Структура границы внутреннего ядра как отражение динамических процессов

Адушкин В.В., <u>Овчинников В.М.</u>

Институт динамики геосфер РАН

5 Февраля 2008

Сейсмические волны и их лучевые диаграммы

Положение точек отражения

Проекции точек отражения на дневную поверхность в основном покрывают Центральную Азию, частично Юго-Восточную Азию, Европу и полярную область.

ДАННЫЕ

PKiKP

PKiKP

Параметры землетрясения 21 марта 1998 t=18:22:28.4, φ=36.43, λ=70.13 m=5.8 h=228

Фаза РКіКР отчетливо прослеживается на вертикальных каналах на расстояниях от 3 до 40 град.

Времена пробега фазы РКіКР хорошо согласуются с моделью PREM: для взрывов в пределах 0.5 с, а для землетрясений в пределах 1.5 с.

Измерения амплитуд

Амплитуды фазы РКіКР для взрывов (слева) и для землетрясений(справа)

Черные точки- взрывы в СССР

Зеленые точки – измерения на группах Светлые точки– 3 комп. измерения

Амплитуды фазы РКіКР не согласуются с амплитудами для модели PREM с резкой границей. Расхождение достигает 100 раз на расстояниях 70-90 градусов.

Необходима корректировка модели PREM

Спектральные свойства фазы РКіКР

СВАН диаграммы фазы Р и РКіКР

Спектры фазы РКіКР обогащены высокочастотными компонентами по сравнению с фазами Р и РсР.

Это может быть следствием тонкослоистой структуры границы

Спектральное отношение на станции Зеренда (ZRN) в Казахстане

Частотный состав волны РКіКР

	PcP			PKiKP			t	Р
Волна								
Дата	T, c	σ, c	n	Т,с	σ, c	n		
07.10.94	0.67	0.083	13	0.54	0.133	14	3.0996	0.005
15.05.95	0.66	0.089	5	0.52	0.079	10	2.9914	0.010
17.08.95	0.68	0.177	16	0.57	0.125	12	1.8723	0.073
08.06.96	0.69	0.13	13	0.53	0.15	9	2.7354	0.012

Средние периоды волн РКіКР и РсР значимо различаются. При этом Т (PKiKP)<T(PcP).

Это может быть следствием тонкослоистой структуры границы

Огибающая сейсмограммы

150 225 300

75

150

Время, с

525 450 375 300 225

$$F^{2}(t) = \max_{\mathbf{k}} \left\{ (2\tau)^{-1} \int_{t-\tau}^{t+\tau} \left[n^{-1} \sum_{i=1}^{n} f(t' - \mathbf{kr}_{i}) \right]^{2} dt' \right\}$$

Фаза РКіКР часто сопровождается высокоскоростными колебаниями (кодой) длительностью до 200 с, которые отсутствуют, например, у фазы РсР. Скорость распространения коды близка к скорости фазы РКіКР. Кода имеет более высокочастотный состав.

Кода может быть результатом либо реверберации в тонкослоистой среде, либо рассеяния на отражателях в верхней части ядра

Возможные модели ІСВ 1

1. Модель с резкой границей

- ⇒ хорошая согласованность времен пробега
- ⇒ не объясняет большие амплитуды в
 - транспарентной зоне
- ⇒не объясняет высокочастотный состав фазы РКіКР

Возможные модели ІСВ

2. Модель с глобальным тонким слоем

- ⇒ хорошая согласованность времен пробега
- ⇒ обеспечивает требуемый частотный состав
- ⇒ не полностью объясняет характер изменения амплитуды с расстоянием
- ⇒ объясняет характер коды в виде отдельных вступлений

Возможные модели ІСВ

3. Латерально неоднородная модель

⇒ удовлетворяет наблюденным амплитудам и частотному составу фазы РКіКР ⇒ частично объясняет коду РКіКР

Переход от внешнего к внутреннему ядру представляет собой область со структурой, основными элементами которой являются либо тонкие слои в основании внешнего или в вершине внутреннего ядра, либо резкая граница, в результате чего возникает мозаичная картина отражений от границы ICB.

Postscriptum

Плотность распределения периодов волн РКіКР

Плотность распределения периодов имеет многомодовый характер

Мозаика периодов отраженных волн

Особенностью последнего десятилетия является всплеск интереса к исследованиям внутреннего ядра Земли. Это связано,

- во-первых, с тем, что внутреннее ядро участвует в процессе поддержания конвекции в жидком ядре, оказывая тем самым влияние на магнитное поле Земли,
- во-вторых, достигнут значительный прогресс в сейсмологии, в частности, цифровой наблюдательной сети, обеспечившей проведение прецезионных измерений с применением средств вычислительной техники,
- в-третьих, большие успехи были достигнуты в лабораторных испытания материалов при температуре и давлениях в условиях внутреннего ядра Земли,
- в-четвертых, развитием вычислительных методов, позволяющих рассчитывать свойства материалов, слагающих недра Земли, при сверхвысоких давлениях.

Огибающая сейсмограммы

Lop Nor(1995-05-15) - W Rar, D = 74.3°, A z = 326.2°, m b = 5.7. Coord RefIP KiK P : 11.7°, 114.4° Filter: 2-4 H z, slope 3. W ind = 1 sec, 19 channels, t-t_{p KiK P} = 1050.3 (P R E M)

Фаза РКіКР часто сопровождается высокоскоростными колебаниями (кодой) длительностью до 200 с, которые отсутствуют, например, у фазы РсР. Скорость распространения коды близка к скорости фазы РКіКР. Кода имеет более высокочастотный состав.

Кода может быть результатом либо реверберации в тонкослоистой среде, либо рассеяния на отражателях в верхней части ядра