Изменения полуосей геометрического эллипсоида по данным GPS наблюдений

В.И.Кафтан, Е.Н.Цыба (ЦНИИГАиК, МИИГАиК)

Результаты определения изменений земного радиуса геодезическими методами

N⁰	Автор, год опубликования	Временной интервал	Методы измерения	V _r мм/год	$\sigma_{_{Vr}}$
1	У.Д. Паркинсон, 1986 г. (по У. Керри, 1991, стр. 192-194)	?	РСДБ	+28	<u>+</u> 8
2	В. Ф. Блинов, 1987	?	Доплеровский метод	+24.3	-
3	В. Ф. Блинов, 1987	1979-1982	SLR	+31.0	-
4	Heki et al, 1989	1979-1986	VLBI	≈ -7-8	-
5	В. Ф. Блинов, 1992	1980-1984	SLR	$\approx +20$	-
6	М. Д. Герасименко, 1993	1978-1988	SLR	≈+4.15	±0.27
7	М. М. Машимов, 1994	1978-1988	SLR Lageos	≈ (-10)	0.1-0.2
8	Takahashi, 1994	1984-1989	SLR, VLBI	-0.6	±2.5
9	М. Д. Герасименко, 1995	?	VLBI(РСДБ)	3	2
10	Lutes, 1996	1979-1995	VLBI	-0.94 -0.01	$\pm 0.35 \pm 0.04$
11	М. Д. Герасименко, 1998	1979-1995	VLBI	(-0.5 ÷ +0.5)	±0.5
12	M. D. Gerasimenko, Kato 2000	1979-1997	VLBI	-0.14 +0.48	$\pm 0.18 \\ \pm 0.09$
13	M. D. Gerasimenko, Kasahara 2001	?	VLBI	-0.3	±0.01
14	А.Г.Коломиец, М.Д. Герасименко, Ж.Ф. Крето, Л. Сударин 2007г.	1992-2001	DORIS	+0.21	0.99
			овские чтения 14	а <i>иш_уп_у_оевоа</i> л	6_2009_

Методы создания глобальной геодезической основы

Метод	Характеристика	Точность	Компоненты координатного обеспечения	
РСДБ	Определение расстояний и координат в небесной системе отсчета	D*10 ⁻¹³ 0.0001"	Вращение Земли, отсчетная основа, движения земной поверхности	
Лазерная локация спутников	Определение координат	1-2 см	Вращение Земли, отсчетная основа, движения земной поверхности	
СРНС	Определение координат	1-2 см (эпизодически) 1-2 мм (непрерывно)	Отсчетная основа, движения земной поверхности	
DORIS	Определение координат	1-5 см	Отсчетная основа, движения земной поверхности	
Спутниковая альтиметрия	Определение высоты геоида	~ CM	Отсчетная основа, движения земной поверхности	
Абсолютные гравиметры	Абсолютные ускорения силы тяжести	2-3 мкГал	Отсчетная основа, сила тяжести, движения земной поверхности, вращение Земли	
Сверхпроводимые гравиметры	Относительные ускорения силы тяжести	0.1 мкГал	Отсчетная основа, сила тяжести, движения земной поверхности, вращение Земли	
Статические гравиметры	Относительные ускорения силы тяжести	2-3 мкГал	Сила тяжести, отсчетная основа	
Сагитовские чтения, ГАИШ, МГУ, февраль				

Схема глобальной сети РСДБ

Схема глобальной сети лазерной локации спутников

Схема глобальной сети DORIS

Схема глобальной сети IGS

Space Geodetic Networks of IVS, ILRS and IGS

VLBI SLR * * * GPS

Сформированная сеть пунктов GPS

Сравнение эмпирических стандартов скоростей горизонтальных и вертикальных движений пунктов глобальной геодезической сети

Скорость изменения среднего радиуса Земли *V_r*=0.61<u>+</u>0.02 мм/год

Временные вариации масштаба ITRF00 [Herring Th. (2002)]. JPL- 0.6 мм/год, РСДБ- 0.12 мм/год

Первые высокоамплитудные синусоидальные компоненты колебательных изменений среднего радиус-вектора (амплитуды от 0.5 до 4.5 лет)

Спектры колебаний изменений среднего радиус-вектора: амплитудный (вверху) и нормированный амплитудный (внизу)

Все высокоамплитудные гармоники находят аналоги в приливных колебательных изменениях земной поверхности. Наибольшую амплитуду имеет околопятилетняя гармоника, но она имеет самую низкую надежность ее определения. Отметим, что окологодовая компонента в нашем случае более близка к Чандлеровской волне, чем к сезонной. Имеются также и околомесячные колебательные компоненты, близкие к теоретическим приливным аналогам.

