The Pioneer Anomaly: Effect, New Data and New Investigation

Slava G. Turyshev

Jet Propulsion Laboratory, California Institute of Technology

Seminar at the Sternberg Astronomical Institute Moscow State University, Moscow, 6 February 2007

THE STUDY OF THE PIONEER ANOMALY Conclusions & Outline:

Anomalous acceleration of the Pioneers 10 and 11:

 $a_P = (8.74 \pm 1.33) \times 10^{-10} \text{ m/s}^2$ A line-of-sight constant acceleration *toward* the Sun:

Most plausible cause is systematics, yet to be demonstrated

Phys. Rev. D 65 (2002) 082004, gr-qc/0104064

Possible Origin?

- Conventional Physics [not yet understood]:
 - Gas leaks, thermal mechanism, drag force, etc...

- New Physics [many proposals exist, some interesting]
- A "win-win" situation both possibilities are important:
 - CONVENTIONAL explanation: i) confirmation of the Newton's 1/r² gravity law in the outer solar system, ii) improvement of spacecraft engineering for precise navigation & attitude control, or
 - NEW physics: would be truly remarkable...

THE STUDY OF THE PIONEER ANOMALY The Pioneer 10/11 spacecraft

Agency: NASA	Pioneer 10	Pioneer 11	
Launch	2 March 1972	5 April 1973	
Planetary fly-bys	Jupiter: 4 Dec 1973	Jupiter: 2 Dec 1974	
		Saturn: 1 Sep 1979	
Last data point	27 Apr 2002	1 Oct 1990	
received	distance $\sim 80.2 \text{ AU}$	distance $\sim 30 \mathrm{AU}$	

	Parameters for Pioneer 10 (Pioneer 11 – identical)			
3	Total spacecraft mass		$259 \mathrm{~kg}$	
es Research Center	SNAP-19 RTG: mass/distance		13.6 kg / 3 m	
	High Gain Antenna, diameter		$2.74 \mathrm{\ m}$	
	Attitude control: spin-stabilized		${\sim}4.28~\mathrm{rpm}$	
	Communication system		Data available	
	S-band, up-link	S-band, down-link	$(\lambda \simeq 13 \text{ cm})$	
	2110 MHz	2292 MHz	Doppler	
	Spacecraft transmits continuously @ 8 W			

Pioneer 10: pre-launch testing

The Pioneers are still the most precisely navigated deep-space vehicles:

- Spin-stabilization and design permitted acceleration sensitivity ~10⁻¹⁰ m/s², unlike a Voyager-type 3-axis stabilization that were almost 50 times worse;
- Precision celestial mechanics a primary objective of the Pioneers' extended missions – search for gravitational waves, Planet X, trans-Neptunian objects, etc.

THE STUDY OF THE PIONEER ANOMALY Pioneer 10 Launch: 2 March 1972

-Radiation Belts One Million Times Stronger Than Earth -provide information on atmosphere. Red Spot and magnetic, electrical and radiation environment -built by Ames Labs

Detection of the Effect and Earlier Studies

- 1979: search for unmodeled accelerations w/ Pioneers began:
 - Motivation: Planet X; initiated when Pioneer 10 was at 20 AU;
 - Solar-radiation pressure <u>away</u> from the Sun became < 5×10^{-10} m/s²
- 1980: navigational anomaly first detected at JPL:

Initial JPL-ODP analysis in 1990-95:

- The biggest systematic error in the acceleration residuals – a constant bias of $(8 \pm 3) \times 10^{-10} \text{ m/s}^2$ directed <u>towards</u> the Sun

PRL 81(1998) 2858-2861, gr-qc/9808081

- $(8.09 \pm 0.20) \times 10^{-10} \text{ m/s}^2$ for Pioneer 10
- $(8.56 \pm 0.15) \times 10^{-10} \text{ m/s}^2$ for Pioneer 11
- NO magnitude variation with distance over a range of 40 to 70 AU
- The error is from a batch-sequential & filter-smoothing algorithm
- An Error in JPL's ODP? Numerous internal checks at JPL
- NASA Grant to The Aerospace Corporation: 1996-1998

Data used for the Analysis (1996-1998):

- **Pioneer 10**: 11.5 years; distance = $40-70.5 \text{ AU} \Rightarrow 20,055 \text{ data points}$
- **Pioneer 11**: 3.75 years; distance = $22.4-31.7 \text{ AU} \Rightarrow 19,198$ data points

The Observed Anomalous Doppler Drift

The two-way Doppler residuals (observed Doppler velocity minus modeled Doppler velocity) for Pioneer 10 vs time [1 Hz is equivalent to 65 mm/s velocity].

