Сагитовские чтения – 2007г. Москва, ГАИШ, 6 февраля 2007г.

Лунно-солнечные приливы

по деформационным наблюдениям

<u>Милюков В.К.,</u> Копаев А.В. Лагуткина А.В., Миронов А.П.,

Мясников А.В

Государственный астрономический институт им. П.К. Штернберга

milyukov@sai.msu.ru

The Elbrus volcano is the highest point of Europe. The altitude of the west top is 5643 m, the altitude of the east top is 5620 m. The "saddle" between the tops is lower at 270 m and 250 m. Elbrus is classified as an active volcano with clearly dated historical eruptions in the Holocene.

5643

Баксанская геодинамическая обсерватория ГАИШ МГУ

Location: Baksan canyon, 20 km apart from Elbrus volcano

Latutude 43°12′, Longitude – 42°43′,

Баксанский лазерный интерферометр

1, 2. - Вакуумные камеры. 3,4,5. - Сильфоны. Т₁, Т₂, Т₃. - Датчики температуры. Р. - Датчик давления

Strain variation during 20 months (Nov 2004 – July 2006)

Temperature variation of the rock

Pressure variation

оп иидымофец йондохои кидысэнелмой метеорологическим факторам.

1. - исходная деформация; 2. - регрессионный полином, построенный по метеоданным; 3. - компенсированная деформация, свободная от термоупругих и барических деформаций; 4. - компенсированная деформация с убранным приливом.

Приливные деформации

M2: 12h 25m S2: 12h 00m

Параметры основных приливных волн

Символ	Частота [град/ч]	Период [час]	названия волн (L – лунная, S – солнечная)				
Полусуточные компоненты							
2N ₂	27.968208	12.8717	L, эллиптическая волна M ₂				
N ₂	28.439730	12.6583	L, большая эллипт. волна M ₂				
<i>M</i> ₂	28.984104	12.4206	L, главная волна				
L ₂	29.528479	12.1916	L, малая эллиптическая волна M ₂				
S ₂	30.000000	12.0000	S, главная волна				
K ₂	30.082000	11.9666	L-S, деклинационная волна				
Суточные компоненты							
Q ₁	13.398661	26.8683	L, эллиптическая волна O ₁				
O ₁	13.943036	25.8193	L, главная волна				
M ₁	14.496694	24.8332	<i>L</i> , эллиптическая волна <i>К</i> ₁				
<i>P</i> ₁	14.958931	24.0659	S, главная волна				
S ₁	15.000002	24.0000	S, эллиптическая волна ^s K ₁				
K ₁	15.041069	23.9345	L-S, деклинационная волна				
J_1	15.585443	23.0985	L, эллиптическая волна ^{<i>т</i>} K ₁				
001	16.139102	22.3061	L, деклинационная волна				

Анализ данных приливных деформаций 1.Отношение сигнал/шум для основных приливных волн

Волна О1: S/N ~ 20-30 (max 70) STD ~ 2-5%

Волна M2: S/N ~ 100-170 (max 280) STD ~ 2-5%

Анализ данных приливных деформаций

3. Коэффициенты регрессии

По атмосферному давлению

По температуре

Анализ данных приливных деформаций

2. Задержка фазы

Phase lead M2

Волна O1: $\Delta \sim -5^{\circ} \div +5^{\circ}$ (mean value ~ -1.3°) STD ~ 1-3°

Волна M2: $\Delta \sim 0^{\circ} \div +1^{\circ}$ (mean value ~ 0.1°) STD ~ 0.5°

Учет влияния рельефа

 Для расчета возмущения деформации рельеф Баксанского ущелья был аппроксимирован полиномом

$$Z(x) = \sum_{k=0}^{N} C_k x^k, \quad N = 8$$

 За счет рельефа измеренные значения деформаций увеличиваются на ~ 22%

Результаты наблюдений 1. Вариации амплитудных факторов основных приливных волн

2. Влияние ближайшего тектонического разлома на приливные деформации

ōε_{yy}≈0

3. Влияние магматических структур вулкана Эльбрус на приливные деформации

Магматическая камера

Магматический очаг

$\vec{o}V_p / V_p \approx -1;$ $\vec{o}V_s \approx 0;$ $\lambda \approx \mu$

аномалия 12% на расст. 4.3 км

$$\begin{split} & \bar{\delta}V_{\rho} / V_{\rho} \approx -0.25; \\ & \bar{\delta}V_{s} / V_{s} \approx -0.25; \\ & \lambda \approx \mu \end{split}$$