Вычисление изменений большой и малой полуосей

$$r_{0} = ab \left(a^{2} \sin^{2} \Phi_{0} + b^{2} \cos^{2} \Phi_{0}\right)^{\frac{1}{2}}$$

$$\frac{\partial a}{\partial r} = \frac{r_{cp}^{3} \times \cos^{2} \Phi^{2}}{a_{0}^{3}} \qquad \frac{\partial b}{\partial r} = \frac{r_{cp}^{3} \times \sin^{2} \Phi^{2}}{b_{0}^{3}}$$

$$I = \begin{bmatrix} R_{0} - R_{i} \end{bmatrix}$$

$$I = \begin{bmatrix} R_{0} - R_{i} \end{bmatrix}$$

$$x = \begin{bmatrix} da_{i} & db_{i} \end{bmatrix}^{T} = -(A^{T}A)^{-1}A^{T}I$$

$$v = A \times x + I$$

$$\frac{\partial a}{\partial r_{n}} \quad \frac{\partial b}{\partial r_{n}} \end{bmatrix}$$

$$m^{2} = \frac{\begin{bmatrix} v^{2} \\ m^{2} \\ m^{2} \end{bmatrix}}{m^{2} - 2}$$

$$m^{2} = \frac{m}{\sqrt{Q_{i}}}$$

Графики изменений большой и малой полуосей

Сравнение изменений большой и малой полуосей геометрического эллипсоида

- Почти зеркальная симметрия в рядах изменений большой и малой полуосей (r=-0.5)
- Существенно большая скорость изменения малой полуоси по сравнению с большой, а также более явное, чем у среднего радиус-вектора наличие периодических колебательных компонент в изменениях длин полуосей подтверждает предположение о возможно приливном механизме наблюдаемых колебаний

Качественное сравнение формы геометрического эллипсоида в начале и в конце исследуемого периода (противоречие приливной теории в отношении увеличения сжатия за счет постоянного прилива [П.Мельхиор, 1968])

Временной ряд изменений сжатия и гармонического коэффициента *J*₂

Временной ряд изменений гармонического коэффициента *J*₂ по наблюдения Lageos [Cox C.M., Chao B.F., 2002]

Сагитовские чтения, ГАИШ, МГУ, февраль 2009

 $\Delta J_2 \mathrm{X10^{10}}$

Изменения полуосей и среднего радиуса северного полушария

Изменения полуосей и среднего радиуса южного полушария

Изменения малых (полярных) полуосей северного и южного полушарий (наблюдается положительная корреляция)

Скорости радиальных изменений полушарий и Земли в целом

Территория исследований	Скорости изменений и соответствуюц стандартные отклонения (мм/год)		етствующие (мм/год)
	Большая полуось	Малая полуось	Средний радиус
Земля в целом	0.15 <u>+</u> 0.06	1.52 <u>+</u> 0.10	0.61 <u>+</u> 0.02
Северное полушарие	-0.23 <u>+</u> 0.09	1.45 <u>+</u> 0.12	0.44 <u>+</u> 0.06
Южное полушарие	1.06 <u>+</u> 0.11	2.61 <u>+</u> 0.18	1.42 <u>+</u> 0.11

Корреляция рядов радиальных изменений северного и южного полушарий

Коэффициенты корреляции и соответствующие стандартные отклонения					
Большая полуось	Малая полуось	Средний радиус			
-0.03 <u>+</u> 0.02	0.17 <u>+</u> 0.02	0.12 <u>+</u> 0.02			

Гипотеза о физических механизмах

Гипотеза о физических механизмах

Гипотеза о физических механизмах

Заключение

- Амплитуды колебаний малой полуоси превышают соответствующие значения для большой полуоси, что согласуется с теорией земных приливов
- Разности периодов колебаний полуосей эллипсоида в целом не превышают собственных стандартных отклонений более чем втрое, что позволяет предполагать их приливную причину
- Постоянное увеличение сжатия не наблюдается
- Скорость увеличения радиуса южного полушария от 1.5 до 5 раз выше, чем северного
- Требует объяснения линейный рост стандартных отклонений