THE STUDY OF THE PIONEER ANOMALY The Pioneer Anomaly: Quality of Data Fit

Adding only one more parameter to the model – a constant radial acceleration – led to residuals distribution ~zero Doppler velocity with a systematic variation ~3.0 mm/s. Quality of the fit is determined by ratio of residuals to the downlink carrier frequency, $f_0 \approx 2.29$ GHz.

THE STUDY OF THE PIONEER ANOMALY Modeling of Spacecraft Motion

- Relativistic eq.m. for celestial bodies are correct to (v/c)⁴:
 - Relativistic gravitational accelerations (EIH model) include: Sun, Moon, 9 planets are point masses in isotropic, PPN, N-body metric;
 - Newtonian gravity from large asteroids; terrestrial, lunar figure effects; Earth tides; lunar physical librations.
- Relativistic models for light propagation are correct to (v/c)²
- Model accounts for many sources of non-grav. forces, including:
 - Solar radiation and wind pressure; the interplanetary media;
 - Attitude-control propulsive maneuvers and propellant (gas) leakage from the propulsion system;
 - Torques produced by above mentioned forces;
 - DSN antennae contributions to the spacecraft radio tracking data.
- Orbit determination procedure, includes:
 - Models of precession, nutation, sidereal rotation, polar motion, tidal effects, and tectonic plates drift;
 - Model values of the tidal deceleration, non-uniformity of rotation, polar motion, Love numbers, and Chandler wobble are obtained observationally via LLR, SLR and VLBI (from ICRF).

Sources of Systematic Error: External

Phys. Rev. D 65 (2002) 082004, gr-qc/0104064 IJMP A 17 (2002) 875-885, gr-qc/0107022

An interesting set of error sources, but not of a major concern!

The Pioneer 10/11 Spacecraft

THE STUDY OF THE PIONEER ANOMALY On-board Power and Heat

▶ Converts 5 to 6 % of released heat to electric power

Thermal system and on-board power:

Power available:

- ▷ before launch electric total 165 W (by 2001 ~ 61 W)
- ▷ needs 100 W to power all systems (\in 24.3 W science instruments)

Heat provided:

- \triangleright before launch thermal fuel total 2580 W (by 2001 ~ 2050 W)
- ▶ electric heaters; 12 one-W RHUs
- \triangleright heat from the instruments (dissipation of 70 to 120 W)

Excess power/heat: if electric power was $> 100 \text{ W} \Rightarrow$

▷ thermally radiated into space by a shunt-resistor radiator, or

▶ charge a battery in the equipment compartment

Thermal control:

 \sim 0 - 90 F

- $\triangleright \ \ \text{thermo-responsive louvers (bi-metallic springs)} \ | \ \ \sim \downarrow 40 \ \text{-} \uparrow 85 \ \text{F}$
- ▶ insulation: multi-layered aluminized mylar and kapton blankets

Design based on well understood process of on-board nuclear-toelectric energy conversion and heat dissipation within the craft

Sources of Systematic Error: On-board

Focus of the 1995-2002 Analysis

- On-board systematic & other hardware-related mechanisms:
 - Precessional attitude control maneuvers and associated "gas leaks"
 - Nominal thermal radiation due to ²³⁸Pu decay [half life 87.75 years]
 - Heat rejection mechanisms from within the spacecraft
 - Hardware problems at the DSN tracking stations
- Examples of the external effects (used GLL, ULY, and Cassini):
 - Solar radiation pressure, solar wind, interplanetary medium, dust
 - Viscous drag force due to mass distribution in the outer solar system
 - Gravity from the Kuiper belt; gravity from the Galaxy
 - Gravity from Dark Matter distributed in halo around the solar system
 - Errors in the planetary ephemeris, in the Earth's Orientation, precession, polar motion, and nutation parameters
- Phenomenological time models:
 - Drifting clocks, quadratic time augmentation, uniform carrier frequency drift, effect due to finite speed of gravity, and many others
- All the above were rejected as explanations

Most of the systematics are time or/and space dependent!