аномалия 12% на расст. 18 км и 26 км

4. Оценка приливных параметров по 2-летнему непрерывному блоку наблюдений (XI / 2003 – XI / 2006)

from	to	wave	ampl. nstr	signal/ noise	ampl.fac	. stdv.	phase lead [deg]	stdv. [deg]
286	428	Q1	1.068	9.0	1.07133	0.11861	-4.2100	6.3433
429	488	01	5.470	46.2	1.05024	0.02271	-1.4842	1.2389
489	537	M1	0.469	4.0	1.14541	0.28875	16.6051	14.4438
538	554	P1	2.178	18.4	0.89876	0.04881	-23.1604	3.1113
555	558	S1	2.159	18.3	37.67248	2.06352	-3.5701	3.1384
559	592	К1	6.145	52.0	0.83890	0.01615	-8.9855	1.1028
593	634	J1	0.358	3.0	0.87518	0.28876	-12.1582	18.9043
635	736	001	0.214	1.8	0.95552	0.52769	0.9469	31.6420
737	839	2N2	0.320	7.9	0.99216	0.12635	-2.3335	7.2965
840	890	N2	2.189	53.7	1.08435	0.02018	0.1335	1.0662
891	947	M2	11.595	284.6	1.09958	0.00386	-0.0483	0.2013
948	987	L2	0.300	7.4	1.00792	0.13668	2.2073	7.7694
988 1	800.	S2	5.281	129.6	1.07641	0.00830	0.0999	0.4420
1009	112	1 К2	1.453	35.7	1.08930	0.03054	-0.2794	1.6065

5. Влияние резонансных эффектов жидкого ядра Земли на амплитуды суточных гармоник приливных деформаций

from	to	wave	ampl. nstr	signal/ noise	ampl.fac	. stdv.	phase lead [deg]	stdv. [deg]
286	428	Q1	1.068	9.0	1.07133	0.11861	-4.2100	6.3433
429	488	01	5.470	46.2	1.05024	0.02271	-1.4842	1.2389
489	537	M1	0.469	4.0	1.14541	0.28875	16.6051	14.4438
538	554	P1	2.178	18.4	0.89876	0.04881	-23.1604	3.1113
555	558	S1	2.159	18.3	37.67248	2.06352	-3.5701	3.1384
55 9	592	К1	6.145	52.0	0.83890	0.01615	-8.9855	1.1028
593	634	J1	0.358	3.0	0.87518	0.28876	-12.1582	18.9043
635	736	001	0.214	1.8	0.95552	0.52769	0.9469	31.6420
737	839	2N2	0.320	7.9	0.99216	0.12635	-2.3335	7.2965
840	890	N2	2.189	53.7	1.08435	0.02018	0.1335	1.0662
891	947	M2	11.595	284.6	1.09958	0.00386	-0.0483	0.2013
948	987	L2	0.300	7.4	1.00792	0.13668	2.2073	7.7694
988 1	800.	S2	5.281	129.6	1.07641	0.00830	0.0999	0.4420
1009	112	1 к2	1,453	35.7	1.08930	0.03054	-0.2794	1,6065

*K*1 /O1 = 0.80 ± 0.02

Заключение

- Главная лунная полусуточная волна М2 является основным амплитудно-фазовым индикатором упругого отклика земной коры на приливное воздействие. Для месячных интервалов наблюдения волна М2 имеет отношение сигнал/шум в пределах 100-170 (максимально 280). Погрешность определения амплитудного фактора 0.5-1%. Для 2-х годичного интервала наблюдения отношение сигнал/шум равно 285, значение амплитудного фактора, в которое внесена поправка за рельеф, равно 0.819 с относительной ошибкой 0.35%.
- Выявлены статистически значимые временные вариации амплитудных факторов, в 3-5 раз превышающие 95% их доверительный интервал. Такие вариации могут быть обусловлены изменениями регионального поля напряжений, в частности, изменением сейсмической активности региона.

Заключение

- Редуцированные амплитудные факторы приливных волн имеют заниженные значения. Численное моделирование приливных аномалий показывает, что наблюдаемая аномалия волны М2 (12%) по-видимому обусловлена влиянием глубинного магматического очага вулкана Эльбрус.
 - Резонансные эффекты жидкого ядра Земли обнаруживаются в гармонике прилива К1: [К1/О1]=0.80±0.02.