.034	62						

Для областей с числом событий не менее 70. В целом (как и в эксперименте), меньшие значения наклона графика повторяемости соответствуют большим значениям напряжений Параметр величина кажущихся напряжений ведет себя ожидаемым образом (как если бы характеризовали величину напряжений)

Зависимость величин кажущихся напряжений от глубины

Зависимость характерных величин кажущихся напряжений от глубины.

Для сопоставления плотность очагов – величина сейсмогенных напряжений надо разбить на интервалы глубин. Корреляции величин медианы кажущихся напряжений σ_a и lg(числа землетрясений в ячейке) - пространственной плотности очагов

Интервал		Радиус ячейки, км		Число событий,			
глубин, і	KM			(достоверность> 99%)			
	25	50	100	250			
0 – 15	-0.20	-0.24	-0.28	-0.31	5000		
15 – 30	-0.25	-0.26	-0.27	-0.29	6000		
30 – 70	-0.17	-0.20	-0.21	-0.26	6500		
70 - 150	-0.11	-0.11	-0.07	-0.05	2500		
150-700	-0.18	-0.17	-0.16	-0.11	2547		

Изменение медианы 50 (шаг 25) событий Sigma apparent, форшоки даны красным

Эффект разупрочнения в критической области

Изменение медианы 50 (шаг 25) событий отношения mb/mw, форшоки даны красным

Зависимость плотности числа событий n от глубины H, кружки – области срединно-океанических хребтов, точки – остальные землетрясения.

Соотношение характерной полу-протяженности очага по глубине dH (ось у) от полу-продолжительности сейсмического процесса dT (ось х).

Соотношение характерной полу-продолжительности сейсмического процесса dT (ось у) от величины кажущихся напряжений (ось х). Средние значения для сортированные в порядке возрастания глубины группы землетрясений, зеленые кружки – области срединноокеанических хребтов, точки – остальные землетрясения.

События с более высоким уровнем «напряжений» имеют тенденцию протекать несколько быстрее

Зависимость от глубины средних значений кажущихся напряжений оа (слева) и отношения магнитуд mb/mw (справа), кружки – области срединно-океанических хребтов, точки – остальные землетрясения.

Зависимость от глубины средних значений разницы момента события ΔT (слева) и глубины очага ΔH (справа) по решению сейсмического момента и по первым вступлениям, отрицательные значения справа отвечают развитию очага вверх, кружки – области срединно-океанических хребтов, точки – остальные землетрясения.

Зависимость от глубины средних (для сортированных в порядке возрастания глубины групп землетрясений) значений наклона графика повторяемости величин сейсмического момента М, кружки – области срединно-океанических хребтов, точки – остальные землетрясения.

Некоторые выводы

- В области глубин 10-15 км и 20-30 км выявляются аномалии, отвечающие
 - Увеличению числа очагов землетрясений;
- Уменьшению величины кажущихся напряжений и отношения магнитуд mb/mw;
- Сильно выраженной (для глубин 20-30 км) тенденции развития процесса вспарывания очага в направлении к поверхности Земли.

То есть, наблюдаются: уменьшение прочности пород, превалирование развития низкочастотных компонент излучения очага, тенденция «прорыва» очага в область меньших давлений.

Такие свойства во многом аналогичны особенностям, характерным для очагов в окрестности сильных землетрясений. Литосферные землетрясения (H<70 км) имеют годовой ход, более глубокие - нет. Примерно на этой глубине энергетически предпочтительнее становится вхождение флюида в кристаллическую решетку (Адушкин, Родионов, 2005).

Графики зависимости вероятности от порогового значения глубины для пяти магнитудных диапазонов: черные линии для глубоких событий, серые линии - для неглубоких. По оси абсцисс на всех фрагментах - пороговое значение глубины (Hpor), по оси ординат - значение вероятности того, что данная последовательность событий не соответствует равномерному закону распределения. Кривые вычислены по месячной дискретной шкале для Камчатского субрегиона.

породы.

его вхождению в кристаллическую решетку

- легкого флюида вверх, - переходу от свободного состояния флюида к
- сублитостатическим давлениям флюида), развитию реакций дегидратации и перетоку
- схлопыванию порового пространства (переходу к
- области глубин 10-15 км, 20-30 км и 70-80 км. Эти глубины могут соответствовать:

При этом выделяются характерные горизонты в

В совокупности представленные данные являются новым свидетельством в пользу важной роли флюида низкой плотности в очагах землетрясений. Представляется, что возможным «претендентом» на роль обмягчителя среды являются взаимосвязанные процессы твердотельных превращений и флюидной активизации.

Спасибо за внимание