The Pioneer Anomaly: Summary

Phys. Rev. D 65 (2002) 082004, gr-qc/0104064

- By 2007 the presence of the anomaly in the data (same data as in Anderson et al., 2002) confirmed by five codes:
 - JPL Orbit Determination Program [various generations for 1979-2001];
 - The Aerospace Corporation code POEAS [during period of 1995-2001];
 - Goddard Space Flight Center conducted a study in 2003 [data from NSSDC];
 - Institute for Theoretical Astronomy, Norway, Oslo [2002-2006];
 - Viktor Toth, Canada [2005-2006].
- The observed frequency drift can be interpreted as an acceleration of $a_P = (8.74 \pm 1.33) \times 10^{-10} \text{ m/s}^2$
- This interpretation has become known as the Pioneer Anomaly:
 - Constant acceleration of the spacecraft toward the Sun...
- Observation $a_P \simeq cH$, stimulated many suggestions.... examples:
 - Kinematical realization of local cosmological frame; momentum-dependent gravitational coupling; modified inertia; non-uniformly-coupled scalar field(s); Brane-worlds; higher-dimensional gravitational models...
- Primary focus of newly started analysis: "the heat or not the heat?"

Existence of the signal is confirmed, its origin is yet unknown

Recent Pioneer Doppler Data Recovery Effort

Data used for the Analysis (1996-1998):

- Pioneer 10: 11.5 years; distance = $40-70.5 \text{ AU} \Rightarrow 20,055 \text{ data points}$
- Pioneer 11: 3.75 years; distance = $22.4-31.7 \text{ AU} \Rightarrow 19,198$ data points

Pioneer 10/11 Doppler Data available (January 2007):

- Pioneer 10:
 - 1973-2002: ~30 years
 - Distance range: 4-87 AU
 - Jupiter encounter
 - ~95,000 data points, ~20GB
 - Maneuvers, spin, initial cond.
 - All telemetry is available

- Pioneer 11:
 - 1974-1994: ~ 20 years
 - Distance range: 1–33 AU
 - Jupiter & Saturn encounters
 - ~65,000 data points, ~<u>15GB</u>
 - Maneuvers, spin, initial cond.
 - All telemetry is available
- Planning for the upcoming data analysis:
 - After initial certification at JPL, both datasets will be made available
 - NASA supports the investigation critical for the entire effort
 - The Planetary Society good but insufficient for serious work
 - ZARM, Germany: received funding, started analysis of old data
 - French group funded by CNES is also planning for analysis

The on-going Pioneer data analysis is planned as an international effort

JPL THE STUDY OF THE PIONEER ANOMALY 9-track Magnetic Tapes...

Statistics: ~400 tapes... 90 minutes / tape

- Analysis of the entire dataset:
 - Temporal evolution of the anomaly
- Focus on on-board systematics:
 - Thermal modeling using telemetry

- Towards the Sun: gravitational models?
- Towards the Earth: frequency standards?
- Along the velocity vector: drag or inertia?
- Along the spin axis: internal systematics?

A plot of early unmodeled accelerations of Pioneer 10 (1981–1989), Pioneer 11 (1977–1989)

THE STUDY OF THE PIONEER ANOMALY Conclusions and Next Steps

- As of late 2006 new data is available, both Doppler and telemetry
- Primary effort in on the analysis of the extended Doppler dataset
 - To determine true direction of the anomaly and its behavior as a function of distance from the Sun
- High fidelity Thermal Model of the Pioneers is available
 - Ideal tool for future analysis
 - Capable of examining all heliocentric distances and off-sun angles
 - Capable of identifying anisotropic thermal contributions of individual spacecraft subsystems
- Upcoming efforts in thermal analysis:
 - Quantify anisotropic contributions from individual sources such as the RTGs, louvers, and HGA.
 - Calculate anisotropic thermal emission from Pioneer spacecraft at different heliocentric distances and off-sun angles.
 - Sensitivity analysis as a function of varying optical properties
- Next Steps: focus on the anomaly:
 - Analysis of early Pioneer 11 Doppler data
 - Combined analysis of Doppler and telemetry data
- More information at:
 - http://www.issibern.ch/teams/Pioneer/

